SEASONALITY OF SNAKEBITES: STUDY FROM 2008 TO 2017 IN THE MUNICIPALITY OF RIO DE JANEIRO, BRAZIL
DOI:
https://doi.org/10.56238/arev7n9-288Keywords:
Neglected Tropical Disease, Seasonal Effect, Envenomation, Heat Islands, TrendAbstract
This study addresses the phenomenon of snakebite seasonality in the municipality of Rio de Janeiro during the period 2008–2017. During the analyzed period, 498 snakebite cases were reported in Rio de Janeiro, with a predominance of the Bothrops genus. Most bites occurred in urban areas of the West Zone, regions still characterized by forest remnants. The victim profile shows male predominance (about twice as frequent compared to females), mainly in the 20–59 age group (mean ages: 36 years for women / 37 years for men). A seasonal pattern was observed, with an increase in cases during the warm and humid months (November to April) and a decrease during the colder months (May to October), suggesting the influence of climatic factors—primarily temperature and humidity—but also the role of land use and occupation. The annual seasonality of snakebites is evident, with alternating periods of higher and lower incidence throughout the year. It was also observed that the increase in cases followed the rise in temperature. Unlike other regions of Brazil, such as the North and Northeast, Rio de Janeiro showed a trend of decreasing cases over time. The objective of this study is to present data on the seasonality of snakebites in Rio de Janeiro during the period 2008 to 2017.
Downloads
References
1. Harrison RA, Casewell NR, Ainsworth SA, Lalloo DG. The time is now: A call for action to translate recent momentum on tackling tropical snakebite into sustained benefit for victims. Trans R Soc Trop Med Hyg. 2019;113(12):834-837. doi:10.1093/trstmh/try134
2. Pejak DT, Adam VN, Srzić I. VENOMOUS SNAKEBITES IN CROATIA, CLINICAL PRESENTATION, DIAGNOSIS AND TREATMENT. Acta Clin Croat. 2022;61:59-66. doi:10.20471/acc.2022.61.s1.10
3. Abdullahi A, Yusuf N, Debella A, et al. Seasonal variation, treatment outcome, and its associated factors among the snakebite patients in Somali region, Ethiopia. Front Public Health. 2022;10:01-10. doi:10.3389/fpubh.2022.901414
4. Aragon DC, de Queiroz JAM, Martinez EZ. Incidence of snakebites from 2007 to 2014 in the State of São Paulo, Southeast Brazil, using a Bayesian time series model. Rev Soc Bras Med Trop. 2016;49(4):515-519. doi:10.1590/0037-8682-0138-2016
5. Jenkins TP, Ahmadi S, Bittenbinder MA, et al. Terrestrial venomous animals, the envenomings they cause, and treatment perspectives in the middle east and North Africa. PLoS Negl Trop Dis. 2021;15(12). doi:10.1371/journal.pntd.0009880
6. Schneider MC, Min KD, Hamrick PN, et al. Overview of snakebite in brazil: Possible drivers and a tool for risk mapping. PLoS Negl Trop Dis. 2021;15(1):1-18. doi:10.1371/journal.pntd.0009044
7. Gutiérrez JM. Snakebite envenoming from an Ecohealth perspective. Toxicon X. 2020;7. doi:10.1016/j.toxcx.2020.100043
8. Warrell DA, Williams DJ. Clinical aspects of snakebite envenoming and its treatment in low-resource settings. The Lancet.Elsevier. 2023;401(10385):1382-1398. doi:10.1016/S0140-6736(23)00002-8
9. Roriz KRPS, Zaqueo KD, Setubal SS, et al. Epidemiological study of snakebite cases in Brazilian western Amazonia. Rev Soc Bras Med Trop. 2018;51(3):338-346. doi:10.1590/0037-8682-0489-2017
10. Bravo-Vega C, Santos-Vega M, Cordovez JM. Disentangling snakebite dynamics in Colombia: How does rainfall and temperature drive snakebite temporal patterns? PLoS Negl Trop Dis. 2022;16(3). doi:10.1371/journal.pntd.0010270
11. Ramos LF de AL, Baldini JCC, Caldas LWB, Gonçalves ALL. Envenenamento por picada de cobra e coração: revisão sistemática. Journal Archives of Health. 2024;5(3):e1907. doi:10.46919/archv5n3espec-228
12. Almeida CB. Acidentes por animais peçonhentos no estado do Amapá em 2019 / Accidents by poisony animals in the state of Amapá in 2019. Brazilian Journal of Development. 2020;6(12):103538-103350. Accessed September 17, 2025. https://ojs.brazilianjournals.com.br/ojs/index.php/BRJD/article/view/22352/17886
13. Maria Fernanda Gonzalez Rodriguez, Alexander Guimarães Sales, Bruna Mirelly Simões Vieira, Edimar Viana Cruz, Thompson de Oliveira Turibio. Perfil epidemiológico dos acidentes causados por serpentes peçonhentas em Palmas - TO nos anos de 2020 a 2022. Accessed September 17, 2025. https://ojs.brazilianjournals.com.br/ojs/index.php/BJHR/article/view/60174/43507
14. Farzaneh E, Fouladi N, Shafaee Y, Mirzamohammadi Z, Naslseraji F, Mehrpour O. Epidemiological study of snakebites in Ardabil Province (Iran). Electron Physician. 2017;9(3):3986-3990. doi:10.19082/3986
15. Pucca MB, Knudsen C, Oliveira IS, et al. Current Knowledge on Snake Dry Bites. Toxins (Basel).Multidisciplinary Digital Publishing Institute. 2020;12(11):668. doi:10.3390/toxins12110668
16. Feitosa ES, Sampaio V, Sachett J, et al. Snakebites as a largely neglected problem in the Brazilian Amazon: highlights of the epidemiological trends in the State of Amazonas. Rev Soc Bras Med Trop. 2015;48:34-41. doi:10.1590/0037-8682-0105-2013
17. Ceesay B, Taal A, Kalisa M, Odikro MA, Agbope D, Kenu E. Analysis of snakebite data in volta and oti regions, ghana, 2019. Pan African Medical Journal. 2021;40(131). doi:10.11604/pamj.2021.40.131.28217
18. Landry M, D’Souza R, Moss S, et al. The Association Between Ambient Temperature and Snakebite in Georgia, USA: A Case-Crossover Study. Geohealth. 2023;7(7). doi:10.1029/2022GH000781
19. Minghui R, Malecela MN, Cooke E, Abela-Ridder B. WHO’s Snakebite Envenoming Strategy for prevention and control. Lancet Glob Health.Elsevier Ltd. 2019;7(7):e837-e838. doi:10.1016/S2214-109X(19)30225-6
20. Kshirsagar VY, Ahmed M, Colaco SM. Clinical profile of snake bite in children in rural India. Iran J Pediatr. 2013;23(6):632-636. Accessed August 22, 2025. http://ijp.tums.ac.ir
21. Al-Sadoon MK, Fahad Albeshr M, Ahamad Paray B, Rahman Al-Mfarij A. Envenomation and the bite rate by venomous snakes in the kingdom of Saudi Arabia over the period (2015–2018). Saudi J Biol Sci. 2021;28(1):582-586. doi:10.1016/j.sjbs.2020.10.046
22. BRASIL M da S. Acidentes por Animais Peçonhentos — Ministério da Saúde. 2025. Accessed February 23, 2025. https://www.gov.br/saude/pt-br/assuntos/saude-de-a-a-z/a/animais-peconhentos
23. WHO WHO. Snakebite. 2025. Accessed February 23, 2025. https://www.who.int/health-topics/snakebite#tab=tab_1
24. IBGE. IBGE | Cidades@ | Rio de Janeiro | Rio de Janeiro | Panorama. 2025. Accessed August 22, 2025. https://cidades.ibge.gov.br/brasil/rj/rio-de-janeiro/panorama
25. Prefeitura da Cidade do Rio de Janeiro. 2025. Accessed August 22, 2025. https://www.rio.rj.gov.br/web/guest/exibeconteudo?article-id=87129
26. DATARIO. Censo 2022: População e domicílios por bairros (dados preliminares). 2025. Accessed August 22, 2025. https://www.data.rio/datasets/fd354740f1934bf5bf8e9b0e2b509aa9_2/explore?showTable=true
27. EBC. Agência Brasil. 2025. Accessed August 22, 2025. https://agenciabrasil.ebc.com.br/economia/noticia/2017-07/ibge-28-das-areas-urbanizadas-estao-em-sao-paulo-rio-e-belo-horizonte
28. Kohn AF. Autocorrelation and Cross‐Correlation Methods. In: Wiley Encyclopedia of Biomedical Engineering. 2006:260-283. doi:10.1002/9780471740360.ebs0094
29. Brockwell PJ, Davis RA. Time Series: Theory and Methods. Springer Series in Statistics. 2nd Editio. (Springer Ed, ed.).; 1991.
30. Field A, Miles J, Field Z. Discovering Statistics Using r.; 2012.
31. Nordness RJ. Epidemiologia Y Bioestadística Secretos. Elsevier Mosby; 2006. doi:10.1016/B978-84-8174-950-2.50018-X
32. Kim HJ, Fay MP, Feuer EJ, Midthune DN. Permutation tests for joinpoint regression with applications to cancer rates. Stat Med. 2000;19(3):335-351. doi:10.1002/(SICI)1097-0258(20000215)19:3<335::AID-SIM336>3.0.CO;2-Z
33. Census.gov | Página inicial do US Census Bureau. Accessed August 22, 2025. https://www.census.gov/
34. Astolf R. Handbook on Seasonal Adjustment - Products Manuals and Guidelines - Eurostat. 2025. Accessed August 22, 2025. https://ec.europa.eu/eurostat/web/products-manuals-and-guidelines/-/ks-gq-18-001
35. Costa AC. Estimativa do Efeito Sazonal de Séries. 2023. https://www.youtube.com/watch?v=A3OIhDSWM2c
36. Brasil. El Niño: saiba como foi a atuação do fenômeno no Brasil. Instituto Nacional de Meteorologia. 2024. Accessed August 22, 2025. https://portal.inmet.gov.br/noticias/el-niño-saiba-como-foi-a-atuação-do-fenômeno-no-brasil
37. INMET. Instituto Nacional de Meteorologia - INMET. on Line. 2021;2014:https://portal.inmet.gov.br/. Accessed August 22, 2025. https://portal.inmet.gov.br/
38. Asato MS, Cruz Carbonell RC, Martins AG, et al. Envenoming by the rattlesnake Crotalus durissus ruruima in the state of roraima, Brazil. Toxicon X. 2020;8:100061. doi:10.1016/j.toxcx.2020.100061
39. Roberts NLS, Johnson EK, Zeng SM, et al. Global mortality of snakebite envenoming between 1990 and 2019. Nat Commun. 2022;13(1). doi:10.1038/s41467-022-33627-9
40. Afroz A, Siddiquea BN, Chowdhury HA, Jackson TN, Watt AD. Snakebite envenoming: A systematic review and meta-analysis of global morbidity and mortality. PLoS Negl Trop Dis. 2024;18(4). doi:10.1371/journal.pntd.0012080
41. Alcântara JA, Bernarde PS, Sachett J, et al. Stepping into a dangerous quagmire: Macroecological determinants of Bothrops envenomings, Brazilian Amazon. PLoS One. 2018;13(12). doi:10.1371/journal.pone.0208532
42. Farias AS de, Gomes Filho MR, da Costa Arévalo M, et al. Snakebite envenomations and access to treatment in communities of two indigenous areas of the Western Brazilian Amazon: A cross-sectional study. PLoS Negl Trop Dis. 2023;17(7 July). doi:10.1371/journal.pntd.0011485
43. Schneider MC, Vuckovic M, Montebello L, et al. Snakebites in rural areas of Brazil by race: indigenous the most exposed group. Int J Environ Res Public Health. 2021;18(17). doi:10.3390/ijerph18179365
44. Costa MKB da, Fonseca CS da, Navoni JA, Freire EMX. Snakebite accidents in Rio Grande do Norte state, Brazil: Epidemiology, health management and influence of the environmental scenario. Tropical Medicine and International Health. 2019;24(4):432-441. doi:10.1111/tmi.13207
45. Souza LC de A, Michelin A de F. Incidência de acidentes ofídicos na microrregião de Birigui-SP. Journal of Environmental Analysis and Progress. 2021;6(4):317-325. doi:10.24221/jeap.6.4.2021.3964.317-325
46. IVB IVB. Instituto Vital Brazil - IVB. 2025. Accessed March 25, 2025. https://www.rj.gov.br/vitalbrazil/
47. Duque BR, Bruno SF, Ferreira V, Guedes TB, Machado C, Hamdan B. Venomous snakes of medical importance in the Brazilian state of Rio de Janeiro: habitat and taxonomy against ophidism. Brazilian journal of biology. 2023;83:e272811. doi:10.1590/1519-6984.272811
48. de Farias AS, Do Nascimento EF, Gomes Filho MR, et al. Building an explanatory model for snakebite envenoming care in the Brazilian Amazon from the indigenous caregivers’ perspective. PLoS Negl Trop Dis. 2023;17(3):e0011172. doi:10.1371/journal.pntd.0011172
49. Zeng W, Ye P, Guo M, et al. The temporal, spatial and population heterogeneity of the associations between ambient temperature and injury by animal in China: A nationwide case-crossover study. Ecotoxicol Environ Saf. 2025;296:118206. doi:10.1016/j.ecoenv.2025.118206
50. Ochoa C, Pittavino M, Babo Martins S, et al. Estimating and predicting snakebite risk in the Terai region of Nepal through a high-resolution geospatial and One Health approach. Sci Rep. 2021;11(1):23868. doi:10.1038/s41598-021-03301-z
51. Mello-Théry NA De, Avicchioli A, Caldas E de L. Iniciativas e ações públicas para mitigação da ilha de calor urbana em cidades médias: o caso de Jacareí-SP. Espaço e Economia. 2021;21(21). doi:10.4000/espacoeconomia.18780
52. Correa W de SC, Aylas GYR, Santiago AM, et al. A Ilha de Calor Urbana em ambiente tropical: a Região Metropolitana da Grande Vitória no Brasil. Geography Department University of Sao Paulo. 2022;42:e186970. doi:10.11606/eissn.2236-2878.rdg.2022.186970
53. Amorim MCDCT. ILHAS DE CALOR SUPERFICIAIS: FREQUÊNCIA DA INTENSIDADE E VARIABILIDADE ESPACIAL EM CIDADE DE CLIMA TROPICAL CONTINENTAL. Geo UERJ. 2019;(34):e40959. doi:10.12957/geouerj.2019.40959
54. Araújo SCM, Câmara JT, Guedes TB. Snakebites in Northeastern Brazil: accessing clinical-epidemiological profile as a strategy to deal with Neglected Tropical Diseases. Rev Soc Bras Med Trop. 2023;56:2023. doi:10.1590/0037-8682-0224-2023
55. Almeida Filho L, Cintia Regina Aleixo N. Tendências climáticas e ilhas de calor urbanas no Brasil. REVISTA GEONORTE. 2023;14(43). doi:10.21170/geonorte.2023.v.14.n.43.01.16
56. Porangaba GFO, Teixeira DCF, Amorim MC de CT. PROCEDIMENTOS METODOLÓGICOS PARA ANÁLISE DAS ILHAS DE CALOR EM CIDADES DE PEQUENO E MÉDIO PORTE. Revista Brasileira de Climatologia. 2017;21. doi:10.5380/abclima.v21i0.48832
57. Galeazzi CH, Corbella O, Drach P. O mar virou sertão? Um estudo sobre as ilhas de calor no Complexo da Maré. O Social em Questão. 2020;23(48):267-294. Accessed September 17, 2025. https://www.redalyc.org/articulo.oa?id=552264320011
58. Santos LGF dos, Fialho ES. Distribuição espacial da intensidade da ilha de calor de superfície no verão e inverno em Viçosa. Revista Ponto de Vista. 2024;13(1):01-21. doi:10.47328/rpv.v13i1.16961
59. Oliveira EL, Salles MT. Relations Between Urban Subsoil and Climate Change in Different Neighborhoods of Rio de Janeiro. Ambiente e Sociedade. 2020;23:1-23. doi:10.1590/1809-4422ASOC20190178R2VU2020L6TD
60. Carvalho Neto DD de, Da Silva CM. Mudanças Climáticas na Cidade do Rio de Janeiro: Impactos Locais e Percepção Ambiental da População. Pesquisa em Educação Ambiental. 2024;19(1):1-21. doi:10.18675/2177-580x.2024-18654
61. Hora KER, Lopes EDS. UM OLHAR PARA AS CIDADES A PARTIR DO ESTUDO SOBRE AS ILHAS DE CALOR URBANAS. MIX Sustentável. 2021;7(3):165-166. doi:10.29183/2447-3073.mix2021.v7.n3.165-166
62. Mendes JV, Armond NB, Bizerra da Silva LC. Ilhas de calor urbanas de superfície, ondas de calor e de frio no município do Rio de Janeiro – RJ (2015 - 2019). Revista Brasileira de Climatologia. 2022;30:133-155. doi:10.55761/abclima.v30i18.14908
63. Lucena AJ De. Métodos Em Clima Urbano Aplicados À Cidade Do Rio De Janeiro ( Brasil ) E Sua Região Metropolitana. In: 2017:312-326. Accessed August 22, 2025. http://www.r-project.org.
64. Ceron K, Vieira C, Carvalho PS, Carrillo JFC, Alonso J, Santana DJ. Epidemiology of snake envenomation from Mato Grosso do Sul, Brazil. PLoS Negl Trop Dis. 2021;15(9). doi:10.1371/journal.pntd.0009737
65. Hodges CW, Marshall BM, Hill JG, Strine CT. Malayan kraits (Bungarus candidus) show affinity to anthropogenic structures in a human dominated landscape. Sci Rep. 2022;12(1):7139. doi:10.1038/s41598-022-11255-z
66. Ferreira AAF, Dos Reis VP, Boeno CN, et al. Increase in the risk of snakebites incidence due to changes in humidity levels: A time series study in four municipalities of the state of Rondônia. Rev Soc Bras Med Trop. 2020;53. doi:10.1590/0037-8682-0377-2019
67. Matos RR, Ignotti E. Incidence of venomous snakebite accidents by snake species in brazilian biomes. Ciencia e Saude Coletiva. 2020;25(7):2837-2846. doi:10.1590/1413-81232020257.31462018
68. Bosoka SA, Jerela JY, Nambagyira A, et al. Snakebites, a neglected public health concern: an analysis of distribution, trends and incidence of snakebite cases reported to health facilities in the Volta Region of Ghana, 2018–2023. Trans R Soc Trop Med Hyg. 2025;119(4):443-452. doi:10.1093/trstmh/trae113
69. Steegemans I, Sisay K, Nshimiyimana E, et al. Treatment outcomes among snakebite patients in north-west Ethiopia—A retrospective analysis. PLoS Negl Trop Dis. 2022;16(2):e0010148. doi:10.1371/journal.pntd.0010148
70. Sasa M, Segura Cano SE. New insights into snakebite epidemiology in Costa Rica: A retrospective evaluation of medical records. Toxicon X. 2020;7:100055. doi:10.1016/j.toxcx.2020.100055
71. Lopes AB, Vieira MRS, Lima Filho AA de, Silvestrim EG, Silvestrim FG. Anomalias na precipitação de quatro municípios do Amazonas, Brasil. Research, Society and Development. 2021;10(14):e196101421766. doi:10.33448/rsd-v10i14.21766
72. de Souza TC, Farias BES, Bernarde PS, et al. Temporal trend and epidemiological profile of accidents involving venomous animals in Brazil, 2007-2019. Epidemiologia e Servicos de Saude. 2022;31(3):1-14. doi:10.1590/S2237-96222022000300009
73. Dayasiri K, Caldera D, Suraweera N, et al. Epidemiological patterns and trends of paediatric snakebites in Sri Lanka. BMC Res Notes. 2024;17(1):371. doi:10.1186/s13104-024-07036-8
74. de Souza TC, Farias BES, Bernarde PS, et al. Temporal trend and epidemiological profile of accidents involving venomous animals in Brazil, 2007-2019. Epidemiologia e Servicos de Saude. 2022;31(3):2022. doi:10.1590/S2237-96222022000300009
75. Siqueira TS, Silva LS, de Holanda JRC, et al. Temporal and spatial trends of accidents with venomous animal in Brazil before and during the COVID-19 pandemic: a population-based ecological study. Revista Brasileira de Epidemiologia. 2025;28. doi:10.1590/1980-549720250012
76. Brasil M da S do. DATASUS - Ministério da Saúde. Datasus. 2021. Accessed February 23, 2025. https://datasus.saude.gov.br/
77. Vieira DS, Martins ML, Brum Reis Soares AL, Da Cruz Arbs F, Pitta de Resende Côrtes P. Análise epidemiológica de acidentes ofídicos no município de Vassouras, RJ. Revista Pró-UniverSUS. 2019;10(2):08-12. doi:10.21727/rpu.v10i2.1896
78. De Freitas CC, De Freitas MCA, Santos Júnior VG, Leite R de S. CARACTERÍSTICAS EPIDEMIOLÓGICAS DOS ACIDENTES OFÍDICOS NO NORDESTE DO BRASIL: UMA REVISÃO INTEGRATIVA: Educação Ciência e Saúde. 2023;10(2). doi:10.20438/ecs.v10i2.513
79. Oliveira MS de, Costa A de P, Cordeiro JA de J, et al. PREVALÊNCIA DE ACIDENTES COM SERPENTES PEÇONHENTAS NOS ESTADOS DO RIO DE JANEIRO E MINAS GERAIS ENTRE 2017 E 2022. RECIMA21 - Revista Científica Multidisciplinar - ISSN 2675-6218. 2024;5(9):e595694. doi:10.47820/recima21.v5i9.5694
