APPLICATIONS OF MACHINE LEARNING IN CARDIOLOGY FOR OBESE PATIENTS UNDERGOING WEIGHT LOSS THERAPIES: A SYSTEMATIC REVIEW

Authors

  • Samy Sousa Sardinha Author
  • José Israel Sanchez Robles Author
  • Carlos dos Santos Kückelhaus Author
  • Thales Maia Teixeira Author

DOI:

https://doi.org/10.56238/arev7n11-316

Keywords:

Machine Learning, Medicine, Cardiology

Abstract

This systematic review aimed to analyze the applications and results of machine learning (ML) techniques in cardiology for obese patients undergoing weight loss therapies. The research was conducted according to the PRISMA 2020 guidelines and used the PICO framework to formulate the guiding question. Searches were performed in the PubMed, Scopus, Web of Science, ScienceDirect, SciELO, and CAPES databases, covering the period from January 2019 to November 2025. 1,642 records were identified, of which 13 studies met the eligibility criteria. Methodological quality was assessed using the QUADAS-2 instrument, allowing the identification of bias risks and applicability concerns. The results showed that ML techniques have transformed cardiovascular diagnosis and prognosis, especially through supervised algorithms such as support vector machines, random forests, and convolutional neural networks, which achieved accuracies greater than 90% in predicting heart failure and detecting cardiac abnormalities. Significant progress was observed in the integration of clinical, genetic, and imaging data, promoting greater accuracy in risk stratification. However, a scarcity of specific studies focusing on obese patients undergoing weight-loss therapies was found, which limits the generalizability of the results and highlights a relevant scientific gap.

Downloads

Download data is not yet available.

References

ALMEIDA, M. C. et al. Inteligência Artificial na Cardiologia: uma Revisão das Aplicações no Diagnóstico e Prevenção de Doenças Cardiovasculares. Contribuciones a las Ciencias Sociales, v. 18, n. 3, p. 1-11, 2025. DOI: 10.55905/revconv.18n.3-032

ANDRETTA, C. R. de L. Aplicação da Inteligência Artificial em Imagem Cardiovascular: métodos gráficos e eletrocardiografia. Revista da Sociedade de Cardiologia do Estado de São Paulo, v. 32, n. 1, p. 45-50, 2022.DOI: 10.29381/0103-8559/2022320145-50

ARRUBLA-HOYOS, W.; CARRASCAL-PORRAS, F.; GÓMEZ, J. Cardiovascular Risk Prediction through Machine Learning: A Comparative Analysis of Techniques. Ingeniería y Competitividad, v. 26, n. 1, 2024. DOI: 10.25100/iyc.v26i1.13229

COSTALAT, T. R. M.; TAVARES, G. F. Machine Learning Techniques Comparison for Risk Assessment of Cardiovascular Disease Development by Health Indicators. Brazilian Journal of Development, v. 8, n. 1, p. 6851-6862, 2022. DOI: 10.34117/bjdv8n1-462

CUOCOLO, R. et al. Current Applications of Big Data and Machine Learning in Cardiology. Journal of Geriatric Cardiology, v. 16, p. 601-607, 2019. DOI: 10.11909/j.issn.1671-5411.2019.08.002

LIMA, M. A. N. et al. Papel da Inteligência Artificial na Predição de Eventos Cardíacos. Brazilian Journal of Implantology and Health Sciences, v. 6, n. 2, p. 2213-2229, 2024. DOI: 10.36557/2674-8169.2024v6n2p2213-2229

MARQUES, E. M. de S. et al. Inteligência Artificial em Cardiologia: Conceitos, Ferramentas e Desafios. Arquivos Brasileiros de Cardiologia, v. 114, n. 4, p. 718-725, 2020. DOI: 10.36660/abc.20180431

MESQUITA, C. T. Inteligência Artificial e Machine Learning em Cardiologia – Uma Mudança de Paradigma. International Journal of Cardiovascular Sciences, v. 30, n. 3, p. 187-188, 2019. DOI: 10.5935/2359-4802.20170027

MESQUITA, C. T. et al. O Papel da Inteligência Artificial e da Impressão 3D no Avanço do Diagnóstico e Tratamento de Cardiomiopatias. ABC Heart Failure & Cardiomyopathy, v. 3, n. 1, e20230031, 2023. DOI: 10.36660/abchf.20230031

NAVUS, J. R. Inteligência Artificial e Ciências de Dados na Saúde: Aspectos Éticos e Epistemológicos. Revista Navus – Gestão e Tecnologia, v. 15, p. 57-70, 2019. Disponível em: https://periodicos.udesc.br/index.php/navus/article/view/19847

PAIXÃO, G. M. de M. et al. Machine Learning na Medicina: Revisão e Aplicabilidade. Arquivos Brasileiros de Cardiologia, v. 118, n. 1, p. 95-102, 2022. DOI: 10.36660/abc.20200596

SARDINHA, S.S et al. Inteligência Artificial Em Pesquisa Clínica: revisão sistemática de literatura. Revista Arace, 2024.

SEVAKULA, R. K. et al. State-of-the-Art Machine Learning Techniques Aiming to Improve Patient Outcomes Pertaining to the Cardiovascular System. Journal of the American Heart Association, v. 9, e013924, 2020. DOI: 10.1161/JAHA.119.013924

ZHOU, J. et al. Machine Learning Methods in Real-World Studies of Cardiovascular Disease. Cardiovascular Innovations and Applications, v. 7, p. 25-36, 2023. DOI: 10.15212/CVIA.2023.0011

Published

2025-11-25

Issue

Section

Articles

How to Cite

SARDINHA, Samy Sousa; ROBLES, José Israel Sanchez; KÜCKELHAUS, Carlos dos Santos; TEIXEIRA , Thales Maia. APPLICATIONS OF MACHINE LEARNING IN CARDIOLOGY FOR OBESE PATIENTS UNDERGOING WEIGHT LOSS THERAPIES: A SYSTEMATIC REVIEW. ARACÊ , [S. l.], v. 7, n. 11, p. e10368 , 2025. DOI: 10.56238/arev7n11-316. Disponível em: https://periodicos.newsciencepubl.com/arace/article/view/10368. Acesso em: 5 dec. 2025.