INFLUENCE OF MICROORGANISMS ON THE BIOREMEDIATION OF LEAD-CONTAMINATED SOIL CULTIVATED WITH CRAMBE ABYSSINICA UNDER PROTECTED CULTIVATION

Authors

  • Aline Snak Author
  • Affonso Celso Gonçalves Junior Author
  • Elio Conradi Junior Author
  • Deonir Secco (in memoriam) Author
  • Fabiana Gisele da Silva Pinto Author
  • Matheus Schmidt Author

DOI:

https://doi.org/10.56238/arev7n10-308

Keywords:

Azospirillum brasilense, Bioremediation, Lead, Pseudomonas fluorescens

Abstract

The study addresses soil contamination by Pb, a serious environmental and public health issue. Bioremediation using microorganisms and plants is a promising solution. This research evaluates the synergy between crambe (Crambe abyssinica) and growth-promoting microorganisms to remove Pb from soil. The experiment was conducted under protected cultivation between April and July 2023 using a randomized block design with four Pb concentration treatments and inoculation with two microbial species. Analyses included plant growth, macronutrient levels, and Pb content in plants and soil. Inoculation significantly increased crambe growth, including root and shoot length, and improved biomass. Microorganisms enhanced Pb solubilization and mobilization in soil, facilitating plant uptake, with stronger effects at higher Pb concentrations. The results confirm that combining crambe with growth-promoting bacteria is effective for bioremediating Pb-contaminated soils. These bacteria not only improved plant growth and health but also boosted the plants’ capacity to accumulate and translocate Pb, underscoring the potential for large-scale application of this technique to recover areas contaminated by heavy metals.

Downloads

Download data is not yet available.

References

Accioly, A. M. A., & Siqueira, J. O. (2000). Contaminação química e biorremediação do solo. In Tópicos em Ciência do Solo (pp. 299–352). Embrapa. https://www.bdpa.cnptia.embrapa.br/consulta/busca?b=ad&id=138488&biblioteca=vazio&busca=autoria:%22SIQUEIRA,%20J.%22&qFacets=autoria:%22SIQUEIRA,%20J.%22&sort=&paginacao=t&paginaAtual=3

Ahmad, M. (Ed.). (2015). Microbes in soil and their agricultural prospects. Nova Science Publishers. https://novapublishers.com/shop/microbes-in-soil-and-their-agricultural-prospects/

Alkhatib, R., Mheidat, M., Abdo, N., Tadros, M., Al-Eitan, L., & Al-Hadid, K. (2019). Effect of lead on the physiological, biochemical and ultrastructural properties of Leucaena leucocephala. Plant Biology, 21(6), 1132–1139. https://doi.org/10.1111/plb.13037 DOI: https://doi.org/10.1111/plb.13021

Alotaibi, M. O., Saleh, A. M., Sobrinho, R. L., Sheteiwy, M. S., El-Sawah, A. M., Mohammed, A. E., et al. (2021). Arbuscular mycorrhizae mitigate aluminum toxicity and regulate proline metabolism in plants grown in acidic soil. Journal of Fungi, 7(7), Article 531. https://doi.org/10.3390/jof7070531 DOI: https://doi.org/10.3390/jof7070531

Andrade, R. A., Brito, R. S. de, Carvalho, C. A. de, Silva, S. B. da, Silva, M. A. D. e, & Moraes, K. N. O. (2022). Acúmulo de nutrientes nas folhas e produção do capim Tamani inoculado com Azospirillum brasilense. Revista Verde de Agroecologia e Desenvolvimento Sustentável, 17(1), 77–85. DOI: https://doi.org/10.18378/rvads.v17i2.9152

Association of Official Analytical Chemists. (2023). Official methods of analysis (22nd ed.). Author. https://www.aoac.org/official-methods-of-analysis/

Arslan, M., Imran, A., Khan, Q. M., & Afzal, M. (2017). Plant-bacteria partnerships for the remediation of persistent organic pollutants. Environmental Science and Pollution Research, 24(5), 4322–4336. https://doi.org/10.1007/s11356-015-4935-3 DOI: https://doi.org/10.1007/s11356-015-4935-3

Babu, A. G., Shea, P. J., Sudhakar, D., Jung, I.-B., & Oh, B.-T. (2015). Potential use of Pseudomonas koreensis AGB-1 in association with Miscanthus sinensis to remediate heavy metal(loid)-contaminated mining site soil. Journal of Environmental Management, 151, 160–166. https://doi.org/10.1016/j.jenvman.2014.12.045 DOI: https://doi.org/10.1016/j.jenvman.2014.12.045

Bashan, Y., & de-Bashan, L. E. (2010). How the plant growth-promoting bacterium Azospirillum promotes plant growth—A critical assessment. In Advances in agronomy (Vol. 108, pp. 77–136). Elsevier. https://doi.org/10.1016/S0065-2113(10)08002-8 DOI: https://doi.org/10.1016/S0065-2113(10)08002-8

Battistus, A. G. (2019). Modulações anatômicas, bioquímicas e fotossintéticas mediadas por Azospirillum brasilense inoculado via semente e pulverização foliar em milho [Master’s thesis, Universidade Estadual do Oeste do Paraná]. Repositório Institucional UNIOESTE. https://tede.unioeste.br/handle/tede/4441

Boechat, C. L. (2014). Biorremediação de solos contaminados por metais pesados em áreas de beneficiamento de minério de ouro [Doctoral dissertation, Universidade Federal do Rio Grande do Sul]. Repositório Institucional UFRGS.

Boghdady, M., & Ali, A. S. (2013). Comparison between effect of Azospirillum brasilense and Anabaena oryzae on growth, yield and anatomical characters of wheat plants. Journal of Applied Sciences Research, 9(1), 627–637.

Bulegon, L. G., Rampim, L., Klein, J., Guimarães, V., Battistus, A. G., & Inagaki, A. M. (2016). Componentes de produção e produtividade da cultura da soja submetida à inoculação de Bradyrhizobium e Azospirillum. Revista Mexicana de Ciencias Agrícolas, 7(2), 169–181. https://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0187-57792016000200169

Bush, M., Sethi, V., & Sablowski, R. (2022). A phloem-expressed PECTATE LYASE-LIKE gene promotes cambium and xylem development. Frontiers in Plant Science, 13, Article 888201. https://doi.org/10.3389/fpls.2022.888201 DOI: https://doi.org/10.3389/fpls.2022.888201

Chavez Apare, C. L. (2019). Tratamiento de las aguas contaminadas por Cadmio y Plomo utilizando microorganismos (Bacillus sp y Pseudomonas sp) en un biorreactor, Río Chili Arequipa – 2019 [Bachelor’s thesis, Universidad César Vallejo]. Repositorio Institucional UCV. https://repositorio.ucv.edu.pe/handle/20.500.12692/70761

Chen, H., Kwong, J. C., Copes, R., Tu, K., Villeneuve, P. J., van Donkelaar, A., et al. (2017). Living near major roads and the incidence of dementia, Parkinson’s disease, and multiple sclerosis: A population-based cohort study. The Lancet, 389(10070), 718–726. https://doi.org/10.1016/S0140-6736(16)32399-6 DOI: https://doi.org/10.1016/S0140-6736(16)32399-6

Chiarini, L., Bevivino, A., Tabacchioni, S., & Dalmastri, C. (1998). Inoculation of Burkholderia cepacia, Pseudomonas fluorescens and Enterobacter sp. on Sorghum bicolor: Root colonization and plant growth promotion of dual strain inocula. Soil Biology and Biochemistry, 30(1), 81–87. https://doi.org/10.1016/S0038-0717(97)00097-1 DOI: https://doi.org/10.1016/S0038-0717(97)00096-5

Colin, V. L., Castro, M. F., Amoroso, M. J., & Villegas, L. B. (2013). Production of bioemulsifiers by Amycolatopsis tucumanensis DSM 45259 and their potential application in remediation technologies for soils contaminated with hexavalent chromium. Journal of Hazardous Materials, 261, 577–583. https://doi.org/10.1016/j.jhazmat.2013.07.074 DOI: https://doi.org/10.1016/j.jhazmat.2013.08.005

Collin, S., Baskar, A., Geevarghese, D. M., Ali, M. N. V. S., Bahubali, P., Choudhary, R., et al. (2022). Bioaccumulation of lead (Pb) and its effects in plants: A review. Journal of Hazardous Materials Letters, 3, Article 100064. https://doi.org/10.1016/j.hazl.2022.100064 DOI: https://doi.org/10.1016/j.hazl.2022.100064

Conselho Nacional do Meio Ambiente. (2009). Resolução CONAMA nº 420, de 28 de dezembro de 2009. https://www.legisweb.com.br/legislacao/?id=111046

Cotrim, M. F., Alvarez, R. C. F., & Seron, A. C. C. (2016). Qualidade fisiológica de sementes de trigo em resposta a aplicação de Azospirillum brasilense e ácido húmico. Revista Brasileira de Engenharia de Biossistemas, 10(4), 349–357. https://doi.org/10.18011/bioeng2016v10n4p349-357 DOI: https://doi.org/10.18011/bioeng2016v10n4p349-357

Dabir, A., Heidari, P., Ghorbani, H., & Ebrahimi, A. (2019). Cadmium and lead removal by new bacterial isolates from coal and aluminum mines. International Journal of Environmental Science and Technology, 16(12), 8297–8304. https://doi.org/10.1007/s13762-019-02371-8 DOI: https://doi.org/10.1007/s13762-019-02303-9

De, J., Ramaiah, N., & Vardanyan, L. (2008). Detoxification of toxic heavy metals by marine bacteria highly resistant to mercury. Marine Biotechnology, 10(4), 471–477. https://doi.org/10.1007/s10126-008-9083-z DOI: https://doi.org/10.1007/s10126-008-9083-z

Domenico, P. (2019). Effect of Azospirillum brasilense on garlic (Allium sativum L.) cultivation. World Journal of Advanced Research and Reviews, 2(1), 008–013. https://doi.org/10.30574/wjarr.2019.2.1.0025 DOI: https://doi.org/10.30574/wjarr.2019.2.3.0039

Domingos, R. N. (1997). Acúmulo de cádmio por Saccharomyces cerevisiae fermentando mosto de melaço [Master’s thesis, Universidade de São Paulo]. Biblioteca Digital de Teses e Dissertações USP. https://teses.usp.br/teses/disponiveis/11/11138/tde-20191218-155802/

Duarte, C. F. D., Cecato, U., Hungria, M., Fernandes, H. J., Biserra, T. T., Mamédio, D., et al. (2020). Inoculation of plant growth-promoting bacteria in Urochloa ruziziensis. Research, Society and Development, 9(8), Article e630985978. https://doi.org/10.33448/rsd-v9i8.5978 DOI: https://doi.org/10.33448/rsd-v9i8.5978

Egendorf, S. P., Groffman, P., Moore, G., & Cheng, Z. (2020). The limits of lead (Pb) phytoextraction and possibilities of phytostabilization in contaminated soil: A critical review. International Journal of Phytoremediation, 22(9), 916–930. https://doi.org/10.1080/15226514.2020.1774502 DOI: https://doi.org/10.1080/15226514.2020.1774501

El-Afry, M. M., El-Nady, M. F., Abdelmonteleb, E. B., & Metwaly, M. M. S. (2012). Anatomical studies on drought-stressed wheat plants (Triticum aestivum L.) treated with some bacterial strains. Acta Biologica Szegediensis, 56(2), 165–174.

Felix, H. R., Kayser, A., & Schulin, R. (1999). Phytoremediation field trials in the years 1993-1998. In 5th International Conference on the Biogeochemistry of Trace Elements.

Ferreira, D. F. (2019). SISVAR: A computer analysis system to fixed effects split plot type designs. Brazilian Journal of Biometrics, 37(4), 529–535. https://doi.org/10.28951/rbb.v37i4.450 DOI: https://doi.org/10.28951/rbb.v37i4.450

Ferreira, J. de P., Vidal, M. S., & Baldani, J. I. (2020). Método para detecção e quantificação da atividade de ACC deaminase em bactérias diazotróficas promotoras de crescimento vegetal. Embrapa. https://ainfo.cnptia.embrapa.br/digital/bitstream/item/215904/1/Metodo-para-deteccao-e-quantificacao-a-atividade-de-ACC.pdf

Ferrol, N., Tamayo, E., & Vargas, P. (2016). The heavy metal paradox in arbuscular mycorrhizas: From mechanisms to biotechnological applications. Journal of Experimental Botany, 67(22), 6253–6265. https://doi.org/10.1093/jxb/erw403 DOI: https://doi.org/10.1093/jxb/erw403

Flores-Aguilar, L., Iulita, M. F., Kovecses, O., Torres, M. D., Levi, S. M., Zhang, Y., et al. (2020). Evolution of neuroinflammation across the lifespan of individuals with Down syndrome. Brain, 143(12), 3653–3671. https://doi.org/10.1093/brain/awaa326 DOI: https://doi.org/10.1093/brain/awaa326

Florida Rofner, N., Paucar García, H. J., Jacobo Salinas, S. S., Escobar Mamani, F., & Torres García, J. (2019). Efecto de compost y NPK sobre los niveles de microorganismos y cadmio en suelo y almendra de cacao. Revista de Investigaciones Altoandinas, 21(3), 264–273. https://doi.org/10.36363/ria.v21i3.36 DOI: https://doi.org/10.18271/ria.2019.503

Foyer, C. H., Lelandais, M., & Kunert, K. J. (1994). Photooxidative stress in plants. Physiologia Plantarum, 92(4), 696–717. https://doi.org/10.1111/j.1399-3054.1994.tb03042.x DOI: https://doi.org/10.1111/j.1399-3054.1994.tb03042.x

Gasoni, L., Cozzi, J., Kobayashi, K., Yossen, V., Zumelzu, G., Babbitt, S., et al. (2001). Yield response of lettuce and potato to bacterial and fungal inoculants under field conditions in Córdoba (Argentina). Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz, 108(5), 530–535.

Gladkov, E. A., Tereshonok, D. V., Stepanova, A. Y., & Gladkova, O. V. (2023). Plant–microbe interactions under the action of heavy metals and under the conditions of flooding. Diversity, 15(2), Article 175. https://doi.org/10.3390/d15020175 DOI: https://doi.org/10.3390/d15020175

Glick, B. R. (2014). Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiological Research, 169(1), 30–39. https://doi.org/10.1016/j.micres.2013.09.009 DOI: https://doi.org/10.1016/j.micres.2013.09.009

Gonçalves Jr, A., Schwantes, D., Sousa, R., Silva, T., Guimarães, V., Campagnolo, M., et al. (2020). Phytoremediation capacity, growth and physiological responses of Crambe abyssinica Hochst on soil contaminated with Cd and Pb. Journal of Environmental Management, 262, Article 110342. https://doi.org/10.1016/j.jenvman.2020.110342 DOI: https://doi.org/10.1016/j.jenvman.2020.110342

Gong, X., & Tian, D. Q. (2019). Study on the effect mechanism of arbuscular mycorrhiza on the absorption of heavy metal elements in soil by plants. IOP Conference Series: Earth and Environmental Science, 267, Article 052064. https://doi.org/10.1088/1755-1315/267/5/052064 DOI: https://doi.org/10.1088/1755-1315/267/5/052064

Gordon, E. M., & McCandless, E. L. (1973). Ultrastructure and histochemistry of Chondrus crispus Stack. Proceedings of the Nova Scotian Institute of Science, 27, 111–133.

Greger, M. (2003). Phytoremediation - Does it work? In 7th International Conference on the Biogeochemistry of Trace Elements.

Guimarães, G. S., Rondina, A. B. L., De Oliveira Junior, A. G., Jank, L., Nogueira, M. A., & Hungria, M. (2023). Inoculation with plant growth-promoting bacteria improves the sustainability of tropical pastures with Megathyrsus maximus. Agronomy, 13(3), Article 734. https://doi.org/10.3390/agronomy13030734 DOI: https://doi.org/10.3390/agronomy13030734

Guimarães, V. F., Klein, J., & Klein, D. K. (2021). Promoção de crescimento e solubilização de fosfato na cultura da soja: Coinoculação de sementes com Bradyrhizobium japonicum e Pseudomonas fluorescens. Research, Society and Development, 10(11), Article e366101120078. https://doi.org/10.33448/rsd-v10i11.20078 DOI: https://doi.org/10.33448/rsd-v10i11.20078

Gupta, P., & Diwan, B. (2017). Bacterial exopolysaccharide mediated heavy metal removal: A review on biosynthesis, mechanism and remediation strategies. Biotechnology Reports, 13, 58–71. https://doi.org/10.1016/j.btre.2016.12.006 DOI: https://doi.org/10.1016/j.btre.2016.12.006

Haller, H., & Jonsson, A. (2020). Growing food in polluted soils: A review of risks and opportunities associated with combined phytoremediation and food production (CPFP). Chemosphere, 254, Article 126826. https://doi.org/10.1016/j.chemosphere.2020.126826 DOI: https://doi.org/10.1016/j.chemosphere.2020.126826

Heidari, P., & Panico, A. (2020). Sorption mechanism and optimization study for the bioremediation of Pb(II) and Cd(II) contamination by two novel isolated strains Q3 and Q5 of Bacillus sp. International Journal of Environmental Research and Public Health, 17(11), Article 4059. https://doi.org/10.3390/ijerph17114059 DOI: https://doi.org/10.3390/ijerph17114059

Hou, D., O’Connor, D., Igalavithana, A. D., Alessi, D. S., Luo, J., Tsang, D. C. W., et al. (2020). Metal contamination and bioremediation of agricultural soils for food safety and sustainability. Nature Reviews Earth & Environment, 1(7), 366–381. https://doi.org/10.1038/s43017-020-0061-y DOI: https://doi.org/10.1038/s43017-020-0061-y

Huang, H., Zhao, Y., Xu, Z., Ding, Y., Zhang, W., & Wu, L. (2018). Biosorption characteristics of a highly Mn(II)-resistant Ralstonia pickettii strain isolated from Mn ore. PLoS ONE, 13(9), Article e0203285. https://doi.org/10.1371/journal.pone.0203285 DOI: https://doi.org/10.1371/journal.pone.0203285

Huang, X.-D., El-Alawi, Y., Gurska, J., Glick, B. R., & Greenberg, B. M. (2005). A multi-process phytoremediation system for decontamination of persistent total petroleum hydrocarbons (TPHs) from soils. Microchemical Journal, 81(1), 139–147. https://doi.org/10.1016/j.microc.2005.01.009 DOI: https://doi.org/10.1016/j.microc.2005.01.009

Hungria, M. (2011). Inoculação com Azospirillum brasilense: Inovação em rendimento a baixo custo (Documentos 325). Empresa Brasileira de Pesquisa Agropecuária. https://www.infoteca.cnptia.embrapa.br/infoteca/bitstream/doc/879471/1/DOC325.2011.pdf

Hungria, M., & Nogueira, M. A. (2021). Inoculação multifuncional para pastagens com braquiárias. Embrapa Soja.

Jarosławiecka, A., & Piotrowska-Seget, Z. (2014). Lead resistance in micro-organisms. Microbiology, 160(Pt_1), 12–25. https://doi.org/10.1099/mic.0.070284-0 DOI: https://doi.org/10.1099/mic.0.070284-0

Kabata-Pendias, A., & Pendias, H. (2001). Trace elements in soils and plants (3rd ed.). CRC Press. DOI: https://doi.org/10.1201/9781420039900

Kalita, D., & Joshi, S. R. (2017). Study on bioremediation of lead by exopolysaccharide producing metallophilic bacterium isolated from extreme habitat. Biotechnology Reports, 16, 48–57. https://doi.org/10.1016/j.btre.2017.11.003 DOI: https://doi.org/10.1016/j.btre.2017.11.003

Kargapolova, K., Burygin, G., Tkachenko, O., Evseeva, N., Puhalsky, J., & Belimov, A. (2020). Effectiveness of inoculation of in vitro-grown potato microplants with rhizosphere bacteria of the genus Azospirillum. Plant Cell, Tissue and Organ Culture, 141(2), 351–359. https://doi.org/10.1007/s11240-020-01795-8 DOI: https://doi.org/10.1007/s11240-020-01791-9

Kazi, N., Deaker, R., Wilson, N., Muhammad, K., & Trethowan, R. (2016). The response of wheat genotypes to inoculation with Azospirillum brasilense in the field. Field Crops Research, 196, 1–8. https://doi.org/10.1016/j.fcr.2016.05.012 DOI: https://doi.org/10.1016/j.fcr.2016.07.012

Khan, N. A., & Jhung, S. H. (2017). Adsorptive removal and separation of chemicals with metal-organic frameworks: Contribution of π-complexation. Journal of Hazardous Materials, 325, 198–213. https://doi.org/10.1016/j.jhazmat.2016.11.070 DOI: https://doi.org/10.1016/j.jhazmat.2016.11.070

Kushwaha, A., Hans, N., Kumar, S., & Rani, R. (2018). A critical review on speciation, mobilization and toxicity of lead in soil-microbe-plant system and bioremediation strategies. Ecotoxicology and Environmental Safety, 147, 1035–1045. https://doi.org/10.1016/j.ecoenv.2017.09.049 DOI: https://doi.org/10.1016/j.ecoenv.2017.09.049

Li, C., Zhou, K., Qin, W., Tian, C., Qi, M., Yan, X., et al. (2019). A review on heavy metals contamination in soil: Effects, sources, and remediation techniques. Soil and Sediment Contamination: An International Journal, 28(4), 380–394. https://doi.org/10.1080/15320383.2019.1592108 DOI: https://doi.org/10.1080/15320383.2019.1592108

Li, W.-W., & Yu, H.-Q. (2014). Insight into the roles of microbial extracellular polymer substances in metal biosorption. Bioresource Technology, 160, 15–23. https://doi.org/10.1016/j.biortech.2013.11.074 DOI: https://doi.org/10.1016/j.biortech.2013.11.074

Li, X., Peng, W., Jia, Y., Lu, L., & Fan, W. (2016). Bioremediation of lead contaminated soil with Rhodobacter sphaeroides. Chemosphere, 156, 228–235. https://doi.org/10.1016/j.chemosphere.2016.04.098 DOI: https://doi.org/10.1016/j.chemosphere.2016.04.098

Ma, Y., Rajkumar, M., Luo, Y., & Freitas, H. (2013). Phytoextraction of heavy metal polluted soils using Sedum plumbizincicola inoculated with metal mobilizing Phyllobacterium myrsinacearum RC6b. Chemosphere, 93(7), 1386–1392. https://doi.org/10.1016/j.chemosphere.2013.06.077 DOI: https://doi.org/10.1016/j.chemosphere.2013.06.077

Malavolta, E., Vitti, G. C., & Oliveira, S. A. (1997). Avaliação do estado nutricional das plantas: Princípios e aplicações (2nd ed.). Associação Brasileira para Pesquisa da Potassa e do Fosfato. https://www.infraestruturameioambiente.sp.gov.br/institutodebotanica/1997/01/avaliacao-do-estado-nutricional-das-plantas-principios-e-aplicacoes/

Marciano Marra, L., Fonsêca Sousa Soares, C. R., de Oliveira, S. M., Avelar Ferreira, P. A., Lima Soares, B., de Fráguas Carvalho, R., et al. (2012). Biological nitrogen fixation and phosphate solubilization by bacteria isolated from tropical soils. Plant and Soil, 357(1–2), 289–307. https://doi.org/10.1007/s11104-012-1157-z DOI: https://doi.org/10.1007/s11104-012-1157-z

Miller, C. D., Pettee, B., Zhang, C., Pabst, M., McLean, J. E., & Anderson, A. J. (2009). Copper and cadmium: Responses in Pseudomonas putida KT2440. Letters in Applied Microbiology, 49(6), 775–783. https://doi.org/10.1111/j.1472-765X.2009.02743.x DOI: https://doi.org/10.1111/j.1472-765X.2009.02741.x

Mishra, J., Singh, R., & Arora, N. K. (2017). Alleviation of heavy metal stress in plants and remediation of soil by rhizosphere microorganisms. Frontiers in Microbiology, 8, Article 1706. https://doi.org/10.3389/fmicb.2017.01706 DOI: https://doi.org/10.3389/fmicb.2017.01706

Naik, M. M., & Dubey, S. K. (2013). Lead resistant bacteria: Lead resistance mechanisms, their applications in lead bioremediation and biomonitoring. Ecotoxicology and Environmental Safety, 98, 1–7. https://doi.org/10.1016/j.ecoenv.2013.09.039 DOI: https://doi.org/10.1016/j.ecoenv.2013.09.039

Novinscak, A., Joly, D. L., & Filion, M. (2019). Complete genome sequence of the plant growth-promoting rhizobacterium Pseudomonas fluorescens LBUM677. Microbiology Resource Announcements, 8(20), Article e00438-19. https://doi.org/10.1128/MRA.00438-19 DOI: https://doi.org/10.1128/MRA.00438-19

Ojuederie, O. B., & Babalola, O. O. (2017). Microbial and plant-assisted bioremediation of heavy metal polluted environments: A review. International Journal of Environmental Research and Public Health, 14(12), Article 1504. https://doi.org/10.3390/ijerph14121504 DOI: https://doi.org/10.3390/ijerph14121504

Okon, Y., & Itzigsohn, R. (1995). The development of Azospirillum as a commercial inoculant for improving crop yields. Biotechnology Advances, 13(3), 415–424. https://doi.org/10.1016/0734-9750(95)00007-5 DOI: https://doi.org/10.1016/0734-9750(95)02004-M

Oliveira, M. A. de, Zucareli, C., Ferreira, A. S., Domingues, A. R., Spolaor, L. T., & Neves, C. S. V. J. (2015). Adubação fosfatada associada à inoculação com Pseudomonas fluorescens no desempenho agronômico do milho. Revista de Ciências Agrárias, 38(1), 18–25.

Parvatiyar, K., Alsabbagh, E. M., Ochsner, U. A., Stegemeyer, M. A., Smulian, A. G., Hwang, S. H., et al. (2005). Global analysis of cellular factors and responses involved in Pseudomonas aeruginosa resistance to arsenite. Journal of Bacteriology, 187(14), 4853–4864. https://doi.org/10.1128/JB.187.14.4853-4864.2005 DOI: https://doi.org/10.1128/JB.187.14.4853-4864.2005

Pereyra, M. A., García, P., Colabelli, M. N., Barassi, C. A., & Creus, C. M. (2012). A better water status in wheat seedlings induced by Azospirillum under osmotic stress is related to morphological changes in xylem vessels of the coleoptile. Applied Soil Ecology, 53, 94–97. https://doi.org/10.1016/j.apsoil.2011.11.007 DOI: https://doi.org/10.1016/j.apsoil.2011.11.007

Pérez-Rodríguez, M. M., Pontin, M., Lipinski, V., Bottini, R., Piccoli, P., & Cohen, A. C. (2020). Pseudomonas fluorescens and Azospirillum brasilense increase yield and fruit quality of tomato under field conditions. Journal of Soil Science and Plant Nutrition, 20(3), 1614–1624. https://doi.org/10.1007/s42729-020-00241-8 DOI: https://doi.org/10.1007/s42729-020-00233-x

Pilon-Smits, E. (2005). Phytoremediation. Annual Review of Plant Biology, 56, 15–39. https://doi.org/10.1146/annurev.arplant.56.032604.144214 DOI: https://doi.org/10.1146/annurev.arplant.56.032604.144214

Pramanik, K., Mitra, S., Sarkar, A., & Maiti, T. K. (2018). Alívio dos efeitos fitotóxicos do cádmio em mudas de arroz pela cepa PGPR resistente ao cádmio Enterobacter aerogenes MCC 3092. Journal of Hazardous Materials, 351, 317–329. https://doi.org/10.1016/j.jhazmat.2018.03.015 DOI: https://doi.org/10.1016/j.jhazmat.2018.03.009

Romero, A., Vega, D., & Correa, O. (2014). Azospirillum brasilense mitigates water stress imposed by a vascular disease by increasing xylem vessel area and stem hydraulic conductivity in tomato. Applied Soil Ecology, 82, 38–43. https://doi.org/10.1016/j.apsoil.2014.05.009 DOI: https://doi.org/10.1016/j.apsoil.2014.05.010

Saha, L., Tiwari, J., Bauddh, K., & Ma, Y. (2021). Recent developments in microbe–plant-based bioremediation for tackling heavy metal-polluted soils. Frontiers in Microbiology, 12, Article 731723. https://doi.org/10.3389/fmicb.2021.731723 DOI: https://doi.org/10.3389/fmicb.2021.731723

Shaari, N. E. M., Tajudin, M. T. F. M., Khandaker, M. M., Majrashi, A., Alenazi, M. M., Abdullahi, U. A., et al. (2024). Cadmium toxicity symptoms and uptake mechanism in plants: A review. Brazilian Journal of Biology, 84, Article e252143. https://doi.org/10.1590/1519-6984.252143 DOI: https://doi.org/10.1590/1519-6984.252143

Shabaan, M., Asghar, H. N., Akhtar, M. J., Ali, Q., & Ejaz, M. (2021). Role of plant growth promoting rhizobacteria in the alleviation of lead toxicity to Pisum sativum L. International Journal of Phytoremediation, 23(8), 837–845. https://doi.org/10.1080/15226514.2020.1854167 DOI: https://doi.org/10.1080/15226514.2020.1859988

Sharma, N., & Singhvi, R. (2017). Effects of chemical fertilizers and pesticides on human health and environment: A review. International Journal of Agriculture, Environment and Biotechnology, 10(6), 675–680. https://doi.org/10.5958/2230-732X.2017.00083.0 DOI: https://doi.org/10.5958/2230-732X.2017.00083.3

Sharma, P., & Dubey, R. S. (2005). Lead toxicity in plants. Brazilian Journal of Plant Physiology, 17(1), 35–52. https://doi.org/10.1590/S1677-04202005000100004 DOI: https://doi.org/10.1590/S1677-04202005000100004

Silva, F. C. da (Ed.). (2009). Manual de análises químicas de solos, plantas e fertilizantes (2nd ed.). Embrapa Informação Tecnológica; Embrapa Solos. http://www.infoteca.cnptia.embrapa.br/handle/doc/330496

Silva, M. L. de S., Vitti, G. C., & Trevizam, A. R. (2007). Concentração de metais pesados em grãos de plantas cultivadas em solo com diferentes níveis de contaminação. Pesquisa Agropecuária Brasileira, 42(4), 527–535. https://doi.org/10.1590/S0100-204X2007000400010 DOI: https://doi.org/10.1590/S0100-204X2007000400011

de Siqueira, K. A., Liotti, R. G., Mendes, T. A. de O., & Soares, M. A. (2018). Draft genome sequences of Pseudomonas sp. strain 382 and Pantoea coffeiphila 342, endophytic bacteria isolated from Brazilian guarana [Paullinia cupana (Mart.) Ducke]. Genome Announcements, 6(10), Article e00287-18. https://doi.org/10.1128/genomeA.00287-18 DOI: https://doi.org/10.1128/genomeA.00287-18

Sorce, C., Giovannelli, A., Sebastiani, L., & Anfodillo, T. (2013). Hormonal signals involved in the regulation of cambial activity, xylogenesis and vessel patterning in trees. Plant Cell Reports, 32(6), 885–898. https://doi.org/10.1007/s00299-013-1430-5 DOI: https://doi.org/10.1007/s00299-013-1431-4

Souza, K. dos S. de. (2013). Análise de metais potencialmente tóxicos (MPT) derivados de produtos agroquímicos em comunidade agrícola de Manaus [Master’s thesis, Universidade Federal do Amazonas]. Repositório Institucional UFAM. https://tede.ufam.edu.br/handle/tede/4482

Taiz, L., & Zeiger, E. (2017). Fisiologia e desenvolvimento vegetal (6th ed.). Editora UFV. https://www.editoraufv.com.br/produto/fisiologia-e-desenvolvimento-vegetal-6-edicao/1109573

Tiwari, M., Nagpure, N. S., Saksena, D. N., Kumar, R., Singh, S. P., Kushwaha, B., et al. (2011). Evaluation of acute toxicity levels and ethological responses under heavy metal cadmium exposure in freshwater teleost, Channa punctata (Bloch). International Journal of Aquatic Science, 2(1), 36–47. https://www.academia.edu/38411795/Evaluation_of_acute_toxicity_levels_and_ethological_responses_under_heavy_metal_cadmium_exposure_in_freshwater_teleost_Channa_punctata_Bloch_Mohit_Tiwari_N_S_Nagpure_D_N_Saksena_Ravindra_Kumar_S_P_Singh_B_Kushwaha_W_S_Lakra_2011_2_1_36_47_

Torres-Torres, E. I., Álvarez-Sánchez, A. R., Reyes-Pérez, J. J., & Pinela, A. G. M. (2022). Respuesta agronómica e incidencia de mildiu en cultivo de nabo (Brassica napus L.) con la inoculación de Azotobacter sp y Azospirillum brasilense. Ciencia y Tecnología, 15(1), 7–12. DOI: https://doi.org/10.18779/cyt.v15i2.579

Upadhayay, J., Rana, M., Juyal, V., Bisht, S. S., & Joshi, R. (2020). Impact of pesticide exposure and associated health effects. In Pesticides in crop production (pp. 69–88). John Wiley & Sons. https://doi.org/10.1002/9781119432241.ch5 DOI: https://doi.org/10.1002/9781119432241.ch5

Vamerali, T., Bandiera, M., & Mosca, G. (2010). Field crops for phytoremediation of metal-contaminated land. A review. Environmental Chemistry Letters, 8(1), 1–17. https://doi.org/10.1007/s10311-009-0261-0 DOI: https://doi.org/10.1007/s10311-009-0268-0

Vangronsveld, J., Herzig, R., Weyens, N., Boulet, J., Adriaensen, K., Ruttens, A., et al. (2009). Phytoremediation of contaminated soils and groundwater: Lessons from the field. Environmental Science and Pollution Research, 16(7), 765–794. https://doi.org/10.1007/s11356-009-0213-6 DOI: https://doi.org/10.1007/s11356-009-0213-6

Vasconcellos, R. D. S. (2022). Resposta inicial de plantas de arroz (Oryza sativa L.) tratadas com insumos biológicos [Master’s thesis, Universidade Estadual Paulista].

Violante, A., Cozzolino, V., Perelomov, L., Caporale, A. G., & Pigna, M. (2010). Mobility and bioavailability of heavy metals and metalloids in soil environments. Journal of Soil Science and Plant Nutrition, 10(3), 268–292. https://doi.org/10.4067/S0718-95162010000100005 DOI: https://doi.org/10.4067/S0718-95162010000100005

Vogel, A. I. (1981). Análise química quantitativa (5th ed.). Mestre Jou.

Wang, Y., Lin, J., Yang, F., Tao, S., Yan, X., Zhou, Z., et al. (2022). Arbuscular mycorrhizal fungi improve the growth and performance in the seedlings of Leymus chinensis under alkali and drought stresses. PeerJ, 10, Article e12890. https://doi.org/10.7717/peerj.12890 DOI: https://doi.org/10.7717/peerj.12890

Wu, X., Cobbina, S. J., Mao, G., Xu, H., Zhang, Z., & Yang, L. (2016). A review of toxicity and mechanisms of individual and mixtures of heavy metals in the environment. Environmental Science and Pollution Research, 23(9), 8244–8259. https://doi.org/10.1007/s11356-016-6333-x DOI: https://doi.org/10.1007/s11356-016-6333-x

Yan, Y., Wang, L., & Yang, J. (2022). The willingness and technology preferences of farmers and their influencing factors for soil remediation. Land, 11(10), Article 1821. https://doi.org/10.3390/land11101821 DOI: https://doi.org/10.3390/land11101821

Yang, J. H., & Wang, H. (2016). Molecular mechanisms for vascular development and secondary cell wall formation. Frontiers in Plant Science, 7, Article 356. https://doi.org/10.3389/fpls.2016.00356 DOI: https://doi.org/10.3389/fpls.2016.00356

Zhang, F.-Q., Wang, Y.-S., Lou, Z.-P., & Dong, J.-D. (2007). Effect of heavy metal stress on antioxidative enzymes and lipid peroxidation in leaves and roots of two mangrove plant seedlings (Kandelia candel and Bruguiera gymnorrhiza). Chemosphere, 67(1), 44–50. https://doi.org/10.1016/j.chemosphere.2006.09.059 DOI: https://doi.org/10.1016/j.chemosphere.2006.10.007

Zhao, F.-J., Ma, Y., Zhu, Y.-G., Tang, Z., & McGrath, S. P. (2015). Soil contamination in China: Current status and mitigation strategies. Environmental Science & Technology, 49(2), 750–759. https://doi.org/10.1021/es5047099 DOI: https://doi.org/10.1021/es5047099

Zhou, Y., Wu, J., Wang, B., Duan, L., Zhang, Y., Zhao, W., et al. (2020). Occurrence, source and ecotoxicological risk assessment of pesticides in surface water of Wujin District (northwest of Taihu Lake), China. Environmental Pollution, 265, Article 114953. https://doi.org/10.1016/j.envpol.2020.114953 DOI: https://doi.org/10.1016/j.envpol.2020.114953

Downloads

Published

2025-10-31

Issue

Section

Articles

How to Cite

SNAK, Aline; GONÇALVES JUNIOR, Affonso Celso; CONRADI JUNIOR, Elio; (IN MEMORIAM), Deonir Secco; PINTO, Fabiana Gisele da Silva; SCHMIDT, Matheus. INFLUENCE OF MICROORGANISMS ON THE BIOREMEDIATION OF LEAD-CONTAMINATED SOIL CULTIVATED WITH CRAMBE ABYSSINICA UNDER PROTECTED CULTIVATION. ARACÊ , [S. l.], v. 7, n. 10, p. e9508, 2025. DOI: 10.56238/arev7n10-308. Disponível em: https://periodicos.newsciencepubl.com/arace/article/view/9508. Acesso em: 5 dec. 2025.