ACETATO: MECANISMOS CELULARES Y POTENCIAL TERAPÉUTICO EN ENFERMEDADES NEUROINMUNOLÓGICAS Y NEURODEGENERATIVAS

Autores/as

  • Lyssane Karla Dutra Lopes Autor/a
  • Carlos Magno da Costa Maranduba Autor/a
  • Marizia Trevizani Autor/a
  • Fernando de Sá Silva Autor/a

DOI:

https://doi.org/10.56238/levv16n53-008

Palabras clave:

Acetato, Enfermedades Neurológicas, Glutamato, N-acetilaspartato, Neuroinflamación, Neuroprotección

Resumen

Con el tiempo, el acetato ha adquirido una importancia creciente en los estudios que involucran vías metabólicas, en particular las relacionadas con la bioenergética y la estructura celular. Además de ser un sustrato en el ciclo de Krebs, el acetato es un intermediario importante para la síntesis de lípidos. En el cerebro, el acetato participa en importantes pasos enzimáticos para la formación de mielina, un proceso implicado en el tratamiento de enfermedades neurodegenerativas. Además, el acetato tiene una alta afinidad por los astrocitos y participa en la síntesis de neurotransmisores. La suplementación oral con acetato o una dieta acetogénica han demostrado una actividad neuroprotectora significativa, particularmente en enfermedades neuroinflamatorias. Este estudio aborda los procesos metabólicos, bioenergéticos, estructurales y nutricionales, y presenta perspectivas terapéuticas relacionadas con el acetato.

Descargas

Los datos de descarga aún no están disponibles.

Referencias

AHARONI, R.; EILAM, R.; DOMEV, H.; LABUNSKAY, G.; SELA, M.; ARNON, R. The immunomodulator glatiramer acetate augments the expression of neurotrophic factors in brains of experimental autoimmune encephalomyelitis mice. PNAS, v.102, n.52, p.19045–19050, 2005. DOI: https://doi.org/10.1073/pnas.0509438102

ARIYANNUR, P. S.; MOFFET, J. R.; MADHAVARAO, C. N.; ARUN, P.; VISHNU, N.; JACOBOWITZ, D. M.; HALLOWS, W. C.; DENU, J. M.; NAMBOODIRI, A. M. A. Nuclear-cytoplasmic localization of acetyl coenzyme a synthetase-1 in the rat brain. Jounal. Comp. Neurol, v.518, p. 2952–77, 2010. DOI: https://doi.org/10.1002/cne.22373

ARUN, P.; ARIYANNUR, P.; MOFFETT, J.; XINg, G.; HAMILTON, K.; GRUNBERG, N.; IVES, J.; NAMBOODIRI, A. Metabolic Acetate Therapy for the Treatment of Traumatic Brain Injury. Journal of neurotrauma, v.27, p.293-8, 2010. DOI: https://doi.org/10.1089/neu.2009.0994

AUWERA, I.; WERA, S.; LEUVEN, F.; HENDERSON, S. A ketogenic diet reduces amyloid beta 40 and 42 in a mouse model of Alzheimer's disease. Nutrition & Metabolism, v.2, p.1-8, 2005. DOI: https://doi.org/10.1186/1743-7075-2-28

BACCI, A.; SANCINI, G; VERDEIRO, C.; ARMANO, S.; PRAVETTONI, E.; FESCE, R.; FRANCESCHETTI, S.; MATTEOLI, M. Block of glutamate-glutamine cycle between astrocytes and neurons inhibits epileptiform activity in hippocampus. J Neurophysiol v.88, p 2302–10, 2002. DOI: https://doi.org/10.1152/jn.00665.2001

BAYNES, J.; DOMINICZAK, M. H. Bioquímica médica. 4ª Ed. Elsevier Iberoamericana, 2015, 656 p.

BHATT, D.P.; HOUDEK, H. M.; WATT, J. A.; ROSENBERGER, T. A. Acetate supplementation increases brain phosphocreatine and reduces AMP levels with no effect on mitochondrial biogenesis.Neurochemistry International, v. 62, n. 3, p. 296-305, 2013. DOI: https://doi.org/10.1016/j.neuint.2013.01.004

BRISSETTE, C. A.; HOUDEK, H. M.; FLODEN, A. M.; ROSENBERGER, T. A. Acetate supplementation reduces microglia Activation and brain interleukin-1β levels in a rat model of lyme neuroborreliosis. Journal of Neuroinflammation, v. 9, n.249, p.1-10, 2012. DOI: https://doi.org/10.1186/1742-2094-9-249

BORGES, C.; BUSTAMANTE, V. C.; RABITO, E.; INUZUKA, L.; SAKAMOTO, A.; MARCHINI, J. S. Dieta cetogênica no tratamento de epilepsias farmacorresistentes. Rev. Nutr., Campinas, v.17, n.4, p.515-21, 2004. DOI: https://doi.org/10.1590/S1415-52732004000400011

BORGES, M. G. Efeito de antagonistas de receptors NMDA extrasinápticos sobre parâmetros comportamentais e neuroquímicos em ratos submetidos ao modelo experimental de status epilepticus introduzido por LICL-PILOCARPINA. 2013, 53f. Trabalho de Conclusão de Curso (Graduação em Biomedicina)- Instituto de Ciências Básicas da Saúde, Faculdade de Biomedicina, Universidade Federal do Rio Grande do Sul, Rio Grande do Sul, 2013.

CHAKRABORTY, G.; PRAVEEN MEKALA, P.; DANIEL YAHYA, D.; GUSHENG WU, G.; AND ROBERT W. LEDEEN, R. Intraneuronal N-acetylaspartate supplies acetyl groups for myelin lipid synthesis: evidence for myelin-associated aspartoacylase. Journal of Neurochemistry, n. 78, p. 736-45, 2001. DOI: https://doi.org/10.1046/j.1471-4159.2001.00456.x

CLARK , J. F.; DOEPKE, A.; FILOSA, J. A.; WARDLE, R. W.; LU, A.; MEEKER, T. J.; PYNE-GEITHMAN, G. J. N-Acetylaspartate as a reservoir for glutamate. Medical Hypoteses, v. 67, p. 506-12, 2006. DOI: https://doi.org/10.1016/j.mehy.2006.02.047

COMI, G.; FILIPPI, M.; WOLINSKY, J.S. European/Canadian Multicenter, Double- Blind, Randomized, Placebo-Controlled Study of the Effects of Glatiramer Acetate on Magnetic Resonance Imaging–Measured Disease Activity and Burden in Patients with Relapsing Multiple Sclerosis. Ann Neuro, v,l, n.49, p.290–7, 2001. DOI: https://doi.org/10.1002/ana.64

COMPSTON, A.; COLES, A. Multiple sclerosis. Lancet, v. 372, p. 1502–17, 2008. DOI: https://doi.org/10.1016/S0140-6736(08)61620-7

COOK, S. I.; SELLIN, J.H.Review article: short chain fatty acids in health and disease. Blackwell Science Ltd, Aliment Pharmacol Ther, v.12, p.499-507, 1998. DOI: https://doi.org/10.1046/j.1365-2036.1998.00337.x

COSTA, R. M. O álcool e seus efeitos no Sistema Nervoso. 2003, 17f. Monografia (Licenciatura em Ciências Biológicas) - Centro Universitário de Brasília,Faculdade de Ciências da Saúde, Brasília, 2003.

CURI, R.; LAGRANHA, C. J.; JUNIOR, J.R.G; CURI, T. C. P.; JUNIOR, A. H. L.; PELLEGRINOTTI, I. L.; PROCOPIO, J. Ciclo de Krebs como fator limitante na utilização de ácidos graxos durante o exercício aeróbico. Arq Bras Endocrinol Metab, v.45, p.135-43, 2003. DOI: https://doi.org/10.1590/S0004-27302003000200005

CURI, R.; POMPEIA,C.; MYASAKA, C. K.; PROCOPIO, J. Entendendo a gordura. São Paulo: Manole, 2001. 580p.

DAIKHIN, Y.; YUDKOFF, M. Compartmentation of Brain Glutamate Metabolism in Neurons and Glia. American Society for Nutritional Sciences, v.130, p.1026-31, 2000. DOI: https://doi.org/10.1093/jn/130.4.1026S

DES ROSIER, C.; DAVID, F.; GARNEAU, M.; BRUNENGRABER, H. Nonhomogeneous labeling of liver mitochondrial acetyl-CoA. Journal Biol Chem, v.266, p.1574–78, 1991. DOI: https://doi.org/10.1016/S0021-9258(18)52332-2

DEUTSCH, J.; RAPOPORT, S. I.; ROSENBERGER, T. A. Coenzyme A and short-chain acyl-CoA species in control and ischemic rat brain. Neurochem Res, v.27, p.1577–82, 2002. DOI: https://doi.org/10.1023/A:1021614422668

FORLENZA, O. Tratamento farmacológico da doença de Alzheimer. Rev. Psiq. Clín, v.32, n.3, p137-48, 2005. DOI: https://doi.org/10.1590/S0101-60832005000300006

FREITAS, K.V. Avaliação da administração aguda de ácido N-acetilaspártico sobre o dano ao dna em ratos. 2012, 41f. Trabalho de Conclusão de Curso (Graduação em Farmácia)- Faculdade de Farmácia, Universidade do Extremo Sul Catarinense, Criciúma, 2012.

FROST, G.; SLEETH, M. L.; SAHURI-ARISOYLU, M.; LIZARBE, B.; CERDAN, S.; BRODY, L.; ANASTASOVSKA, J.; GHOURAB, S.; HANKIR, M.; ZHANG, S.; CARLING, D.; SWANN, J. R.; GIBSON, G.; VIARDOT, A.; MORRISON, D.; THOMAS, E. L.; BELL, J. D. The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nature communications, Macmillan Publishers Limited, v.5, p. 1-11, 2014. DOI: https://doi.org/10.1038/ncomms4611

FUJINO, T.; KONDO J.; ISHIKAWA, M.; MORIKAWA, K.; YAMAMOTO, T. T. Acetyl-CoA synthetase 2, a mitochondrial matrix enzyme involved in the oxidation of acetate. J. Biol. Chem, v. 276, p.11420–26, 2001. DOI: https://doi.org/10.1074/jbc.M008782200

FUKAO, T.; LOPASCHUK, G. D.; MITCHELL, G. A. Pathways and control of ketone body metabolism: on the fringe of lipid biochemistry.Prostag Leukot Essent Fatty Acids, v. 70, p.243–25, 2004. DOI: https://doi.org/10.1016/j.plefa.2003.11.001

GALDIERI, L.; VANCURA, A. Acetyl-CoA Carboxylase Regulates Global Histone Acetylation. The journal of biological chemistry, v. 287, n. 28, p. 23865–23876, 2012. DOI: https://doi.org/10.1074/jbc.M112.380519

GIBSON, C.; MURPHY, A.; MURPHY, S. Stroke outcome in the ketogenic state – a systematic review of the animal data. Journal of Neurochemistry, v.123, n.2, p.52-7, 2012. DOI: https://doi.org/10.1111/j.1471-4159.2012.07943.x

GOODMAN, L. S. GILMAN, A. As Bases Farmacológicas da Terapêutica. 10ª Ed, 2003, 1647p.

HARRY, G.J.; KRAFT, A.D.Neuroinfl ammation and microglia: considerations and approaches for neurotoxicity assessment. Expert Opin. Drug Metab. Toxicol, v.4, n.10, p.1265-77, 2008. DOI: https://doi.org/10.1517/17425255.4.10.1265

HASSEL, B.; SONNEWALD, U.; FONNUM, F. Glial-Neuronal Interactions as Studied by Cerebral Metabolism of [ 2- 13C ] Acetate and [ 1- 13C ] Glucose : An Ex Vivo 13C NMR Spectroscopic Study. Journal of Neurochemistry, v,64, p.2773-82, 1995. DOI: https://doi.org/10.1046/j.1471-4159.1995.64062773.x

HEREDIA, A, et al. In Fibra Alimentaria. Madrid: Biblioteca de Ciências, 2002. 117p.

HILL, WYSE, ANDERSON. Fisiologia Animal. 2 ªed, Artmed, 2012. p 169.

HOSIOS, A. M.; HEIDEN M. G. V. Acetate metabolism in cancer cells. Cancer & Metabolism. v.2, n.27, 2014. DOI: https://doi.org/10.1186/s40170-014-0027-y

JUNIOR, A.; PINHO, R. Efeitos do exercício físico sobre o estado redox cerebral. Rev Bras Med Esporte, v. 13, n.5, p.355-60, 2007. DOI: https://doi.org/10.1590/S1517-86922007000500014

KARAKI, S. I.; MITSUI, R.; HAYASHI, H.; KATO, I.; SUGIYA, H.; IWANAGA, T. FURNESS, J. B.; KUWAHARA, A .Short-chain fatty acid receptor, GPR43, is expressed by enteroendocrine cells and mucosal mast cells in rat intestine. Cell Tissue Res, v.324, p.353-60, 2006. DOI: https://doi.org/10.1007/s00441-005-0140-x

KARRA, E.; BATTERHAM, R.L.The role of gut hormones in the regulation of body weight and energy homeostasis. Molecular and Cellular Endocrinology, V.316, P.120–8, 2010. DOI: https://doi.org/10.1016/j.mce.2009.06.010

KHAN, O.; SHEN, Y.; CAON, C.; BAO, F.; CHING, W.; REZNAR, M.; BUCCHEISTER, A.; HU, J.; LATIF, Z.; TSELIS, A.; LISAK, R. Axonal metabolic recovery and potential neuroprotective effect of glatiramer acetate in relapsing-remitting multiple sclerosis. Multiple Sclerosis. v.11, p.646-51, 2005. DOI: https://doi.org/10.1191/1352458505ms1234oa

KIMURA, I.; INOUE, D.; MAEDA, T.; HARA, T.; ICHIMURA, A.; MIYAUCHI, S.; KOBAYASHI, M.; HIRASAWA, A.; TSUJIMOTO, G. Short-chain fatty acids and ketones directly regulate sympathetic nervous system via G protein-coupled receptor 41 (GPR41). PNAS, v.108, n.19, p.830-5, 2011. DOI: https://doi.org/10.1073/pnas.1016088108

KLES, K. A.; CHANG, E. B. Short-Chain Fatty Acids Impact on Intestinal Adaptation, Inflammation, Carcinoma, and Failure. The American Gastroenterological Association, v. 130, p. 100-5, 2006. DOI: https://doi.org/10.1053/j.gastro.2005.11.048

KLUG, W. S.; CUMMINGS, M. R. Conceitos de Genética. 9ª Ed, Artmed, 2010, 896p.

LAJTHA, A.; GIBSON, G. E.; DIENEL, G. A.Handbook of Neurochemistry and Molecular Neurobiology: Brain Energetics. Interaction of Molecular and Cellular Processes. Springer Science & Business Media, Vol.7, 2007, 924p. DOI: https://doi.org/10.1007/978-0-387-30411-3

LE POUL, E.; LOISON, C.; STRUYF, S.; SPRINGAEL, J. Y.; LANNOY, V.; DECOBECQ, M. E.; BREZILLON, S.; DUPRIEZ, V.; VASSART, G.; DAMME, J. V.; PARMENTIER, M.; DETHEUX, M. Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cells activation. The American Society for Biochemistry and Molecular Biology, Inc. 2003. DOI: https://doi.org/10.1074/jbc.M301403200

LICINIO, J.; WONG, M.L. The role of inflammatory mediators in the biology of major depression: central nervous system cytokines modulate the biological substrate of depressive symptoms, regulate stress-responsive systems, and contribute to neurotoxicity and neuroprotection Molecular Psychiatry, v.4, p.317–27, 1999. DOI: https://doi.org/10.1038/sj.mp.4000586

LIMA, S. R.; GOMES, K. B. Esclerose lateral amiotrófica e o tratamento com células tronco. Rev Bras Clin Med, v.8, n.6, p.531-7, 2010.

LIN, A.; ZHANG, W.; GAO, X.; WATTS, L. Caloric restriction increases ketone bodies metabolism and preserves blood flow in aging brain. Neurobiology of Aging, v.36, p.2296- 303, 2015. DOI: https://doi.org/10.1016/j.neurobiolaging.2015.03.012

MADHAVARAO, C.; ARUN, P.; MOFFETT, J.; SZUCS, S.; SURENDRAN, S.; MATALON, R.; GARBERN, J.; HRISTOVA, D.; JOHNSON, A.; JIANG, W.; NAMBOODIRI, M. A. A. Defective N-acetylaspartate catabolism reduces brain acetate levels and myelin lipid synthesis in Canavan’s disease. PNAS, v.102, n.14, p.5221-6, 2005. DOI: https://doi.org/10.1073/pnas.0409184102

MAIER, H.; WANG-ECKHARDT, L.; HARTMANN, D.; GIESELMANN, V.; ECKHARDT, M. N-Acetylaspartate Synthase Deficiency Corrects the Myelin Phenotype in a Canavan Disease Mouse Model But Does Not Affect Survival Time. The Journal of Neuroscience, v.35, n.43, p. 14501-16, 2015. DOI: https://doi.org/10.1523/JNEUROSCI.1056-15.2015

MATHEW, R.; ARUN, P.; MADHAVARAO, C.N.; MOFFET, J.R.; NAMBOODIRI, M. A. A. Progress toward Acetate Supplementation Therapy for Canavan Disease: Glyceryl Triacetate Administration Increases Acetate, but Not N-Acetylaspartate, Levels in Brain. The journal of pharmacology and experimental therapeutics, v.315, n.1, p.297-303, 2005. DOI: https://doi.org/10.1124/jpet.105.087536

MATHEWS, G.; DIAMOND, J. Neuronal Glutamate Uptake Contributes to GABA Synthesis and Inhibitory Synaptic Strength. The Journal of Neuroscience, v.26, n.6, p.2040-48, 2003. DOI: https://doi.org/10.1523/JNEUROSCI.23-06-02040.2003

MATSUKI, T.; PÉDRON, T.; REGNAULT, B.; MULET, C.; HARA, T.; SANSONETTI, P. Epithelial Cell Proliferation Arrest Induced by Lactate and Acetate from Lactobacillus casei and Bifidobacterium breve. Plos one, v.8, n.4, p.1-8, 2013. DOI: https://doi.org/10.1371/journal.pone.0063053

MCGARRY, J.D.; FOSTER, D.W. Regulation of hepatic fatty acid oxidation and ketone body production. Annu Rev Biochem,v.49, p.395–420, 1980. DOI: https://doi.org/10.1146/annurev.bi.49.070180.002143

MCGEER, P.L.; MCGEER, E.G. The inflammatory response system of brain: implications for therapy of Alzheimer and other neurodegenerative diseases. Brain Res Brain Res Rev. v.21, p. 195–218, 1995. DOI: https://doi.org/10.1016/0165-0173(95)00011-9

MEHTA, V.; NAMBOODIRI, M. A. A. N-Acetylaspartate as an acetyl source in the nervous system. Molecular Brain Research, v.31, p.151-7, 1995. DOI: https://doi.org/10.1016/0169-328X(95)00044-S

MELØ, T.; NEHLIG, A.; SONNEWALD, U.2005. Neuronal–glial interactions in rats fed a ketogenic diet. Neurochemistry International, v.48, p.498- 507, 2005. DOI: https://doi.org/10.1016/j.neuint.2005.12.037

MIRALLES, V. J.; MARTÍNEZ-LÓPEZ, I.; ZARAGOZÁ, R.; BORRÁS, E.; GARCÍA, C.; PALLARDÓ, F. V.; VIÑA, J. R. Na+ dependent glutamate transporters (EAAT1, EAAT2, and EAAT3) in primary astrocyte cultures: effect of oxidative stress. Brain Research, v.922, p. 21-29, 2001. DOI: https://doi.org/10.1016/S0006-8993(01)03124-9

MOFFET, J.; ARUN, P.; ARIYANNUR, P.; NAMBOODIRI, M.A.A. N-Acetylaspartate reductions in brain injury: impact on post-injury neuroenergetics, lipid synthesis, and protein acetylation. Frontiers in Neuroenergetics, v.5, n.11, p. 1-19, 2013. DOI: https://doi.org/10.3389/fnene.2013.00011

MORAES, A. C. F.; SILVA, I. T.; ALMEIDA-PITITTO, B.; FERREIRA, S. R G. Microbiota intestinal e risco cardiometabólico: mecanismos e modulação dietética. Arq Bras Endocrinol Metab, v.58, n.4, p. 317-27, 2014. DOI: https://doi.org/10.1590/0004-2730000002940

MORKEN, T. S.; BREKKE, E.; HÅBERG, A.; WIDERØE, M.; BRUBAKK, A. M; SONNEWALD, U. Altered Astrocyte–Neuronal Interactions After Hypoxia-Ischemia in the Neonatal Brain in Female and Male Rats. American Heart Association, Inc, Stroke, v. 45, p. 2777- 85, 2014. DOI: https://doi.org/10.1161/STROKEAHA.114.005341

MORKEN, T. S.; BREKKE, E.; HÅBERG, A.; WIDERØE, M.; BRUBAKK, A. M.; SONNEWALD. U. Neuron–Astrocyte Interactions, Pyruvate Carboxylation and the Pentose Phosphate Pathway in the Neonatal Rat Brain. Springer Science, Business Media New York, Neurochem Res, 2013. DOI: https://doi.org/10.1007/s11064-013-1014-3

MORRIS, A. A. Cerebral ketone body metabolism. J. Inherit. Metab. Dis, v.28, p.109- 21, 2005. DOI: https://doi.org/10.1007/s10545-005-5518-0

NEBELING, L.; LERNER, E. Implementing a ketogenic diet based on medium-chain triglyceride oil in pediatric patients with cancer. Journal of The American Dietetic Association, v.95, p.693-7, 1995. DOI: https://doi.org/10.1016/S0002-8223(95)00189-1

NELSON, D.L.; COX, M.M. Princípios de Bioquímica de Lehninger. 8ª Ed, Artmed, 2022, 1248P.

NETO, F. D.; CALLEGARO, D.; TOSTA, E. D.; SILVA, H.A.; FERRAZ, M. E.; LIMA, J. M. B.; OLIVEIRA, A. S. B. Amyotrophic lateral sclerosis in Brazil 1998 national survey. Arq Neuropsiquiatr; v.58, p.607-15, 2000. DOI: https://doi.org/10.1590/S0004-282X2000000400002

NYLEN, K.; VELAZQUEZ, J. L.; SAYED, V.; GIBSON, K. M.; BURNHAM W. M.; SNEAD, O.C. The effects of a ketogenic diet on ATP concentrations and the number of hippocampal mitochondria in Aldh5a1(-/-). Biochim Biophys Acta. v.1790, n.3, p. 208–12, 2009. DOI: https://doi.org/10.1016/j.bbagen.2008.12.005

OLIVEIRA, D.M. Efeito do ácido graxo na cadeia curta, acetato, nas células da micróglia ativadas por lipopolissacáride (LPS). Tese (Doutorado em Imunologia). São Paulo: Instituto de Ciências Biomédicas, Universidade de São Paulo, 2015.

OLIVEIRA, M. A. L.; LAGO, C. L.; TAVARES, M. F. M. Análise de ácidos graxos por eletroforese capilar utilizando detecção condutométrica sem contato. Quim Nova, v.26, n.6, p.821-4, 2003. DOI: https://doi.org/10.1590/S0100-40422003000600007

OLIVEIRA, V. A. Ácidos graxos de cadeia curta, produtos do metabolismo da microbiota intestinal, protegem da lesão renal aguda. 2014. Tese (Doutorado em Imunologia) São Paulo: Instituto de Ciências Biomédicas, Universidade de São Paulo, 2014.

OLIVEIRA, V. A.; AMANO, M. T.; COSTA, M. C.; CASTOLDI, A.; FELIZARDO, R. J. F.; ALMEIDA, D. C.; BASSI, E. J.; VIEIRA, P. M. M.; HIYANE, M. I.; RODAS, A. C. D.; PERON, J. P. S.; AGUIAR, C. F.; REIS, M. A.; RIBEIRO, W. R.; VALDUGA, C. J.; CURI, R.; VINOLO, M. A. R.; FERREIRA, C. M.; CÂMARA, N. O. S. Gut Bacteria Products Prevent AKI Induced by Ischemia-Reperfusion. J Am Soc Nephrol, v. 26, p.1877- 88, 2015. DOI: https://doi.org/10.1681/ASN.2014030288

ORTIZ, M. J. Metabolismo del aspartato en cultivos primarios de astrocitos en condiciones perinatales. 2009, 100f.Trabalho de Conclusão de Curso (Graduação em Biologia)-Faculdade de Ciências, Pontificia Universidad Javeriana, Bogotá, 2009.

OTTO, C.; KAEMMERER, U.; ILLERT, B.; MUEHLING, B.; PFETZER, N.; WITTIG, R.; VOELKER, H. U.; THIEDE, A.; COY, J. F. Growth of human gastric cancer cells in nude mice is delayed by a ketogenic diet supplemented with omega-3 fatty acids and medium-chain triglycerides. BMC Cancer, v.8, p. 1-12, 2008. DOI: https://doi.org/10.1186/1471-2407-8-122

PARDO, B.; RODRIGUES, T.; CONTRERAS, L.; GARZÓN, M.; LLORENTE-FOLCH, I.; KOBAYASHI, K.; SAHEKI, T.; CERDAN, S.; SATRÚSTEGUI, J. Brain glutamine synthesis requires neuronal-born aspartate as amino donor for glial glutamate formation. Journal of Cerebral Blood Flow & Metabolism, v.31, p.90-101, 2011. DOI: https://doi.org/10.1038/jcbfm.2010.146

PATEL, A.B; GRAAF, R. A; ROTHMAN, D. R.; BEHAR, K. L.; MASON, G. F. Evaluation of cerebral acetate transport and metabolic rates in the rat brain in vivo using ¹H-[¹³C]-NMR. Journal of Cerebral Blood Flow & Metabolism, v. 30, p. 1200-13, 2010. DOI: https://doi.org/10.1038/jcbfm.2010.2

QIN, L.; CREWS, F. Focal Thalamic Degeneration from Ethanol and Thiamine Deficiency is Associated with Neuroimmune Gene Induction, Microglial Activation, and Lack ofMonocarboxylic Acid Transporters. Alcohol Clin Exp Res, v.38, n.3, p.657–71, 2014. DOI: https://doi.org/10.1111/acer.12272

REISENAUER, C.; BHATT, D.; MITTENESS, D.; SLANCZKA, E.; GIENGER, H.; WATT, J.; ROSENBERGER, T. Acetate supplementation attenuates lipopolysaccharide-induced Neuroinflammation. J Neurochem, v.117, n.2, p.264–74, 2011. DOI: https://doi.org/10.1111/j.1471-4159.2011.07198.x

REGER, M.; HENDERSON, S.; HALE, C.; CHOLERTON, B.; BAKER, L.; WATSON, G.; HYDEA, K.; CHAPMANA, D.; CRAFT, S. Effects of b-hydroxybutyrate on cognition in memory-impaired adults. Neurobiology of Aging, v.25, p.311-4, 2004. DOI: https://doi.org/10.1016/S0197-4580(03)00087-3

RICHARDS, R. H.; VREMAN, H. J.; ZAGER, P.; FELDMAN, C.; BLASCHKE, T.; WEINER, M. W. Acetate Metabolism in Normal Human Subjects. American Journal of Kidney Diseases, v.2, n.1, p.47-57, 1982. DOI: https://doi.org/10.1016/S0272-6386(82)80043-7

RODWELL, V. W.; BENDER, D. A.; BOTHAM, K. M.; KENNELLY, P. J.; WEIL, P. A.Bioquímica Ilustrada de Harper. 30 ª Ed. Artmed, 2017, p 237.

SAKAKIBARA, I.; FUJINO, T.; ISHII, M.; TANAKA, T.; SHIMOSAWA, T.; MIURA, S.; ZHANG, W.; TOKUTAKE, Y.; YAMAMOTO, J.; AWANO, M.; IWASAKI, S.; MOTOIKE, T.; OKAMURA, M.; INAGAKI, T.; KITA, K.; EZAKI, O.; NAITO, M.; KUWAKI, T.; CHOHNAN,S.; YAMAMOTO, T. T.; HAMMER, R. E.; KODAMA, T.; YANAGISAWA, M.; SAKAI, J. Fasting-Induced Hypothermia and Reduced Energy Production in Mice Lacking Acetyl-CoA Synthetase 2. Cell Metabolism, v.9, p.191-202, 2009. DOI: https://doi.org/10.1016/j.cmet.2008.12.008

SALWAY, J. G. Metabolismo passo a passo. Artmed, 2009, 134p.

SCHWARTZ, R. M.; BOYES, S.; AYNSLEY-GREN, A.Metabolic effects of three ketogenic diets in the treatment of severe epilepsy. Developmental Medicine and Chil Neurology, v.31, p.152-160, 1989. DOI: https://doi.org/10.1111/j.1469-8749.1989.tb03973.x

SCHAWARTZKROIN, P. A.Mechanisms underlying the anti-epileptic efficacy of the ketogenic diet. Epilepsy Research, v.7, p.171–80, 1999. DOI: https://doi.org/10.1016/S0920-1211(99)00069-8

SCHELP, A. O.; BURINI, R. C. Controle do fornecimento e da utilização de substratos energéticos no encéfalo. Arq Neuropsiquiatr, v.53, p.690-7, 1995. DOI: https://doi.org/10.1590/S0004-282X1995000400025

SCHUG, Z. T.; VOORDE, J. V.; GOTTLIEB, E. The metabolic fate of acetate in cancer. Macmillan Publishers Limited, part of Springer Natur, v.16,p 708-17, 2016. DOI: https://doi.org/10.1038/nrc.2016.87

SERRES, S.; RAFFARD, G.; FRANCONI, J.; MERLE, M. Close coupling between astrocytic and neuronal metabolisms to fulfill anaplerotic and energy needs in the rat brain. Journal of Cerebral Blood Flow & Metabolism. v.28, p.712-24, 2008. DOI: https://doi.org/10.1038/sj.jcbfm.9600568

SHAAFI, S.; NAJMI, S.; ALIASGHARPOUR, H.,MAHAMOUD, J.; ETEMAD, S. S.; FARHOUD, M.; BANIASADI, N. The efficacy of the ketogenic diet on motor functions in Parkinson’s Disease: A rat model. Iran J Neurol, v.15, n.2, p. 63-9, 2016.

SILVA, J. Deficiência das enzimas do ciclo de Krebs. 2016, 46f. Tese (Mestrado Integrado em Medicina) - Faculdade de Medicina, Universidade de Coimbra, Coimbra, 2016.

SILVA, Penildon. Farmacologia. São Paulo: Manole, 1997. Cap. 39. DOI: https://doi.org/10.1590/S0036-46651997000100003

SINGHAL, N.; HUANG, H.; LI, S.; CLEMENTS, R.; GADD, J.; DANIELS, A.; KOOIJMAN, E.; BANNERMAN, P.; BURNS, T.; GUO, F.; PLEASURE, D.; FREEMAN, E.; SHRIVER, L.; MCDONOUGH, J. The neuronal metabolite NAA regulates histone H3 methylation in oligodendrocytes and myelin lipid composition. Springer-Verlag Berlin Heidelberg, 2016. DOI: https://doi.org/10.1007/s00221-016-4789-z

SMITH, D.; BHATT, D. P.; GEIGER, J. D.; ROSENBERGER, T.A. Acetate supplementation modulates brain adenosine metabolizing enzymes and adenosine A2A receptor levels in rats subjected to neuroinflammation. Journal of Neuroinflammation, v.11, n.99, p. 1-10, 2014. DOI: https://doi.org/10.1186/1742-2094-11-99

SOLIMAN, M.; ROSENBERGER, T. Acetate supplementation increases brain histone acetylation and inhibits histone deacetylase activity and expression. Springer Science, Business Media, LLC. Mol Cell Biochem, v. 352, p.173-180, 2011. DOI: https://doi.org/10.1007/s11010-011-0751-3

SOLIMAN, M.L; MARK D SMITH, M.; HEIDI M HOUDEK, H.; AND THAD A ROSENBERGER, T. Acetate supplementation modulates brain histone acetylation and decreases interleukin-1 expression in a rat model of neuroinflammation. Journal of Neuroinflammation, v.9, n.51, p.1-14, 2012. DOI: https://doi.org/10.1186/1742-2094-9-51

STAFSTROM, C. E.; RHO, J. M. The ketogenic diet as a treatment paradigm for diverse neurological disorders. Frontiers in Pharmacology, v.3, n.59, p.1-8, 2012. DOI: https://doi.org/10.3389/fphar.2012.00059

STREIT, W.J.; MRAK, R.E.; GRIFFIN, W. S. T. Microglia and neuroinflammation: a pathological perspective. Journal of Neuroinflammation, v.1, n.14, p.1-4, 2004. DOI: https://doi.org/10.1186/1742-2094-1-14

TAKAHASHI, H.; MCCAFFERY, J. M.; IRIZARRY, R. A.; BOEKE, J. D. Nucleocytosolic Acetyl-Coenzyme A Synthetase Is Required for Histone Acetylation and Global Transcription. Molecular Cell, v. 23, p. 2017-17, 2006. DOI: https://doi.org/10.1016/j.molcel.2006.05.040

TANG, Y.; CHEN. Y.; JIANG, H.; NIE, D. Short-chain fatty acids induced autophagy serves as an adaptive strategy for retarding mitochondria-mediated apoptotic cell death. Cell Death and Differentiation, v. 18, p. 602-18, 2011. DOI: https://doi.org/10.1038/cdd.2010.117

TAZOE, H.; OTOMO, Y.; KAJI, I.; TANAKA, R.; KARAKI, S. I.; KUWAHARA, A. Roles of short-chain fatty acids receptors, GPR41 and GPR43 on colonic functions. Journal of Physiology and Pharmacology, v.59, n.2, p.251-62, 2008.

TERASAKI, T. Studies on the mechanism of drug distribution in tissues. Yakugaku Zasshi, v.112, p.887–905, 1992. DOI: https://doi.org/10.1248/yakushi1947.112.12_887

TOULMOND, S.; VIGE, X.; FAGE, D.; BENAVIDES, J.Local infusion of interleukin-6 attenuates the neurotoxic effects of NMDA on rat striatal cholinergic neurons. Neuroscience Letters, v.144, p. 49-52, 1992. DOI: https://doi.org/10.1016/0304-3940(92)90713-H

TUIN, A.; VLAG, A. H. V.; LOENEN-WEEMAES, A.M.A. MEIJER, D. K. F. POELTRA, K. On the role and fate of LPS-dephosphorylating activity in the rat liver. Am J Physiol Gastrointest Liver Physiol, v.290, p.377–85, 2006. DOI: https://doi.org/10.1152/ajpgi.00147.2005

TUMANOV, S.; BULUSU, V.; KAMPHORST, J. J. Analysis of Fatty Acid Metabolism Using Stable Isotope Tracers and Mass Spectrometry. Methods in enzymology, v.561, p. 197–217. 2015. DOI: https://doi.org/10.1016/bs.mie.2015.05.017

VANITALLIE, T.B.; NONAS, C.; DI ROCCO, A.; BOYAR, K.; HYAMS, K.; HEYMSFIELD, S.B. Treatment of Parkinson disease with diet-induce hyperketonemia: A feasibility study. Neurology, v.64, p.728–30, 2005. AUWERA DOI: https://doi.org/10.1212/01.WNL.0000152046.11390.45

VASCONCELOS, M.; AZEVEDO, P.; ESTEVES, L.; BRITO, A.; OLIVAES, M. C.; HERDY, G. Dieta cetogênica para epilepsia intratável em crianças e adolescentes: relato de seis casos. Rev Assoc Med Bras, v.50, n.4, p.380-5, 2004. DOI: https://doi.org/10.1590/S0104-42302004000400026

VENKATESH, S.; WORKMAN, J. R. Histone exchange, chromatin structure and the regulation of transcription. Molecular Cell Biology, v.16, p. 178-89, 2015. DOI: https://doi.org/10.1038/nrm3941

VINOLO, M. A. R. Efeito dos ácidos graxos de cadeias curtas sobre neutrófilos. 2010, 165 f. Tese (Doutorado em Fisiologia Humana) – Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, 2010.

VIZUETE, A. F. K. Efeito da dieta cetogênica com diferentes composições de ácidos graxos poliinsaturados no metabolismo periférico e neuroglial de ratos wistar. 2012, 78p. Dissertação (Mestrado em Bioquímica)- Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, 2012.

WANIEWSKI, R.; MARTIN, D. Preferential Utilization of Acetate by Astrocytes Is Attributable to Transport. The Journal of Neuroscience, v.18, n.14, p.5225-33, 1998. DOI: https://doi.org/10.1523/JNEUROSCI.18-14-05225.1998

YOSHIMOTO, M.; WAKI, A.; YONEKURA, Y.; SADATO, N.; MURATA, T.; OMATA, N.; TAKAHASHI, N.; WELCH, M. J.; FUJIBAYASHI, Y. Characterization of acetate metabolism in tumor cells in relation to cell proliferation: Acetate metabolism in tumor cells. Elsevier Science Inc, v.28, p.117-22, 2001. DOI: https://doi.org/10.1016/S0969-8051(00)00195-5

YUDKOFF, M.; DAIKHIN, Y.; MELØ, T.; NISSIM,I.; SONNEWALD, U.; NISSIM, I. The Ketogenic Diet and Brain Metabolism of Amino Acids: Relationship to the Anticonvulsant Effect. Annual Reviews. v. 27, p.415–30, 2007. DOI: https://doi.org/10.1146/annurev.nutr.27.061406.093722

YUDKOFF , M.; DAIKHIN, Y.; NISSIM, I.; HORYN, O.; LAZAROW, A.; LUHOVYY, B.; WEHRLI, S.; NISSIM, I. Response of brain amino acid metabolism to ketosis. Neurochemistry International, v.47, p.119-28, 2005. DOI: https://doi.org/10.1016/j.neuint.2005.04.014

YUDKOFF, M.; DAIKHIN, Y.; NISSIM, I.; LAZAROW, A.; NISSIM, I. Ketogenic diet, brain glutamate metabolism and seizure control. Prostaglandins Leukotrienes Essencial Fatty Acids, v.70, p.277-85, 2004. DOI: https://doi.org/10.1016/j.plefa.2003.07.005

ZHAO, Z.; LANGE, D.; VO OTTO USTIANIOUK, A.; MACGROGAN1, D.; HO, L.; SUH, J.; HUMALA, N.; THIYAGARAJAN, M.; WANG, J.; PASINETTI, G.. A ketogenic diet as a potential novel therapeutic intervention in amyotrophic lateral sclerosis. BMC Neuroscience, v.7, p.1-10, 2006. DOI: https://doi.org/10.1186/1471-2202-7-29

Publicado

2025-10-03

Cómo citar

LOPES, Lyssane Karla Dutra; MARANDUBA, Carlos Magno da Costa; TREVIZANI, Marizia; SILVA, Fernando de Sá. ACETATO: MECANISMOS CELULARES Y POTENCIAL TERAPÉUTICO EN ENFERMEDADES NEUROINMUNOLÓGICAS Y NEURODEGENERATIVAS. LUMEN ET VIRTUS, [S. l.], v. 16, n. 53, p. e8646, 2025. DOI: 10.56238/levv16n53-008. Disponível em: https://periodicos.newsciencepubl.com/LEV/article/view/8646. Acesso em: 5 dec. 2025.