ACETATO: MECANISMOS CELULARES E POTENCIAL TERAPÊUTICO EM DOENÇAS NEUROIMUNOLÓGICAS E NEURODEGENERATIVAS

Autores

  • Lyssane Karla Dutra Lopes Author
  • Carlos Magno da Costa Maranduba Author
  • Marizia Trevizani Author
  • Fernando de Sá Silva Author

DOI:

https://doi.org/10.56238/levv16n53-008

Palavras-chave:

Acetato, Doenças Neurológicas, Glutamato, N-acetilaspartato, Neuroinflamação, Neuroproteção

Resumo

O acetato vem se tornando, ao longo do tempo, de grande relevância para os estudos que envolvem vias metabólicas, principalmente relacionadas à bioenergética e estrutura celular. O acetato, além de ser substrato no ciclo de Krebs, é um importante intermediário para a síntese de lipídeos. No cérebro, o acetato se envolve em etapas enzimáticas importantes para a formação da mielina, processo este, envolvido no tratamento de doenças neurodegenerativas. Ainda, o acetato apresenta grande afinidade por astrócitos e está envolvido na síntese de neurotransmissores. A suplementação oral de acetato ou a dieta acetogênica vêm apresentando importante atividade neuroprotetora, principalmente relacionadas a doenças neuroinflamatórias. O presente trabalho conflui processos metabólicos, bioenergéticos, estruturais e nutricionais e apresenta perspectivas terapêuticas relacionados ao acetato.

Downloads

Os dados de download ainda não estão disponíveis.

Referências

AHARONI, R.; EILAM, R.; DOMEV, H.; LABUNSKAY, G.; SELA, M.; ARNON, R. The immunomodulator glatiramer acetate augments the expression of neurotrophic factors in brains of experimental autoimmune encephalomyelitis mice. PNAS, v.102, n.52, p.19045–19050, 2005. DOI: https://doi.org/10.1073/pnas.0509438102

ARIYANNUR, P. S.; MOFFET, J. R.; MADHAVARAO, C. N.; ARUN, P.; VISHNU, N.; JACOBOWITZ, D. M.; HALLOWS, W. C.; DENU, J. M.; NAMBOODIRI, A. M. A. Nuclear-cytoplasmic localization of acetyl coenzyme a synthetase-1 in the rat brain. Jounal. Comp. Neurol, v.518, p. 2952–77, 2010. DOI: https://doi.org/10.1002/cne.22373

ARUN, P.; ARIYANNUR, P.; MOFFETT, J.; XINg, G.; HAMILTON, K.; GRUNBERG, N.; IVES, J.; NAMBOODIRI, A. Metabolic Acetate Therapy for the Treatment of Traumatic Brain Injury. Journal of neurotrauma, v.27, p.293-8, 2010. DOI: https://doi.org/10.1089/neu.2009.0994

AUWERA, I.; WERA, S.; LEUVEN, F.; HENDERSON, S. A ketogenic diet reduces amyloid beta 40 and 42 in a mouse model of Alzheimer's disease. Nutrition & Metabolism, v.2, p.1-8, 2005. DOI: https://doi.org/10.1186/1743-7075-2-28

BACCI, A.; SANCINI, G; VERDEIRO, C.; ARMANO, S.; PRAVETTONI, E.; FESCE, R.; FRANCESCHETTI, S.; MATTEOLI, M. Block of glutamate-glutamine cycle between astrocytes and neurons inhibits epileptiform activity in hippocampus. J Neurophysiol v.88, p 2302–10, 2002. DOI: https://doi.org/10.1152/jn.00665.2001

BAYNES, J.; DOMINICZAK, M. H. Bioquímica médica. 4ª Ed. Elsevier Iberoamericana, 2015, 656 p.

BHATT, D.P.; HOUDEK, H. M.; WATT, J. A.; ROSENBERGER, T. A. Acetate supplementation increases brain phosphocreatine and reduces AMP levels with no effect on mitochondrial biogenesis.Neurochemistry International, v. 62, n. 3, p. 296-305, 2013. DOI: https://doi.org/10.1016/j.neuint.2013.01.004

BRISSETTE, C. A.; HOUDEK, H. M.; FLODEN, A. M.; ROSENBERGER, T. A. Acetate supplementation reduces microglia Activation and brain interleukin-1β levels in a rat model of lyme neuroborreliosis. Journal of Neuroinflammation, v. 9, n.249, p.1-10, 2012. DOI: https://doi.org/10.1186/1742-2094-9-249

BORGES, C.; BUSTAMANTE, V. C.; RABITO, E.; INUZUKA, L.; SAKAMOTO, A.; MARCHINI, J. S. Dieta cetogênica no tratamento de epilepsias farmacorresistentes. Rev. Nutr., Campinas, v.17, n.4, p.515-21, 2004. DOI: https://doi.org/10.1590/S1415-52732004000400011

BORGES, M. G. Efeito de antagonistas de receptors NMDA extrasinápticos sobre parâmetros comportamentais e neuroquímicos em ratos submetidos ao modelo experimental de status epilepticus introduzido por LICL-PILOCARPINA. 2013, 53f. Trabalho de Conclusão de Curso (Graduação em Biomedicina)- Instituto de Ciências Básicas da Saúde, Faculdade de Biomedicina, Universidade Federal do Rio Grande do Sul, Rio Grande do Sul, 2013.

CHAKRABORTY, G.; PRAVEEN MEKALA, P.; DANIEL YAHYA, D.; GUSHENG WU, G.; AND ROBERT W. LEDEEN, R. Intraneuronal N-acetylaspartate supplies acetyl groups for myelin lipid synthesis: evidence for myelin-associated aspartoacylase. Journal of Neurochemistry, n. 78, p. 736-45, 2001. DOI: https://doi.org/10.1046/j.1471-4159.2001.00456.x

CLARK , J. F.; DOEPKE, A.; FILOSA, J. A.; WARDLE, R. W.; LU, A.; MEEKER, T. J.; PYNE-GEITHMAN, G. J. N-Acetylaspartate as a reservoir for glutamate. Medical Hypoteses, v. 67, p. 506-12, 2006. DOI: https://doi.org/10.1016/j.mehy.2006.02.047

COMI, G.; FILIPPI, M.; WOLINSKY, J.S. European/Canadian Multicenter, Double- Blind, Randomized, Placebo-Controlled Study of the Effects of Glatiramer Acetate on Magnetic Resonance Imaging–Measured Disease Activity and Burden in Patients with Relapsing Multiple Sclerosis. Ann Neuro, v,l, n.49, p.290–7, 2001. DOI: https://doi.org/10.1002/ana.64

COMPSTON, A.; COLES, A. Multiple sclerosis. Lancet, v. 372, p. 1502–17, 2008. DOI: https://doi.org/10.1016/S0140-6736(08)61620-7

COOK, S. I.; SELLIN, J.H.Review article: short chain fatty acids in health and disease. Blackwell Science Ltd, Aliment Pharmacol Ther, v.12, p.499-507, 1998. DOI: https://doi.org/10.1046/j.1365-2036.1998.00337.x

COSTA, R. M. O álcool e seus efeitos no Sistema Nervoso. 2003, 17f. Monografia (Licenciatura em Ciências Biológicas) - Centro Universitário de Brasília,Faculdade de Ciências da Saúde, Brasília, 2003.

CURI, R.; LAGRANHA, C. J.; JUNIOR, J.R.G; CURI, T. C. P.; JUNIOR, A. H. L.; PELLEGRINOTTI, I. L.; PROCOPIO, J. Ciclo de Krebs como fator limitante na utilização de ácidos graxos durante o exercício aeróbico. Arq Bras Endocrinol Metab, v.45, p.135-43, 2003. DOI: https://doi.org/10.1590/S0004-27302003000200005

CURI, R.; POMPEIA,C.; MYASAKA, C. K.; PROCOPIO, J. Entendendo a gordura. São Paulo: Manole, 2001. 580p.

DAIKHIN, Y.; YUDKOFF, M. Compartmentation of Brain Glutamate Metabolism in Neurons and Glia. American Society for Nutritional Sciences, v.130, p.1026-31, 2000. DOI: https://doi.org/10.1093/jn/130.4.1026S

DES ROSIER, C.; DAVID, F.; GARNEAU, M.; BRUNENGRABER, H. Nonhomogeneous labeling of liver mitochondrial acetyl-CoA. Journal Biol Chem, v.266, p.1574–78, 1991. DOI: https://doi.org/10.1016/S0021-9258(18)52332-2

DEUTSCH, J.; RAPOPORT, S. I.; ROSENBERGER, T. A. Coenzyme A and short-chain acyl-CoA species in control and ischemic rat brain. Neurochem Res, v.27, p.1577–82, 2002. DOI: https://doi.org/10.1023/A:1021614422668

FORLENZA, O. Tratamento farmacológico da doença de Alzheimer. Rev. Psiq. Clín, v.32, n.3, p137-48, 2005. DOI: https://doi.org/10.1590/S0101-60832005000300006

FREITAS, K.V. Avaliação da administração aguda de ácido N-acetilaspártico sobre o dano ao dna em ratos. 2012, 41f. Trabalho de Conclusão de Curso (Graduação em Farmácia)- Faculdade de Farmácia, Universidade do Extremo Sul Catarinense, Criciúma, 2012.

FROST, G.; SLEETH, M. L.; SAHURI-ARISOYLU, M.; LIZARBE, B.; CERDAN, S.; BRODY, L.; ANASTASOVSKA, J.; GHOURAB, S.; HANKIR, M.; ZHANG, S.; CARLING, D.; SWANN, J. R.; GIBSON, G.; VIARDOT, A.; MORRISON, D.; THOMAS, E. L.; BELL, J. D. The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nature communications, Macmillan Publishers Limited, v.5, p. 1-11, 2014. DOI: https://doi.org/10.1038/ncomms4611

FUJINO, T.; KONDO J.; ISHIKAWA, M.; MORIKAWA, K.; YAMAMOTO, T. T. Acetyl-CoA synthetase 2, a mitochondrial matrix enzyme involved in the oxidation of acetate. J. Biol. Chem, v. 276, p.11420–26, 2001. DOI: https://doi.org/10.1074/jbc.M008782200

FUKAO, T.; LOPASCHUK, G. D.; MITCHELL, G. A. Pathways and control of ketone body metabolism: on the fringe of lipid biochemistry.Prostag Leukot Essent Fatty Acids, v. 70, p.243–25, 2004. DOI: https://doi.org/10.1016/j.plefa.2003.11.001

GALDIERI, L.; VANCURA, A. Acetyl-CoA Carboxylase Regulates Global Histone Acetylation. The journal of biological chemistry, v. 287, n. 28, p. 23865–23876, 2012. DOI: https://doi.org/10.1074/jbc.M112.380519

GIBSON, C.; MURPHY, A.; MURPHY, S. Stroke outcome in the ketogenic state – a systematic review of the animal data. Journal of Neurochemistry, v.123, n.2, p.52-7, 2012. DOI: https://doi.org/10.1111/j.1471-4159.2012.07943.x

GOODMAN, L. S. GILMAN, A. As Bases Farmacológicas da Terapêutica. 10ª Ed, 2003, 1647p.

HARRY, G.J.; KRAFT, A.D.Neuroinfl ammation and microglia: considerations and approaches for neurotoxicity assessment. Expert Opin. Drug Metab. Toxicol, v.4, n.10, p.1265-77, 2008. DOI: https://doi.org/10.1517/17425255.4.10.1265

HASSEL, B.; SONNEWALD, U.; FONNUM, F. Glial-Neuronal Interactions as Studied by Cerebral Metabolism of [ 2- 13C ] Acetate and [ 1- 13C ] Glucose : An Ex Vivo 13C NMR Spectroscopic Study. Journal of Neurochemistry, v,64, p.2773-82, 1995. DOI: https://doi.org/10.1046/j.1471-4159.1995.64062773.x

HEREDIA, A, et al. In Fibra Alimentaria. Madrid: Biblioteca de Ciências, 2002. 117p.

HILL, WYSE, ANDERSON. Fisiologia Animal. 2 ªed, Artmed, 2012. p 169.

HOSIOS, A. M.; HEIDEN M. G. V. Acetate metabolism in cancer cells. Cancer & Metabolism. v.2, n.27, 2014. DOI: https://doi.org/10.1186/s40170-014-0027-y

JUNIOR, A.; PINHO, R. Efeitos do exercício físico sobre o estado redox cerebral. Rev Bras Med Esporte, v. 13, n.5, p.355-60, 2007. DOI: https://doi.org/10.1590/S1517-86922007000500014

KARAKI, S. I.; MITSUI, R.; HAYASHI, H.; KATO, I.; SUGIYA, H.; IWANAGA, T. FURNESS, J. B.; KUWAHARA, A .Short-chain fatty acid receptor, GPR43, is expressed by enteroendocrine cells and mucosal mast cells in rat intestine. Cell Tissue Res, v.324, p.353-60, 2006. DOI: https://doi.org/10.1007/s00441-005-0140-x

KARRA, E.; BATTERHAM, R.L.The role of gut hormones in the regulation of body weight and energy homeostasis. Molecular and Cellular Endocrinology, V.316, P.120–8, 2010. DOI: https://doi.org/10.1016/j.mce.2009.06.010

KHAN, O.; SHEN, Y.; CAON, C.; BAO, F.; CHING, W.; REZNAR, M.; BUCCHEISTER, A.; HU, J.; LATIF, Z.; TSELIS, A.; LISAK, R. Axonal metabolic recovery and potential neuroprotective effect of glatiramer acetate in relapsing-remitting multiple sclerosis. Multiple Sclerosis. v.11, p.646-51, 2005. DOI: https://doi.org/10.1191/1352458505ms1234oa

KIMURA, I.; INOUE, D.; MAEDA, T.; HARA, T.; ICHIMURA, A.; MIYAUCHI, S.; KOBAYASHI, M.; HIRASAWA, A.; TSUJIMOTO, G. Short-chain fatty acids and ketones directly regulate sympathetic nervous system via G protein-coupled receptor 41 (GPR41). PNAS, v.108, n.19, p.830-5, 2011. DOI: https://doi.org/10.1073/pnas.1016088108

KLES, K. A.; CHANG, E. B. Short-Chain Fatty Acids Impact on Intestinal Adaptation, Inflammation, Carcinoma, and Failure. The American Gastroenterological Association, v. 130, p. 100-5, 2006. DOI: https://doi.org/10.1053/j.gastro.2005.11.048

KLUG, W. S.; CUMMINGS, M. R. Conceitos de Genética. 9ª Ed, Artmed, 2010, 896p.

LAJTHA, A.; GIBSON, G. E.; DIENEL, G. A.Handbook of Neurochemistry and Molecular Neurobiology: Brain Energetics. Interaction of Molecular and Cellular Processes. Springer Science & Business Media, Vol.7, 2007, 924p. DOI: https://doi.org/10.1007/978-0-387-30411-3

LE POUL, E.; LOISON, C.; STRUYF, S.; SPRINGAEL, J. Y.; LANNOY, V.; DECOBECQ, M. E.; BREZILLON, S.; DUPRIEZ, V.; VASSART, G.; DAMME, J. V.; PARMENTIER, M.; DETHEUX, M. Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cells activation. The American Society for Biochemistry and Molecular Biology, Inc. 2003. DOI: https://doi.org/10.1074/jbc.M301403200

LICINIO, J.; WONG, M.L. The role of inflammatory mediators in the biology of major depression: central nervous system cytokines modulate the biological substrate of depressive symptoms, regulate stress-responsive systems, and contribute to neurotoxicity and neuroprotection Molecular Psychiatry, v.4, p.317–27, 1999. DOI: https://doi.org/10.1038/sj.mp.4000586

LIMA, S. R.; GOMES, K. B. Esclerose lateral amiotrófica e o tratamento com células tronco. Rev Bras Clin Med, v.8, n.6, p.531-7, 2010.

LIN, A.; ZHANG, W.; GAO, X.; WATTS, L. Caloric restriction increases ketone bodies metabolism and preserves blood flow in aging brain. Neurobiology of Aging, v.36, p.2296- 303, 2015. DOI: https://doi.org/10.1016/j.neurobiolaging.2015.03.012

MADHAVARAO, C.; ARUN, P.; MOFFETT, J.; SZUCS, S.; SURENDRAN, S.; MATALON, R.; GARBERN, J.; HRISTOVA, D.; JOHNSON, A.; JIANG, W.; NAMBOODIRI, M. A. A. Defective N-acetylaspartate catabolism reduces brain acetate levels and myelin lipid synthesis in Canavan’s disease. PNAS, v.102, n.14, p.5221-6, 2005. DOI: https://doi.org/10.1073/pnas.0409184102

MAIER, H.; WANG-ECKHARDT, L.; HARTMANN, D.; GIESELMANN, V.; ECKHARDT, M. N-Acetylaspartate Synthase Deficiency Corrects the Myelin Phenotype in a Canavan Disease Mouse Model But Does Not Affect Survival Time. The Journal of Neuroscience, v.35, n.43, p. 14501-16, 2015. DOI: https://doi.org/10.1523/JNEUROSCI.1056-15.2015

MATHEW, R.; ARUN, P.; MADHAVARAO, C.N.; MOFFET, J.R.; NAMBOODIRI, M. A. A. Progress toward Acetate Supplementation Therapy for Canavan Disease: Glyceryl Triacetate Administration Increases Acetate, but Not N-Acetylaspartate, Levels in Brain. The journal of pharmacology and experimental therapeutics, v.315, n.1, p.297-303, 2005. DOI: https://doi.org/10.1124/jpet.105.087536

MATHEWS, G.; DIAMOND, J. Neuronal Glutamate Uptake Contributes to GABA Synthesis and Inhibitory Synaptic Strength. The Journal of Neuroscience, v.26, n.6, p.2040-48, 2003. DOI: https://doi.org/10.1523/JNEUROSCI.23-06-02040.2003

MATSUKI, T.; PÉDRON, T.; REGNAULT, B.; MULET, C.; HARA, T.; SANSONETTI, P. Epithelial Cell Proliferation Arrest Induced by Lactate and Acetate from Lactobacillus casei and Bifidobacterium breve. Plos one, v.8, n.4, p.1-8, 2013. DOI: https://doi.org/10.1371/journal.pone.0063053

MCGARRY, J.D.; FOSTER, D.W. Regulation of hepatic fatty acid oxidation and ketone body production. Annu Rev Biochem,v.49, p.395–420, 1980. DOI: https://doi.org/10.1146/annurev.bi.49.070180.002143

MCGEER, P.L.; MCGEER, E.G. The inflammatory response system of brain: implications for therapy of Alzheimer and other neurodegenerative diseases. Brain Res Brain Res Rev. v.21, p. 195–218, 1995. DOI: https://doi.org/10.1016/0165-0173(95)00011-9

MEHTA, V.; NAMBOODIRI, M. A. A. N-Acetylaspartate as an acetyl source in the nervous system. Molecular Brain Research, v.31, p.151-7, 1995. DOI: https://doi.org/10.1016/0169-328X(95)00044-S

MELØ, T.; NEHLIG, A.; SONNEWALD, U.2005. Neuronal–glial interactions in rats fed a ketogenic diet. Neurochemistry International, v.48, p.498- 507, 2005. DOI: https://doi.org/10.1016/j.neuint.2005.12.037

MIRALLES, V. J.; MARTÍNEZ-LÓPEZ, I.; ZARAGOZÁ, R.; BORRÁS, E.; GARCÍA, C.; PALLARDÓ, F. V.; VIÑA, J. R. Na+ dependent glutamate transporters (EAAT1, EAAT2, and EAAT3) in primary astrocyte cultures: effect of oxidative stress. Brain Research, v.922, p. 21-29, 2001. DOI: https://doi.org/10.1016/S0006-8993(01)03124-9

MOFFET, J.; ARUN, P.; ARIYANNUR, P.; NAMBOODIRI, M.A.A. N-Acetylaspartate reductions in brain injury: impact on post-injury neuroenergetics, lipid synthesis, and protein acetylation. Frontiers in Neuroenergetics, v.5, n.11, p. 1-19, 2013. DOI: https://doi.org/10.3389/fnene.2013.00011

MORAES, A. C. F.; SILVA, I. T.; ALMEIDA-PITITTO, B.; FERREIRA, S. R G. Microbiota intestinal e risco cardiometabólico: mecanismos e modulação dietética. Arq Bras Endocrinol Metab, v.58, n.4, p. 317-27, 2014. DOI: https://doi.org/10.1590/0004-2730000002940

MORKEN, T. S.; BREKKE, E.; HÅBERG, A.; WIDERØE, M.; BRUBAKK, A. M; SONNEWALD, U. Altered Astrocyte–Neuronal Interactions After Hypoxia-Ischemia in the Neonatal Brain in Female and Male Rats. American Heart Association, Inc, Stroke, v. 45, p. 2777- 85, 2014. DOI: https://doi.org/10.1161/STROKEAHA.114.005341

MORKEN, T. S.; BREKKE, E.; HÅBERG, A.; WIDERØE, M.; BRUBAKK, A. M.; SONNEWALD. U. Neuron–Astrocyte Interactions, Pyruvate Carboxylation and the Pentose Phosphate Pathway in the Neonatal Rat Brain. Springer Science, Business Media New York, Neurochem Res, 2013. DOI: https://doi.org/10.1007/s11064-013-1014-3

MORRIS, A. A. Cerebral ketone body metabolism. J. Inherit. Metab. Dis, v.28, p.109- 21, 2005. DOI: https://doi.org/10.1007/s10545-005-5518-0

NEBELING, L.; LERNER, E. Implementing a ketogenic diet based on medium-chain triglyceride oil in pediatric patients with cancer. Journal of The American Dietetic Association, v.95, p.693-7, 1995. DOI: https://doi.org/10.1016/S0002-8223(95)00189-1

NELSON, D.L.; COX, M.M. Princípios de Bioquímica de Lehninger. 8ª Ed, Artmed, 2022, 1248P.

NETO, F. D.; CALLEGARO, D.; TOSTA, E. D.; SILVA, H.A.; FERRAZ, M. E.; LIMA, J. M. B.; OLIVEIRA, A. S. B. Amyotrophic lateral sclerosis in Brazil 1998 national survey. Arq Neuropsiquiatr; v.58, p.607-15, 2000. DOI: https://doi.org/10.1590/S0004-282X2000000400002

NYLEN, K.; VELAZQUEZ, J. L.; SAYED, V.; GIBSON, K. M.; BURNHAM W. M.; SNEAD, O.C. The effects of a ketogenic diet on ATP concentrations and the number of hippocampal mitochondria in Aldh5a1(-/-). Biochim Biophys Acta. v.1790, n.3, p. 208–12, 2009. DOI: https://doi.org/10.1016/j.bbagen.2008.12.005

OLIVEIRA, D.M. Efeito do ácido graxo na cadeia curta, acetato, nas células da micróglia ativadas por lipopolissacáride (LPS). Tese (Doutorado em Imunologia). São Paulo: Instituto de Ciências Biomédicas, Universidade de São Paulo, 2015.

OLIVEIRA, M. A. L.; LAGO, C. L.; TAVARES, M. F. M. Análise de ácidos graxos por eletroforese capilar utilizando detecção condutométrica sem contato. Quim Nova, v.26, n.6, p.821-4, 2003. DOI: https://doi.org/10.1590/S0100-40422003000600007

OLIVEIRA, V. A. Ácidos graxos de cadeia curta, produtos do metabolismo da microbiota intestinal, protegem da lesão renal aguda. 2014. Tese (Doutorado em Imunologia) São Paulo: Instituto de Ciências Biomédicas, Universidade de São Paulo, 2014.

OLIVEIRA, V. A.; AMANO, M. T.; COSTA, M. C.; CASTOLDI, A.; FELIZARDO, R. J. F.; ALMEIDA, D. C.; BASSI, E. J.; VIEIRA, P. M. M.; HIYANE, M. I.; RODAS, A. C. D.; PERON, J. P. S.; AGUIAR, C. F.; REIS, M. A.; RIBEIRO, W. R.; VALDUGA, C. J.; CURI, R.; VINOLO, M. A. R.; FERREIRA, C. M.; CÂMARA, N. O. S. Gut Bacteria Products Prevent AKI Induced by Ischemia-Reperfusion. J Am Soc Nephrol, v. 26, p.1877- 88, 2015. DOI: https://doi.org/10.1681/ASN.2014030288

ORTIZ, M. J. Metabolismo del aspartato en cultivos primarios de astrocitos en condiciones perinatales. 2009, 100f.Trabalho de Conclusão de Curso (Graduação em Biologia)-Faculdade de Ciências, Pontificia Universidad Javeriana, Bogotá, 2009.

OTTO, C.; KAEMMERER, U.; ILLERT, B.; MUEHLING, B.; PFETZER, N.; WITTIG, R.; VOELKER, H. U.; THIEDE, A.; COY, J. F. Growth of human gastric cancer cells in nude mice is delayed by a ketogenic diet supplemented with omega-3 fatty acids and medium-chain triglycerides. BMC Cancer, v.8, p. 1-12, 2008. DOI: https://doi.org/10.1186/1471-2407-8-122

PARDO, B.; RODRIGUES, T.; CONTRERAS, L.; GARZÓN, M.; LLORENTE-FOLCH, I.; KOBAYASHI, K.; SAHEKI, T.; CERDAN, S.; SATRÚSTEGUI, J. Brain glutamine synthesis requires neuronal-born aspartate as amino donor for glial glutamate formation. Journal of Cerebral Blood Flow & Metabolism, v.31, p.90-101, 2011. DOI: https://doi.org/10.1038/jcbfm.2010.146

PATEL, A.B; GRAAF, R. A; ROTHMAN, D. R.; BEHAR, K. L.; MASON, G. F. Evaluation of cerebral acetate transport and metabolic rates in the rat brain in vivo using ¹H-[¹³C]-NMR. Journal of Cerebral Blood Flow & Metabolism, v. 30, p. 1200-13, 2010. DOI: https://doi.org/10.1038/jcbfm.2010.2

QIN, L.; CREWS, F. Focal Thalamic Degeneration from Ethanol and Thiamine Deficiency is Associated with Neuroimmune Gene Induction, Microglial Activation, and Lack ofMonocarboxylic Acid Transporters. Alcohol Clin Exp Res, v.38, n.3, p.657–71, 2014. DOI: https://doi.org/10.1111/acer.12272

REISENAUER, C.; BHATT, D.; MITTENESS, D.; SLANCZKA, E.; GIENGER, H.; WATT, J.; ROSENBERGER, T. Acetate supplementation attenuates lipopolysaccharide-induced Neuroinflammation. J Neurochem, v.117, n.2, p.264–74, 2011. DOI: https://doi.org/10.1111/j.1471-4159.2011.07198.x

REGER, M.; HENDERSON, S.; HALE, C.; CHOLERTON, B.; BAKER, L.; WATSON, G.; HYDEA, K.; CHAPMANA, D.; CRAFT, S. Effects of b-hydroxybutyrate on cognition in memory-impaired adults. Neurobiology of Aging, v.25, p.311-4, 2004. DOI: https://doi.org/10.1016/S0197-4580(03)00087-3

RICHARDS, R. H.; VREMAN, H. J.; ZAGER, P.; FELDMAN, C.; BLASCHKE, T.; WEINER, M. W. Acetate Metabolism in Normal Human Subjects. American Journal of Kidney Diseases, v.2, n.1, p.47-57, 1982. DOI: https://doi.org/10.1016/S0272-6386(82)80043-7

RODWELL, V. W.; BENDER, D. A.; BOTHAM, K. M.; KENNELLY, P. J.; WEIL, P. A.Bioquímica Ilustrada de Harper. 30 ª Ed. Artmed, 2017, p 237.

SAKAKIBARA, I.; FUJINO, T.; ISHII, M.; TANAKA, T.; SHIMOSAWA, T.; MIURA, S.; ZHANG, W.; TOKUTAKE, Y.; YAMAMOTO, J.; AWANO, M.; IWASAKI, S.; MOTOIKE, T.; OKAMURA, M.; INAGAKI, T.; KITA, K.; EZAKI, O.; NAITO, M.; KUWAKI, T.; CHOHNAN,S.; YAMAMOTO, T. T.; HAMMER, R. E.; KODAMA, T.; YANAGISAWA, M.; SAKAI, J. Fasting-Induced Hypothermia and Reduced Energy Production in Mice Lacking Acetyl-CoA Synthetase 2. Cell Metabolism, v.9, p.191-202, 2009. DOI: https://doi.org/10.1016/j.cmet.2008.12.008

SALWAY, J. G. Metabolismo passo a passo. Artmed, 2009, 134p.

SCHWARTZ, R. M.; BOYES, S.; AYNSLEY-GREN, A.Metabolic effects of three ketogenic diets in the treatment of severe epilepsy. Developmental Medicine and Chil Neurology, v.31, p.152-160, 1989. DOI: https://doi.org/10.1111/j.1469-8749.1989.tb03973.x

SCHAWARTZKROIN, P. A.Mechanisms underlying the anti-epileptic efficacy of the ketogenic diet. Epilepsy Research, v.7, p.171–80, 1999. DOI: https://doi.org/10.1016/S0920-1211(99)00069-8

SCHELP, A. O.; BURINI, R. C. Controle do fornecimento e da utilização de substratos energéticos no encéfalo. Arq Neuropsiquiatr, v.53, p.690-7, 1995. DOI: https://doi.org/10.1590/S0004-282X1995000400025

SCHUG, Z. T.; VOORDE, J. V.; GOTTLIEB, E. The metabolic fate of acetate in cancer. Macmillan Publishers Limited, part of Springer Natur, v.16,p 708-17, 2016. DOI: https://doi.org/10.1038/nrc.2016.87

SERRES, S.; RAFFARD, G.; FRANCONI, J.; MERLE, M. Close coupling between astrocytic and neuronal metabolisms to fulfill anaplerotic and energy needs in the rat brain. Journal of Cerebral Blood Flow & Metabolism. v.28, p.712-24, 2008. DOI: https://doi.org/10.1038/sj.jcbfm.9600568

SHAAFI, S.; NAJMI, S.; ALIASGHARPOUR, H.,MAHAMOUD, J.; ETEMAD, S. S.; FARHOUD, M.; BANIASADI, N. The efficacy of the ketogenic diet on motor functions in Parkinson’s Disease: A rat model. Iran J Neurol, v.15, n.2, p. 63-9, 2016.

SILVA, J. Deficiência das enzimas do ciclo de Krebs. 2016, 46f. Tese (Mestrado Integrado em Medicina) - Faculdade de Medicina, Universidade de Coimbra, Coimbra, 2016.

SILVA, Penildon. Farmacologia. São Paulo: Manole, 1997. Cap. 39. DOI: https://doi.org/10.1590/S0036-46651997000100003

SINGHAL, N.; HUANG, H.; LI, S.; CLEMENTS, R.; GADD, J.; DANIELS, A.; KOOIJMAN, E.; BANNERMAN, P.; BURNS, T.; GUO, F.; PLEASURE, D.; FREEMAN, E.; SHRIVER, L.; MCDONOUGH, J. The neuronal metabolite NAA regulates histone H3 methylation in oligodendrocytes and myelin lipid composition. Springer-Verlag Berlin Heidelberg, 2016. DOI: https://doi.org/10.1007/s00221-016-4789-z

SMITH, D.; BHATT, D. P.; GEIGER, J. D.; ROSENBERGER, T.A. Acetate supplementation modulates brain adenosine metabolizing enzymes and adenosine A2A receptor levels in rats subjected to neuroinflammation. Journal of Neuroinflammation, v.11, n.99, p. 1-10, 2014. DOI: https://doi.org/10.1186/1742-2094-11-99

SOLIMAN, M.; ROSENBERGER, T. Acetate supplementation increases brain histone acetylation and inhibits histone deacetylase activity and expression. Springer Science, Business Media, LLC. Mol Cell Biochem, v. 352, p.173-180, 2011. DOI: https://doi.org/10.1007/s11010-011-0751-3

SOLIMAN, M.L; MARK D SMITH, M.; HEIDI M HOUDEK, H.; AND THAD A ROSENBERGER, T. Acetate supplementation modulates brain histone acetylation and decreases interleukin-1 expression in a rat model of neuroinflammation. Journal of Neuroinflammation, v.9, n.51, p.1-14, 2012. DOI: https://doi.org/10.1186/1742-2094-9-51

STAFSTROM, C. E.; RHO, J. M. The ketogenic diet as a treatment paradigm for diverse neurological disorders. Frontiers in Pharmacology, v.3, n.59, p.1-8, 2012. DOI: https://doi.org/10.3389/fphar.2012.00059

STREIT, W.J.; MRAK, R.E.; GRIFFIN, W. S. T. Microglia and neuroinflammation: a pathological perspective. Journal of Neuroinflammation, v.1, n.14, p.1-4, 2004. DOI: https://doi.org/10.1186/1742-2094-1-14

TAKAHASHI, H.; MCCAFFERY, J. M.; IRIZARRY, R. A.; BOEKE, J. D. Nucleocytosolic Acetyl-Coenzyme A Synthetase Is Required for Histone Acetylation and Global Transcription. Molecular Cell, v. 23, p. 2017-17, 2006. DOI: https://doi.org/10.1016/j.molcel.2006.05.040

TANG, Y.; CHEN. Y.; JIANG, H.; NIE, D. Short-chain fatty acids induced autophagy serves as an adaptive strategy for retarding mitochondria-mediated apoptotic cell death. Cell Death and Differentiation, v. 18, p. 602-18, 2011. DOI: https://doi.org/10.1038/cdd.2010.117

TAZOE, H.; OTOMO, Y.; KAJI, I.; TANAKA, R.; KARAKI, S. I.; KUWAHARA, A. Roles of short-chain fatty acids receptors, GPR41 and GPR43 on colonic functions. Journal of Physiology and Pharmacology, v.59, n.2, p.251-62, 2008.

TERASAKI, T. Studies on the mechanism of drug distribution in tissues. Yakugaku Zasshi, v.112, p.887–905, 1992. DOI: https://doi.org/10.1248/yakushi1947.112.12_887

TOULMOND, S.; VIGE, X.; FAGE, D.; BENAVIDES, J.Local infusion of interleukin-6 attenuates the neurotoxic effects of NMDA on rat striatal cholinergic neurons. Neuroscience Letters, v.144, p. 49-52, 1992. DOI: https://doi.org/10.1016/0304-3940(92)90713-H

TUIN, A.; VLAG, A. H. V.; LOENEN-WEEMAES, A.M.A. MEIJER, D. K. F. POELTRA, K. On the role and fate of LPS-dephosphorylating activity in the rat liver. Am J Physiol Gastrointest Liver Physiol, v.290, p.377–85, 2006. DOI: https://doi.org/10.1152/ajpgi.00147.2005

TUMANOV, S.; BULUSU, V.; KAMPHORST, J. J. Analysis of Fatty Acid Metabolism Using Stable Isotope Tracers and Mass Spectrometry. Methods in enzymology, v.561, p. 197–217. 2015. DOI: https://doi.org/10.1016/bs.mie.2015.05.017

VANITALLIE, T.B.; NONAS, C.; DI ROCCO, A.; BOYAR, K.; HYAMS, K.; HEYMSFIELD, S.B. Treatment of Parkinson disease with diet-induce hyperketonemia: A feasibility study. Neurology, v.64, p.728–30, 2005. AUWERA DOI: https://doi.org/10.1212/01.WNL.0000152046.11390.45

VASCONCELOS, M.; AZEVEDO, P.; ESTEVES, L.; BRITO, A.; OLIVAES, M. C.; HERDY, G. Dieta cetogênica para epilepsia intratável em crianças e adolescentes: relato de seis casos. Rev Assoc Med Bras, v.50, n.4, p.380-5, 2004. DOI: https://doi.org/10.1590/S0104-42302004000400026

VENKATESH, S.; WORKMAN, J. R. Histone exchange, chromatin structure and the regulation of transcription. Molecular Cell Biology, v.16, p. 178-89, 2015. DOI: https://doi.org/10.1038/nrm3941

VINOLO, M. A. R. Efeito dos ácidos graxos de cadeias curtas sobre neutrófilos. 2010, 165 f. Tese (Doutorado em Fisiologia Humana) – Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, 2010.

VIZUETE, A. F. K. Efeito da dieta cetogênica com diferentes composições de ácidos graxos poliinsaturados no metabolismo periférico e neuroglial de ratos wistar. 2012, 78p. Dissertação (Mestrado em Bioquímica)- Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, 2012.

WANIEWSKI, R.; MARTIN, D. Preferential Utilization of Acetate by Astrocytes Is Attributable to Transport. The Journal of Neuroscience, v.18, n.14, p.5225-33, 1998. DOI: https://doi.org/10.1523/JNEUROSCI.18-14-05225.1998

YOSHIMOTO, M.; WAKI, A.; YONEKURA, Y.; SADATO, N.; MURATA, T.; OMATA, N.; TAKAHASHI, N.; WELCH, M. J.; FUJIBAYASHI, Y. Characterization of acetate metabolism in tumor cells in relation to cell proliferation: Acetate metabolism in tumor cells. Elsevier Science Inc, v.28, p.117-22, 2001. DOI: https://doi.org/10.1016/S0969-8051(00)00195-5

YUDKOFF, M.; DAIKHIN, Y.; MELØ, T.; NISSIM,I.; SONNEWALD, U.; NISSIM, I. The Ketogenic Diet and Brain Metabolism of Amino Acids: Relationship to the Anticonvulsant Effect. Annual Reviews. v. 27, p.415–30, 2007. DOI: https://doi.org/10.1146/annurev.nutr.27.061406.093722

YUDKOFF , M.; DAIKHIN, Y.; NISSIM, I.; HORYN, O.; LAZAROW, A.; LUHOVYY, B.; WEHRLI, S.; NISSIM, I. Response of brain amino acid metabolism to ketosis. Neurochemistry International, v.47, p.119-28, 2005. DOI: https://doi.org/10.1016/j.neuint.2005.04.014

YUDKOFF, M.; DAIKHIN, Y.; NISSIM, I.; LAZAROW, A.; NISSIM, I. Ketogenic diet, brain glutamate metabolism and seizure control. Prostaglandins Leukotrienes Essencial Fatty Acids, v.70, p.277-85, 2004. DOI: https://doi.org/10.1016/j.plefa.2003.07.005

ZHAO, Z.; LANGE, D.; VO OTTO USTIANIOUK, A.; MACGROGAN1, D.; HO, L.; SUH, J.; HUMALA, N.; THIYAGARAJAN, M.; WANG, J.; PASINETTI, G.. A ketogenic diet as a potential novel therapeutic intervention in amyotrophic lateral sclerosis. BMC Neuroscience, v.7, p.1-10, 2006. DOI: https://doi.org/10.1186/1471-2202-7-29

Downloads

Publicado

2025-10-03

Como Citar

LOPES, Lyssane Karla Dutra; MARANDUBA, Carlos Magno da Costa; TREVIZANI, Marizia; SILVA, Fernando de Sá. ACETATO: MECANISMOS CELULARES E POTENCIAL TERAPÊUTICO EM DOENÇAS NEUROIMUNOLÓGICAS E NEURODEGENERATIVAS. LUMEN ET VIRTUS, [S. l.], v. 16, n. 53, p. e8646, 2025. DOI: 10.56238/levv16n53-008. Disponível em: https://periodicos.newsciencepubl.com/LEV/article/view/8646. Acesso em: 5 dez. 2025.