BENEFITS OF BIOACTIVE COMPOUNDS ON ALZHEIMER'S DISEASE SIGNALING PATHWAYS: AN INTEGRATIVE REVIEW
DOI:
https://doi.org/10.56238/arev7n10-295Keywords:
Alzheimer's Disease, Bioactive Compounds, Molecular Pathways, Therapeutic MeasuresAbstract
Alzheimer's disease (AD) is a multifactorial disease involving numerous molecular signaling pathways. It is characterized by the accumulation of Aβ peptide and neurofibrillary tangles, as well as neuroinflammation and metabolic dysfunction, leading to neurodegeneration with extensive neuronal loss. Although it is a highly prevalent disease, few approved medications have been approved for its treatment, which only act to alleviate symptoms. Several bioactive compounds act on different metabolic and molecular pathways, regulating important processes involved in the disease. The objective of this study is to relate the benefits of using bioactive compounds to specific molecular events associated with AD, providing insights into their role as truly effective therapeutic measures. An integrative review was conducted, consulting major electronic databases, highlighting some compounds that act on various molecular signaling pathways, principles with significant neuroprotective properties. Curcumin, caffeine, and huperzine A actively participate in neuroinflammation pathways, modulating the NLRP3/NF-Κb pathway and cytokine release. Saponins act by minimizing the formation of Aβ oligomers and preventing tau hyperphosphorylation, while quercetin has significant antioxidant potential, which is also demonstrated by curcumin. Despite strong in vitro and in vivo evidence, many challenges remain in developing formulations with these compounds, such as bioavailability, toxicity, and dosing. This suggests the need for larger targeted clinical trials and prospective studies to investigate the potential therapeutic efficacy of these bioactive compounds, both alone and in combination with anti-AD medications.
Downloads
References
2023 Alzheimer's disease facts and figures, Alzheimer’s Dement., v.19, n.4, p.1598-1695, 2023. DOI: https://doi.org/10.1002/alz.13016
ABDULJAWAD, A.A. et al. Alzheimer's Disease as a Major Public Health Concern: Role of Dietary Saponins in Mitigating Neurodegenerative Disorders and Their Underlying Mechanisms. Molecules, v.27, n.20, p.6804, 2022. DOI: https://doi.org/10.3390/molecules27206804
AHMED, T.; GILANI, A-H. Inhibitory effect of curcuminoids on acetylcholinesterase activity and attenuation of scopolamine-induced amnesia may explain medicinal use of turmeric in Alzheimer's disease. Pharmacology, Biochemistry and Behavior, v.91, p.554-559, 2009. DOI: https://doi.org/10.1016/j.pbb.2008.09.010
AKRAM, M. NAWAZ, A. Effects of medicinal plants on Alzheimer’s disease and memory deficits. Neural Regeneration Research, v.12, n.4, p.660–670, 2017. DOI: https://doi.org/10.4103/1673-5374.205108
ALSALEEM, M.A. et al. Molecular Signaling Pathways of Quercetin in Alzheimer's Disease: A Promising Arena. Cell Mol Neurobiol., v.45, n.1, p.8, 2024. DOI: https://doi.org/10.1007/s10571-024-01526-w
ANSARI, M.A. et al. Protective Effect of Quercetin in Primary Neurons Against Aβ(1-42): Relevance to Alzheimer's Disease. J Nutr Biochem, v.20, n.4, p.269-275, 2009. DOI: https://doi.org/10.1016/j.jnutbio.2008.03.002
ARENDASH, G. W. Caffeine protects Alzheimer’s mice against cognitive impairment and reduces brain -amyloid production. Neuroscience, v.142, p. 941–952, 2006. DOI: https://doi.org/10.1016/j.neuroscience.2006.07.021
ARENDASH, G.W. et al. Caffeine Reverses Cognitive Impairment and Decreases Brain Amyloid-β Levels in Aged Alzheimer’s Disease Mice. Journal of Alzheimer’s Disease, v.17, p.661-680, 2009. DOI: https://doi.org/10.3233/JAD-2009-1087
ARNDT, H. et al. A Screen of Plant-Based Natural Products Revealed That Quercetin Prevents Pyroglutamylated Amyloid-β (Aβ3(pE)-42) Uptake in Astrocytes as Well As Resulting Astrogliosis and Synaptic Dysfunction. Mol Neurobiol., v.62, n.3, p.3730-3745, 2025. DOI: https://doi.org/10.1007/s12035-024-04509-6
AWAD, A.S. et al. Can Quercetin protect against the pre-disposing factors for Alzheimer's disease via inhibiting NLRP3 inflammasome pathway? J Pharm Pharmacol., v.77, n.7, p.911-921, 2025. DOI: https://doi.org/10.1093/jpp/rgaf020
BATIHA, G. The Pharmacological Activity, Biochemical Properties, and Pharmacokinetics of the Major Natural Polyphenolic Flavonoid: Quercetin. Foods, n.9, v.3, p 374, 2020. DOI: https://doi.org/10.3390/foods9030374
BEHLING, E.B.; FRANCESCATO, H.D.C.; ANTUNES, L.M.G. Flavonóide Quercetina: Aspectos Gerais e Ações Biológicas. Alim. Nutr., v.15, n.3, p.285-292, 2004.
BLUM, D. et al.Association of caffeine consumption with cerebrospinal fluid biomarkers in mild cognitive impairment and Alzheimer's disease: A BALTAZAR cohort study. Alzheimers Dement, v.20, n.10, p.6948-6959, 2024. DOI: https://doi.org/10.1002/alz.14169
CHEN, X. et al. Neuroprotective Natural Products for Alzheimer’s Disease. Cells, v.10, 2021. DOI: https://doi.org/10.3390/cells10061309
CHENG, Z. et al. Berberine: A Promising Treatment for Neurodegenerative Diseases. Front Pharmacol., v.13, p.845591, 2022. DOI: https://doi.org/10.3389/fphar.2022.845591
COUTINHO, M.A.S.; MUZITANO, M.F.; COSTA, S. Flavonoides: potenciais agentes terapêuticos para o processo inflamatório. Virtual Quimica, v.1, p.241-256, 2009. DOI: https://doi.org/10.5935/1984-6835.20090024
DE PLANO, L.M. et al. The Role of the Transcription Factor Nrf2 in Alzheimer's Disease: Therapeutic Opportunities. Biomolecules, v.13, n.3, 2023. DOI: https://doi.org/10.3390/biom13030549
ESKELINEN, M.; KLIVIPELTO, M. Caffeine as a Protective Factor in Dementia and Alzheimer’s Disease. Journal of Alzheimer’s Disease, v.20, p.167-174, 2010. DOI: https://doi.org/10.3233/JAD-2010-1404
ESSA, M.M. et al. Neuroprotective effect of natural products against Alzheimer's disease. Neurochem Res., v.37, n.9, p.1829-42, 2012. DOI: https://doi.org/10.1007/s11064-012-0799-9
FERREIRA, M. et al. Huperzine A from Huperzia serrata: a review of its sources, chemistry, pharmacology and toxicology. Phytochem Rev., v.15, n.1, p.51–85, 2016. DOI: https://doi.org/10.1007/s11101-014-9384-y
FLATEN, V. et al. From epidemiology to pathophysiology: what about caffeine in Alzheimer’s disease? Biochem. Soc. Trans., v.42, p.587–592, 2014. DOI: https://doi.org/10.1042/BST20130229
GAO, C. et al. Neuron tau-targeting biomimetic nanoparticles for curcumin delivery to delay progression of Alzheimer’s disease. J Nanobiotechnology, v.18, p.71, 2020. DOI: https://doi.org/10.1186/s12951-020-00626-1
GENCHI, G. et al. Neuroprotective Effects of Curcumin in Neurodegenerative Diseases. Foods, v.13, n.11, p.1774, 2024. DOI: https://doi.org/10.3390/foods13111774
GILL, H. et al. An umbrella review of meta-analysis to understand the effect of coffee consumption and the relationship between stroke, cardiovascular heart disease, and dementia among its global users. J Family Med Prim Care, v.13, n.11, p.4783-4796, 2024. DOI: https://doi.org/10.4103/jfmpc.jfmpc_654_24
GONÇALVES, P.B.; CORDEIRO, Y.; RENNÓ-SODERO, A.C. Understanding the mechanisms of green tea EGCG against amyloid β oligomer neurotoxicity through computational studies. RSC Adv., v.14, n.31, 2024. DOI: https://doi.org/10.1039/D4RA03343D
GOOZEE, K.G. et al. Martins, Examining the potential clinical value of de curcumin in the prevention and diagnosis of A.D. British Journal of Nutrition, v.115, p.449–465, 2016. DOI: https://doi.org/10.1017/S0007114515004687
HUANG, J., et al. Natural bioactive compounds in Alzheimer's disease: From the perspective of type 3 diabetes mellitus. Front Aging Neurosci., n 15, p. 1130253, 2023. DOI: https://doi.org/10.3389/fnagi.2023.1130253
ISLAM M.R. et al. Targeting signaling pathways in neurodegenerative diseases: Quercetin's cellular and molecular mechanisms for neuroprotection. Anim Models Exp Med., n.8, p.798-818, 2025. DOI: https://doi.org/10.1002/ame2.12551
JIANG, T. et al. Inhibitory effect of curcumin on the Al(III)-induced Aβ42 aggregation andneurotoxicity in vitro. Biochimica et Biophysica Acta (BBA), v.1822, n.8, p.1207-1215, 2012. DOI: https://doi.org/10.1016/j.bbadis.2012.04.015
JIMÉNEZ-ALIAGA, K. et al. Quercetin and rutin exhibit antiamyloidogenic and fibril- disaggregating effects in vitro and potent antioxidant activity in APPswe cells. Life Sciences, v.89, p.939-945, 2011. DOI: https://doi.org/10.1016/j.lfs.2011.09.023
KAUR. K.; KULKARNI, Y.A.; WAIRKAR, S. Exploring the potential of quercetin in Alzheimer's Disease: Pharmacodynamics, Pharmacokinetics, and Nanodelivery systems. Brain Res., v.1834, p.148905, 2024. DOI: https://doi.org/10.1016/j.brainres.2024.148905
KHAN, H. et al. Akkol Neuroprotective Effects of Quercetin in A.D. Biomolecules, v.10, p.59, 2020. DOI: https://doi.org/10.3390/biom10010059
KUMAR, A. et al. Computational and In-Vitro Validation of Natural Molecules as Potential Acetylcholinesterase Inhibitors and Neuroprotective Agents. Curr Alzheimer Res., v.16, n.2, p.116-127, 2019. DOI: https://doi.org/10.2174/1567205016666181212155147
LI, Z.; GONG, C. NLRP3 inflammasome in Alzheimer's disease: molecular mechanisms and emerging therapies. Front Immunol., v.16, p.1583886, 2025. DOI: https://doi.org/10.3389/fimmu.2025.1583886
LIN, X. et al. Curcumin attenuates oxidative stress in RAW264.7 cells by increasing the activity of antioxidant enzymes and activating the Nrf2-Keap1 pathway. Plos One, v.14, n.5, 2019. DOI: https://doi.org/10.1371/journal.pone.0216711
LIU, J-Y. et al. Effect of berberine on cognitive function and β-amyloid precursor protein in Alzheimer’s disease models: a systematic review and meta-analysis. Front. Pharmacol., v.14, p.1301102, 2024. DOI: https://doi.org/10.3389/fphar.2023.1301102
MAA, T. et al. Huperzine A promotes hippocampal neurogenesis in vitro and in vivo, Brain Research, v.1506, p.35-43, 2013. DOI: https://doi.org/10.1016/j.brainres.2013.02.026
MARI, E. et al. Saponins Effect on Human Insulin Amyloid Aggregation. Biomolecules, v.15, n.1, p.40, 2024. DOI: https://doi.org/10.3390/biom15010040
MINISTÉRIO DA SAÚDE; ANVISA. Monografia da Espécie Curcuma longa L. (CURCUMA). Governo do Brasil: Brasília, 2015.
MISHRA, S.; PALANIVELU, K. The effect of curcumin (turmeric) on Alzheimer's disease: An overview. Ann Indian Acad Neurol., v.11, p.12-19, 2008. DOI: https://doi.org/10.4103/0972-2327.40220
MORASSO, C. et al. Exploring the anti-inflammatory effects of curcumin encapsulated within ferritin nanocages: a comprehensive in vivo and in vitro study in Alzheimer's disease. J Nanobiotechnology, v.22, n.1, p.718, 2024. DOI: https://doi.org/10.1186/s12951-024-02897-4
NILA, I.S. et al. Effect of Daily Coffee Consumption on the Risk of Alzheimer's Disease: A Systematic Review and Meta-Analysis. J Lifestyle Med., v.13, n.2, p.83-89, 2023. DOI: https://doi.org/10.15280/jlm.2023.13.2.83
PETRONILHO, E.C.; PINTO, A.; FIGUEROA-VILLAR, J.D. Acetilcolinesterase: Alzheimer e Guerra Química, 2011. Disponível em: https://rmct.ime.eb.br/arquivos/RMCT_3_tri_2011/acetilcolinesterase-alzheimer/acetilcolinesterase-alzheimer.html. Acesso em 30 out. 2023.
PURANIK, N. et al. Resveratrol as a Therapeutic Agent in Alzheimer's Disease: Evidence from Clinical Studies. Nutrients, v.17, n.15, p.2557, 2025. DOI: https://doi.org/10.3390/nu17152557
QU, Z. et al. Transcription factor NRF2 as a promising therapeutic target for Alzheimer’s disease. Free Radical Biology and Medicine, v.159, 2020. DOI: https://doi.org/10.1016/j.freeradbiomed.2020.06.028
SABOGAL-GUÁQUETA, A. The flavonoid quercetin ameliorates Alzheimer’s disease pathology and protects cognitive and emotional function in aged triple transgenic Alzheimer’s disease model mice. Neuropharmacology, v.93, p.134-145, 2015. DOI: https://doi.org/10.1016/j.neuropharm.2015.01.027
SANTANA, J.D. DOURADO, S.H.A. BIESKI, I.G.C. Potencial das Plantas Medicinais no Tratamento de Doença de Alzheimer com Ênfase em Curcuma Longa. Revista Saúde Viva, v. 1, n. 1, 2018.
SCHREINER, T.G.; POPESCU, B.O. Impact of Caffeine on Alzheimer's Disease Pathogenesis-Protective or Risk Factor? Life (Basel), v.12, n.3, p.330, 2022. DOI: https://doi.org/10.3390/life12030330
SEIDLER, P.M. et al. Structure-based discovery of small molecules that disaggregate Alzheimer’s disease tissue derived tau fibrils in vitro. Nat Commun, n.13, p. 5451, 2022. DOI: https://doi.org/10.1038/s41467-022-32951-4
SERENIKI, A., VITAL, M.A.B.F. A doença de Alzheimer: aspectos fisiopatológicos e farmacológicos. Rev Psiquiatr, v.30, n.1, 2008. DOI: https://doi.org/10.1590/S0101-81082008000200002
SILVA, M.R.F. et al. Aspectos Genéticos da Doença de Alzheimer. Anais V Congresso Internacional Envelhecimento Humano. Campina Grande: Realize Editora, 2017.
Souza, N.S. O papel coadjuvante terapêutico da fitoterapia na D.A. Revista Brasileira de Nutrição Funcional, v.62, 2015.
SUN A. et al. Neuroprotection by Saponins. Phytother Res., n.29, v.2, p.187-200, 2014. DOI: https://doi.org/10.1002/ptr.5246
SY, L.K. et al. Identification of "sarsasapogenin-aglyconed" timosaponins as novel Aβ-lowering modulators of amyloid precursor protein processing. Chem Sci., v.7, n.5, p.3206-3214, 2016. DOI: https://doi.org/10.1039/C5SC02377G
TANG, M.; TAGHIBIGLOU, C. The Mechanisms of Action of Curcumin in Alzheimer's Disease. J Alzheimers Disease, v.58, p.1003-1016, 2017. DOI: https://doi.org/10.3233/JAD-170188
TAO G. et al. Dihydro-resveratrol ameliorates NLRP3 inflammasome-mediated neuroinflammation via Bnip3-dependent mitophagy in Alzheimer's disease. Brazilian J Pharmacol., v.182, n.4, p.1005-1024, 2025. DOI: https://doi.org/10.1111/bph.17373
TAO, L.X. et al. Zhang, Acetylcholinesterase-independent protective effects of huperzine A against iron overload-induced oxidative damage and aberrant iron metabolism signaling in rat cortical neurons. Acta Pharmacol Sin, v.37, p.1391–1400, 2016. DOI: https://doi.org/10.1038/aps.2016.78
VARGAS-RESTREPO,F.; SABOGAL-GUÁQUETA,A.M.; CARDONA-GÓMEZ,G.P. Quercetin ameliorates inflammation in CA1 hippocampal region in aged triple transgenic Alzheimer's disease mice model. Biomédica, v.38, p.62-69, 2018. DOI: https://doi.org/10.7705/biomedica.v38i0.3761
VIERO, A.C.; DOMBROWSKI, P.A. Plantas Medicinais e a Doença de Alzheimer. Brazilian Journal of Development, v.8, n.3, p.16007-16021, 2022. DOI: https://doi.org/10.34117/bjdv8n3-033
VISHWAS, S. et al. Expanding Arsenal against Neurodegenerative Diseases Using Quercetin Based Nanoformulations: Breakthroughs and Bottlenecks. Curr Neuropharmacol., v.21, n.7, p. 1558-1574, 2023. DOI: https://doi.org/10.2174/1570159X20666220810105421
XIAO, S. et al. Fisetin inhibits tau aggregation by interacting with the protein and preventing the formation of β-strands. Int J Biol Macromol., v.78, p.381-393, 2021. DOI: https://doi.org/10.1016/j.ijbiomac.2021.02.210
XING, H. et al. Recent Advances in Drug Development for Alzheimer's Disease: A Comprehensive Review. Int J Mol Sci., v.26, n.8, p.3905, 2025. DOI: https://doi.org/10.3390/ijms26083905
XING, S. et al. An, Huperzine A in the Treatment of Alzheimer’s Disease and Vascular Dementia: A Meta-Analysis. Evid Based Complementary and Alternative Med., v.14, p.1-10, 2014. DOI: https://doi.org/10.1155/2014/363985
YANG, Y. et al. Panax notoginseng saponins prevent dementia and oxidative stress in brains of SAMP8 mice by enhancing mitophagy. BMC Complement Med Ther., v.24, n.1, p.144, 2024. DOI: https://doi.org/10.1186/s12906-024-04403-7
ZANGARA, A. The psychopharmacology of huperzine A: an alkaloid with cognitive enhancing and neuroprotective properties of interest in the treatment of Alzheimer’s disease. Potential therapeutic targets of huperzine A for Alzheimer’s disease and vascular dementia. Pharmacology, Biochemistry and Behavior, v.75, 675-686, 2003. DOI: https://doi.org/10.1016/S0091-3057(03)00111-4
ZAPLATIC, E. et al. Molecular mechanisms underlying protective role of quercetin in attenuating Alzheimer's disease. Life Sciences, v.224, p.109-119, 2019. DOI: https://doi.org/10.1016/j.lfs.2019.03.055
ZHANG, H. New insights into huperzine A for the treatment of Alzheimer's disease. Acta Pharmacologica Sinica, v.33, p.1170–1175, 2012. DOI: https://doi.org/10.1038/aps.2012.128
ZHANG, R. et al. Therapeutic Candidates for Alzheimer's Disease: Saponins. Int J Mol Sci., v.24, n.13, p.10505, 2023. DOI: https://doi.org/10.3390/ijms241310505
