APPLICATIONS OF ARTIFICIAL INTELLIGENCE IN METABOLIC HEALTH

Authors

  • José Eduardo Ferreira Leite Author

DOI:

https://doi.org/10.56238/levv14n32-039

Keywords:

Artificial Intelligence, Metabolism, Prediction, Chronic Diseases, Digital Health

Abstract

Artificial intelligence has expanded the possibilities for interpreting metabolic processes by enabling large volumes of clinical, nutritional and behavioral data to be examined in an integrated manner, supporting the identification of patterns that contribute to risk anticipation, the refinement of preventive strategies and the development of clinical approaches aligned with the physiological singularities of each individual, consolidating a model of care based on continuous and in-depth reading of metabolic variations and reinforcing interventions grounded in robust information that reflects biological and social realities observed in different health contexts. This study describes and discusses the application of artificial intelligence in metabolic monitoring, highlighting its ability to enhance practices related to the prediction of chronic diseases and the monitoring of clinical indicators that directly influence human metabolic evolution, allowing the development of more personalized strategies adapted to contemporary clinical demands, contributing to the expansion of scientific knowledge and to the construction of care models that integrate technology, predictive analysis and comprehensive understanding of the patient as central elements in promoting more consistent and effective clinical outcomes.

Downloads

Download data is not yet available.

References

RASHID, J. et al. An augmented artificial intelligence approach for chronic diseases prediction. Frontiers in Public Health, v. 10, 2022. DOI: https://doi.org/10.3389/fpubh.2022.860396

COSTA, O.; GOUVEIA, L. B. Plataforma inteligente de predição do risco de doenças crônicas não transmissíveis de apoio à decisão clínica na atenção primária de saúde. Fontes Documentais, 2023.

GIL, A. C. Métodos e técnicas de pesquisa social. 7. ed. São Paulo: Atlas, 2019.

LAKATOS, E. M.; MARCONI, M. A. Fundamentos de metodologia científica. 8. ed. São Paulo: Atlas, 2017.

COMITÊ GESTOR DA INTERNET NO BRASIL (CGI.br). Pesquisa sobre o uso das tecnologias de informação e comunicação nos estabelecimentos de saúde brasileiros: TIC Saúde 2022. São Paulo: CGI.br, 2023.

SILVA, L. F. Modelo de aprendizado de máquina para predição de diabetes tipo 2. Dissertação (Mestrado) - Universidade Federal de São Paulo, 2023.

SUEYOSHI, V. K. C. O uso da inteligência artificial na nutrição: aplicações e potencialidades. Universidade de São Paulo, 2023.

DELPINO, F. M. et al. Machine learning for predicting chronic diseases: a systematic review. Public Health, v. 205, p. 14-25, 2022. DOI: https://doi.org/10.1016/j.puhe.2022.01.007

DOURADO, Daniel de Araujo; AITH, Fernando Mussa Abujamra. A regulação da inteligência artificial na saúde no Brasil começa com a Lei Geral de Proteção de Dados Pessoais. Revista Saúde Pública, São Paulo, v. 56, p. 80, 2022. DOI: https://doi.org/10.11606/s1518-8787.2022056004461

THAMRIN, S. A.; ARSYAD, D. S.; KUSWANTO, H.; LAWI, A.; NASIR, S. Predicting obesity in adults using machine learning techniques: an analysis of Indonesian Basic Health Research 2018. Frontiers in Nutrition, v. 8, 2021 DOI: https://doi.org/10.3389/fnut.2021.669155

Published

2024-01-18

How to Cite

LEITE, José Eduardo Ferreira. APPLICATIONS OF ARTIFICIAL INTELLIGENCE IN METABOLIC HEALTH. LUMEN ET VIRTUS, [S. l.], v. 14, n. 32, p. e10945, 2024. DOI: 10.56238/levv14n32-039. Disponível em: https://periodicos.newsciencepubl.com/LEV/article/view/rv1890. Acesso em: 29 jan. 2026.