APPLICATIONS OF MACHINE LEARNING IN CARDIOLOGY FOR OBESE PATIENTS UNDERGOING WEIGHT LOSS THERAPIES: A SYSTEMATIC REVIEW
DOI:
https://doi.org/10.56238/arev7n11-316Keywords:
Machine Learning, Medicine, CardiologyAbstract
This systematic review aimed to analyze the applications and results of machine learning (ML) techniques in cardiology for obese patients undergoing weight loss therapies. The research was conducted according to the PRISMA 2020 guidelines and used the PICO framework to formulate the guiding question. Searches were performed in the PubMed, Scopus, Web of Science, ScienceDirect, SciELO, and CAPES databases, covering the period from January 2019 to November 2025. 1,642 records were identified, of which 13 studies met the eligibility criteria. Methodological quality was assessed using the QUADAS-2 instrument, allowing the identification of bias risks and applicability concerns. The results showed that ML techniques have transformed cardiovascular diagnosis and prognosis, especially through supervised algorithms such as support vector machines, random forests, and convolutional neural networks, which achieved accuracies greater than 90% in predicting heart failure and detecting cardiac abnormalities. Significant progress was observed in the integration of clinical, genetic, and imaging data, promoting greater accuracy in risk stratification. However, a scarcity of specific studies focusing on obese patients undergoing weight-loss therapies was found, which limits the generalizability of the results and highlights a relevant scientific gap.
Downloads
References
ALMEIDA, M. C. et al. Inteligência Artificial na Cardiologia: uma Revisão das Aplicações no Diagnóstico e Prevenção de Doenças Cardiovasculares. Contribuciones a las Ciencias Sociales, v. 18, n. 3, p. 1-11, 2025. DOI: 10.55905/revconv.18n.3-032
ANDRETTA, C. R. de L. Aplicação da Inteligência Artificial em Imagem Cardiovascular: métodos gráficos e eletrocardiografia. Revista da Sociedade de Cardiologia do Estado de São Paulo, v. 32, n. 1, p. 45-50, 2022.DOI: 10.29381/0103-8559/2022320145-50
ARRUBLA-HOYOS, W.; CARRASCAL-PORRAS, F.; GÓMEZ, J. Cardiovascular Risk Prediction through Machine Learning: A Comparative Analysis of Techniques. Ingeniería y Competitividad, v. 26, n. 1, 2024. DOI: 10.25100/iyc.v26i1.13229
COSTALAT, T. R. M.; TAVARES, G. F. Machine Learning Techniques Comparison for Risk Assessment of Cardiovascular Disease Development by Health Indicators. Brazilian Journal of Development, v. 8, n. 1, p. 6851-6862, 2022. DOI: 10.34117/bjdv8n1-462
CUOCOLO, R. et al. Current Applications of Big Data and Machine Learning in Cardiology. Journal of Geriatric Cardiology, v. 16, p. 601-607, 2019. DOI: 10.11909/j.issn.1671-5411.2019.08.002
LIMA, M. A. N. et al. Papel da Inteligência Artificial na Predição de Eventos Cardíacos. Brazilian Journal of Implantology and Health Sciences, v. 6, n. 2, p. 2213-2229, 2024. DOI: 10.36557/2674-8169.2024v6n2p2213-2229
MARQUES, E. M. de S. et al. Inteligência Artificial em Cardiologia: Conceitos, Ferramentas e Desafios. Arquivos Brasileiros de Cardiologia, v. 114, n. 4, p. 718-725, 2020. DOI: 10.36660/abc.20180431
MESQUITA, C. T. Inteligência Artificial e Machine Learning em Cardiologia – Uma Mudança de Paradigma. International Journal of Cardiovascular Sciences, v. 30, n. 3, p. 187-188, 2019. DOI: 10.5935/2359-4802.20170027
MESQUITA, C. T. et al. O Papel da Inteligência Artificial e da Impressão 3D no Avanço do Diagnóstico e Tratamento de Cardiomiopatias. ABC Heart Failure & Cardiomyopathy, v. 3, n. 1, e20230031, 2023. DOI: 10.36660/abchf.20230031
NAVUS, J. R. Inteligência Artificial e Ciências de Dados na Saúde: Aspectos Éticos e Epistemológicos. Revista Navus – Gestão e Tecnologia, v. 15, p. 57-70, 2019. Disponível em: https://periodicos.udesc.br/index.php/navus/article/view/19847
PAIXÃO, G. M. de M. et al. Machine Learning na Medicina: Revisão e Aplicabilidade. Arquivos Brasileiros de Cardiologia, v. 118, n. 1, p. 95-102, 2022. DOI: 10.36660/abc.20200596
SARDINHA, S.S et al. Inteligência Artificial Em Pesquisa Clínica: revisão sistemática de literatura. Revista Arace, 2024.
SEVAKULA, R. K. et al. State-of-the-Art Machine Learning Techniques Aiming to Improve Patient Outcomes Pertaining to the Cardiovascular System. Journal of the American Heart Association, v. 9, e013924, 2020. DOI: 10.1161/JAHA.119.013924
ZHOU, J. et al. Machine Learning Methods in Real-World Studies of Cardiovascular Disease. Cardiovascular Innovations and Applications, v. 7, p. 25-36, 2023. DOI: 10.15212/CVIA.2023.0011
