APPLICATIONS OF ARTIFICIAL INTELLIGENCE IN METABOLIC HEALTH
DOI:
https://doi.org/10.56238/levv14n32-039Keywords:
Artificial Intelligence, Metabolism, Prediction, Chronic Diseases, Digital HealthAbstract
Artificial intelligence has expanded the possibilities for interpreting metabolic processes by enabling large volumes of clinical, nutritional and behavioral data to be examined in an integrated manner, supporting the identification of patterns that contribute to risk anticipation, the refinement of preventive strategies and the development of clinical approaches aligned with the physiological singularities of each individual, consolidating a model of care based on continuous and in-depth reading of metabolic variations and reinforcing interventions grounded in robust information that reflects biological and social realities observed in different health contexts. This study describes and discusses the application of artificial intelligence in metabolic monitoring, highlighting its ability to enhance practices related to the prediction of chronic diseases and the monitoring of clinical indicators that directly influence human metabolic evolution, allowing the development of more personalized strategies adapted to contemporary clinical demands, contributing to the expansion of scientific knowledge and to the construction of care models that integrate technology, predictive analysis and comprehensive understanding of the patient as central elements in promoting more consistent and effective clinical outcomes.
Downloads
References
RASHID, J. et al. An augmented artificial intelligence approach for chronic diseases prediction. Frontiers in Public Health, v. 10, 2022. DOI: https://doi.org/10.3389/fpubh.2022.860396
COSTA, O.; GOUVEIA, L. B. Plataforma inteligente de predição do risco de doenças crônicas não transmissíveis de apoio à decisão clínica na atenção primária de saúde. Fontes Documentais, 2023.
GIL, A. C. Métodos e técnicas de pesquisa social. 7. ed. São Paulo: Atlas, 2019.
LAKATOS, E. M.; MARCONI, M. A. Fundamentos de metodologia científica. 8. ed. São Paulo: Atlas, 2017.
COMITÊ GESTOR DA INTERNET NO BRASIL (CGI.br). Pesquisa sobre o uso das tecnologias de informação e comunicação nos estabelecimentos de saúde brasileiros: TIC Saúde 2022. São Paulo: CGI.br, 2023.
SILVA, L. F. Modelo de aprendizado de máquina para predição de diabetes tipo 2. Dissertação (Mestrado) - Universidade Federal de São Paulo, 2023.
SUEYOSHI, V. K. C. O uso da inteligência artificial na nutrição: aplicações e potencialidades. Universidade de São Paulo, 2023.
DELPINO, F. M. et al. Machine learning for predicting chronic diseases: a systematic review. Public Health, v. 205, p. 14-25, 2022. DOI: https://doi.org/10.1016/j.puhe.2022.01.007
DOURADO, Daniel de Araujo; AITH, Fernando Mussa Abujamra. A regulação da inteligência artificial na saúde no Brasil começa com a Lei Geral de Proteção de Dados Pessoais. Revista Saúde Pública, São Paulo, v. 56, p. 80, 2022. DOI: https://doi.org/10.11606/s1518-8787.2022056004461
THAMRIN, S. A.; ARSYAD, D. S.; KUSWANTO, H.; LAWI, A.; NASIR, S. Predicting obesity in adults using machine learning techniques: an analysis of Indonesian Basic Health Research 2018. Frontiers in Nutrition, v. 8, 2021 DOI: https://doi.org/10.3389/fnut.2021.669155