ANALYSIS OF THE VERTICAL-VERTICAL CONTROLLED SOURCE ELECTROMAGNETIC METHOD APPLIED TO RESERVOIR MONITORING

Authors

  • Danusa Mayara de Souza Author
  • Leandro Seabra Moreira Author
  • João Carlos Lisboa de Lima Author
  • Marcos Welby Correa Silva Author
  • Victor Cezar Tocantins de Souza Author

DOI:

https://doi.org/10.56238/arev7n12-009

Keywords:

Electromagnetic Modelling, Reservoir Monitoring, Transient Electromagnetic Method

Abstract

Geophysical prospecting in the marine environment has reduced the uncertainties and ambiguities encountered in oil and gas prospecting, mainly due to technological and operational advances. In addition to presenting an increasingly shorter acquisition time and higher resolution, they provide a more significant amount of information and knowledge about the geological environment of interest. In acquiring data in different geological environments, the ideal would be to use different geophysical methodologies to obtain the most considerable amount of information contained in the data and provide full knowledge about the sedimentary environment under study. Thus, controlled-source electromagnetic methods, which measure the decay of fields (electric and magnetic) or map electrical resistivity contrasts, minimise the uncertainties and ambiguities encountered by conventional seismic methods. The vertical-vertical controlled-source electromagnetic method (VVCSEM) is a controlled-source electromagnetic technique differentiated from seabed logging by the Tx-Rx vertical configurations and acquisition mode and time domain rather than the frequency domain. Its primary use is hydrocarbon reservoir monitoring. The present manuscript presents the results of the geological modelling performed at Marlim Field, Campos Basin - Brazil and the data analysis from the VVCSEM three-dimensional electromagnetic multiphysics modelling applied to the Marlim model. Despite the geological complexity of the Marlim Field, the VVCSEM was able to distinguish the thin hydrocarbon reservoir even in the face of large saline and highly resistive structures at the shortest offsets.

Downloads

Download data is not yet available.

References

Barsukov, P., Fainberg, E. B., & Singer, B. (2007). A method for hydrocarbon reservoir mapping and apparatus for use when performing the method (Patent No. WO2007/053025). World Intellectual Property Organization. https://patentscope.wipo.int/search/en/WO2007053025

Barsukov, P. O., Fainberg, E. B., & Singer, B. (2008). A method for mapping hydrocarbon reservoirs in shallow waters and also apparatus for use practising the method (Patent No. WO2008/066389). World Intellectual Property Organization. https://patentscope.wipo.int/search/en/WO2008066389

Carvalho, B. R., & Menezes, P. T. L. (2017). MARLIM R. 3D – A realistic model for MCSEM simulation [Data set]. Zenodo. https://doi.org/10.5281/zenodo.400233

Castro, R. D., & Picolini, J. P. (2015). Principais aspectos da geologia regional da Bacia de Campos. In R. O. Kowsmann (Ed.), Geologia e geomorfologia (Habitat, Vol. 1, pp. 1–12). Elsevier. https://doi.org/10.1016/B978-85-352-6937-6.50008-2 DOI: https://doi.org/10.1016/B978-85-352-6937-6.50008-2

Correa, J. L., & Menezes, P. T. (2019). MARLIM R. 3D: A realistic model for controlled-source electromagnetic simulations — Phase 2: The controlled-source electromagnetic data set. Geophysics, 84(5), E293–E299. https://doi.org/10.1190/geo2018-0452.1 DOI: https://doi.org/10.1190/geo2018-0452.1

Figueiredo, A. M. F., & Mohriak, W. U. A. (1984). Tectônica salífera e as acumulações de petróleo da Bacia de Campos. In Anais do 33º Congresso Brasileiro de Geologia (pp. 1380–1394). Sociedade Brasileira de Geologia.

Flekkøy, E. G., Holten, T., & Veiberg, D. (2009). Vertical electric time-domain responses from a vertical current source for offshore hydrocarbon exploration [Conference session]. 71st EAGE Conference and Exhibition incorporating SPE EUROPEC 2009, Amsterdam, The Netherlands. https://doi.org/10.3997/2214-4609.201400504 DOI: https://doi.org/10.3997/2214-4609.201400504

Frafjord, O., Holten, T., El Kaffas, A. M., Borven, J. M., & Helwig, S. L. (2014). Minimizing the noise contribution in vertical electric field measurements [Conference session]. 76th EAGE Conference and Exhibition 2014, Amsterdam, The Netherlands. https://doi.org/10.3997/2214-4609.20141247 DOI: https://doi.org/10.3997/2214-4609.20141247

Guardado, L. R., Spadini, A. R., Brandão, J. S. L., & Mello, M. R. (2000). Petroleum system of the Campos Basin, Brazil. In M. R. Mello & B. J. Katz (Eds.), Petroleum systems of South Atlantic margins (AAPG Memoir 73, pp. 317–324). American Association of Petroleum Geologists. DOI: https://doi.org/10.1306/M73705C22

Helwig, S. L., Wood, W., Gloux, B., & Holten, T. (2016). A new generation of vertical CSEM receiver [Conference session]. 78th EAGE Conference and Exhibition 2016, Vienna, Austria. https://doi.org/10.3997/2214-4609.201600561 DOI: https://doi.org/10.3997/2214-4609.201600561

Helwig, S. L., Wood, W., & Gloux, B. (2019). Vertical-vertical controlled-source electromagnetic instrumentation and acquisition. Geophysical Prospecting, 67(6), 1582–1594. https://doi.org/10.1111/1365-2478.12771 DOI: https://doi.org/10.1111/1365-2478.12771

Hoversten, G. M., Morrison, H. F., & Constable, S. C. (1998). Marine magnetotellurics for petroleum exploration Part II: Numerical analysis of subsalt resolution. Geophysics, 63(3), 826–840. https://doi.org/10.1190/1.1444394 DOI: https://doi.org/10.1190/1.1444394

Kjerstad, J. (2010). Device for a vertical electromagnetic field component receiver (Patent No. WO2010/041959). World Intellectual Property Organization. https://patentscope.wipo.int/search/en/WO2010041959

Menezes, P. T., Correa, J. L., Alvim, L. M., Vianna, A. R., & Sansonowski, R. C. (2021). Time-lapse CSEM monitoring: Correlating the anomalous transverse resistance with SoPhiH maps. Energies, 14(21), Article 7159. https://doi.org/10.3390/en14217159 DOI: https://doi.org/10.3390/en14217159

Nanda, N. C. (2016a). Direct hydrocarbon indicators (DHI). In Seismic data interpretation and evaluation for hydrocarbon exploration and production (pp. 111–137). Springer. https://doi.org/10.1007/978-3-319-26491-2_6 DOI: https://doi.org/10.1007/978-3-319-26491-2_6

Nanda, N. C. (2021). Analysing seismic attributes. In Seismic data interpretation and evaluation for hydrocarbon exploration and production (2nd ed., pp. 227–253). Springer. https://doi.org/10.1007/978-3-030-75301-6_10 DOI: https://doi.org/10.1007/978-3-030-75301-6_10

Nascimento, T. M., Menezes, P. T., & Braga, I. L. (2014). High-resolution acoustic impedance inversion to characterize turbidites at Marlim Field, Campos Basin, Brazil. Interpretation, 2(3), T143–T153. https://doi.org/10.1190/INT-2013-0137.1 DOI: https://doi.org/10.1190/INT-2013-0137.1

Sainson, S. (2017). Electromagnetic seabed logging: A new tool for geoscientists. Springer. https://doi.org/10.1007/978-3-319-45355-2 DOI: https://doi.org/10.1007/978-3-319-45355-2

Schreiner, S., Souza, M. B. F. M., Migliorelli, J. P., Figueiredo, J. R. A. G., Pacheco, C. E. P., Vasconcelos, S. C., & Silva, F. T. (2014). Mapa batimétrico da Bacia de Campos. In R. O. Kowsmann (Ed.), Geologia e geomorfologia (Habitat, Vol. 1, pp. 67–70). Elsevier. https://doi.org/10.1016/B978-85-352-6937-6.50011-2 DOI: https://doi.org/10.1016/B978-85-352-6937-6.50011-2

Scotese, C. R. (2001). Atlas of Earth history. PALEOMAP Project.

Souza, D. M., Silva, M. W. C., & Souza, V. C. T. (2022). VVCSEM repository [Data set]. Zenodo. https://doi.org/10.5281/zenodo.6369599

Ward, S. H., & Hohmann, G. W. (1987). Electromagnetic theory for geophysical applications. In M. N. Nabighian (Ed.), Electromagnetic methods in applied geophysics: Vol. 1. Theory (Investigations in Geophysics No. 3, pp. 130–311). Society of Exploration Geophysicists. https://doi.org/10.1190/1.9781560802631.ch4 DOI: https://doi.org/10.1190/1.9781560802631.ch4

Zhdanov, M. S., Lee, S. K., & Yoshioka, K. (2006). Integral equation method for 3D modeling of electromagnetic fields in complex structures with inhomogeneous background conductivity. Geophysics, 71(6), G333–G345. https://doi.org/10.1190/1.2358403 DOI: https://doi.org/10.1190/1.2358403

Ziolkowski, A., & Slob, E. (2019). Introduction to controlled-source electromagnetic methods: Detecting subsurface resistive rocks. Cambridge University Press. DOI: https://doi.org/10.1017/9781107415904

Pronto! Todas as referências estão agora no padrão APA 7ª edição, ordenadas alfabeticamente e com links de DOI sempre que disponíveis.

Downloads

Published

2025-12-02

Issue

Section

Articles

How to Cite

DE SOUZA, Danusa Mayara; MOREIRA, Leandro Seabra; DE LIMA, João Carlos Lisboa; SILVA, Marcos Welby Correa; DE SOUZA, Victor Cezar Tocantins. ANALYSIS OF THE VERTICAL-VERTICAL CONTROLLED SOURCE ELECTROMAGNETIC METHOD APPLIED TO RESERVOIR MONITORING. ARACÊ , [S. l.], v. 7, n. 12, p. e10641, 2025. DOI: 10.56238/arev7n12-009. Disponível em: https://periodicos.newsciencepubl.com/arace/article/view/10641. Acesso em: 8 dec. 2025.