EVASIÓN DE LA RESPUESTA INMUNITARIA EN EL CÁNCER DE PRÓSTATA: PAPEL DEL MICROAMBIENTE TUMORIAL

Autores/as

  • Leandro Costa Barroso Autor/a
  • Ogla Anakarina Rodriguez Romero Autor/a
  • Jorge Luís Santos Silva Autor/a
  • Gabriel de Oliveira Rezende Autor/a

DOI:

https://doi.org/10.56238/10.56238/levv16n54-050

Palabras clave:

Neoplasia, Mediadores Inmunitarios, Mecanismo Inmunológico, Inmunoterapia

Resumen

Introducción: El cáncer de próstata (CaP) es una de las neoplasias más prevalentes entre los hombres, con una alta tasa de incidencia y mortalidad. En 2022 se registraron a nivel mundial 1.467.854 casos y 397.430 muertes. En Brasil, el CaP es el más diagnosticado entre los hombres, con 71.730 nuevos casos en 2023. La enfermedad se caracteriza por la proliferación descontrolada de células tumorales y la evasión de la respuesta inmune, facilitando la metástasis. Objetivo: Ante este escenario, el presente trabajo tuvo como objetivo develar el proceso de crecimiento del cáncer, con énfasis en el papel del microambiente tumoral y su papel en la evasión de la respuesta inmune. Metodología: Este estudio se llevó a cabo mediante una revisión de la literatura, utilizando fuentes académicas contemporáneas. La investigación se centró en el análisis descriptivo de las interacciones entre el microambiente tumoral (MAT) y la respuesta inmune en el contexto del cáncer de próstata, abarcando publicaciones de 2015 a 2025. Resultados: El microambiente tumoral juega un papel crucial en la progresión del CaP, creando condiciones inmunosupresoras que favorecen la supervivencia de las células tumorales. Las células MAT secretan factores que inhiben la respuesta del sistema inmunológico, lo que dificulta la eliminación de las células cancerosas. Conclusión: La complejidad de MAT representa un desafío importante para la efectividad de las terapias disponibles para el CaP. La detección temprana de la enfermedad es fundamental para mejorar el pronóstico de los pacientes. Continuar la investigación de nuevas terapias es esencial para desarrollar estrategias que puedan superar las barreras impuestas por el microambiente tumoral.

Descargas

Los datos de descarga aún no están disponibles.

Referencias

ARCE-SILLAS, Asiel et al. Regulatory T cells: molecular actions on effector cells in immune regulation. Journal of immunology research, v. 2016, n. 1, p. 1720827, 2016. DOI: https://doi.org/10.1155/2016/1720827

ARNETH, Borros. Tumor microenvironment. Medicina, v. 56, n. 1, p. 15, 2019. DOI: https://doi.org/10.3390/medicina56010015

BOŻYK, Aleksandra et al. Tumor microenvironment—A short review of cellular and interaction diversity. Biology, v. 11, n. 6, p. 929, 2022. DOI: https://doi.org/10.3390/biology11060929

BIED, Mathilde et al. Roles of macrophages in tumor development: a spatiotemporal perspective. Cellular & molecular immunology, v. 20, n. 9, p. 983-992, 2023. DOI: https://doi.org/10.1038/s41423-023-01061-6

DE ALMEIDA, Daniel Vargas P. et al. Immune checkpoint blockade for prostate cancer: niche role or next breakthrough? In: American Society of Clinical Oncology Educational book. American Society of Clinical Oncology. Annual Meeting. 2020. p. 1-18. DOI: https://doi.org/10.1200/EDBK_278853

DEEP, Gagan; PANIGRAHI, Gati K. Hypoxia-induced signaling promotes prostate cancer progression: exosomes role as messenger of hypoxic response in tumor microenvironment. Critical Reviews™ in Oncogenesis, v. 20, n. 5-6, 2015. DOI: https://doi.org/10.1615/CritRevOncog.v20.i5-6.130

DIKIY, S. Principles of regulatory T cell function. Trends in Immunology, 2023. Disponível em: https://www.cell.com/trends/immunology/fulltext/S1471-4906(23)00019-2. Acesso em: 24 out. 2025. DOI: 10.1016/j.it.2023.01.003. DOI: https://doi.org/10.1016/j.it.2023.01.003

FENG, Dechao et al. Cellular landscape of tumour microenvironment in prostate cancer. Immunology, v. 168, n. 2, p. 199-202, 2023. DOI: https://doi.org/10.1111/imm.13456

GIACOMINI, Arianna et al. The FGF/FGFR system in the physiopathology of the prostate gland. Physiological reviews, v. 101, n. 2, p. 569-610, 2021. DOI: https://doi.org/10.1152/physrev.00005.2020

GLOBOCAN, Goblal Cancer Observatory. Prostate cancer today, 2024. Disponível em: https://gco.iarc.who.int/media/globocan/factsheets/cancers/27-prostate-fact-sheet.pdf. Acesso em: 1 de maio de 2025.

GOSWAMI, T. K. et al. Regulatory T cells (Tregs) and their therapeutic potential. Frontiers in Immunology, v. 13, p. 9009914, 2022. DOI: 10.3389/fimmu.2022.9009914.

GROVER, P. et al. Regulatory T cells: Regulation of identity and function. Frontiers in Immunology, v. 12, p. 750542, 2021. DOI: 10.3389/fimmu.2021.750542. DOI: https://doi.org/10.3389/fimmu.2021.750542

HALL, John E. (Ed.). Guyton & Hall. Tratado de fisiología médica. Elsevier Health Sciences, 2021.

HAN, Chenglin et al. The roles of tumor‐associated macrophages in prostate cancer. Journal of oncology, v. 2022, n. 1, p. 8580043, 2022. DOI: https://doi.org/10.1155/2022/8580043

HANAHAN, Douglas. Hallmarks of cancer: new dimensions. Cancer discovery, v. 12, n. 1, p. 31-46, 2022. DOI: https://doi.org/10.1158/2159-8290.CD-21-1059

HUANG, T. et al. Tumor-infiltrating regulatory T cell: A promising therapeutic target. OncoImmunology, v. 13, n. 1, p. 11706582, 2024. DOI: 10.1080/2162402X.2024.11706582.

HUANG, Xueqin et al. Neutrophils in Cancer immunotherapy: friends or foes?. Molecular cancer, v. 23, n. 1, p. 107, 2024. DOI: https://doi.org/10.1186/s12943-024-02004-z

HAWLINA, Simon; CHOWDHURY, Helena H.; SMRKOLJ, Tomaž; ZOREC, Robert. Dendritic cell-based vaccine prolongs survival and time to next therapy independently of the vaccine cell number. Biology Direct, v. 17, n. 1, p. 5, 23 fev. 2022. DOI: https://doi.org/10.1186/s13062-022-00318-w

HAWLINA, S.; et al. Potential of Personalized Dendritic Cell-Based Immunohybridoma Vaccines to Treat Prostate Cancer. Life, v. 13, n. 7, p. 1498, 2023. DOI: https://doi.org/10.3390/life13071498

HERRERA, Mercedes et al. A snapshot of the tumor microenvironment in colorectal cancer: the liquid biopsy. International journal of molecular sciences, v. 20, n. 23, p. 6016, 2019. DOI: https://doi.org/10.3390/ijms20236016

HIFU prostate, 2025. Disponivel em: https://www.hifu-prostata.com.br/cancer-de-prostata/diagnostico-e-classificacao/ Acesso em: 12 de agosto de 2025.

INCA, Institutos Nacional do Câncer. Estatísticas sobre Câncer, 2025. Disponível em: https://www.gov.br/inca/pt-br/assuntos/cancer/numeros. Acesso em: 1 de maio de 2025.

JIMENEZ-MORALES, Silvia et al. Mechanisms of immunosuppressive tumor evasion: focus on acute lymphoblastic leukemia. Frontiers in immunology, v. 12, p. 737340, 2021. DOI: https://doi.org/10.3389/fimmu.2021.737340

KATOPODI, Theodora et al. Tumor-infiltrating dendritic cells: decisive roles in cancer immunosurveillance, immunoediting, and tumor T cell tolerance. Cells, v. 11, n. 20, p. 3183, 2022. DOI: https://doi.org/10.3390/cells11203183

KOINIS, Filippos et al. Myeloid-derived suppressor cells in prostate cancer: present knowledge and future perspectives. Cells, v. 11, n. 1, p. 20, 2021. DOI: https://doi.org/10.3390/cells11010020

KUMAR, Vinay; ABBAS, Abul K.; ASTER, Jon C. Robbins y Cotran. Patología estructural y funcional. Elsevier Health Sciences, 2021.

LESLIE SW, Soon-Sutton TL, Skelton WP. Prostate Cancer. 2024 Oct 4. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025.

LI, Kai et al. Myeloid-derived suppressor cells as immunosuppressive regulators and therapeutic targets in cancer. Signal transduction and targeted therapy, v. 6, n. 1, p. 362, 2021. DOI: https://doi.org/10.1038/s41392-021-00670-9

LIU, et al. Reversing the “cold” tumor microenvironment: the role of neoantigen vaccines in prostate cancer. [S.l.]: [s.n.], 2025.

LIU, Tongyan et al. Cancer-associated fibroblasts: an emerging target of anti-cancer immunotherapy. Journal of hematology & oncology, v. 12, n. 1, p. 86, 2019. DOI: https://doi.org/10.1186/s13045-019-0770-1

MELO, Camila Morais et al. The role of somatic mutations on the immune response of the tumor microenvironment in prostate cancer. International Journal of Molecular Sciences, v. 22, n. 17, p. 9550, 2021. DOI: https://doi.org/10.3390/ijms22179550

MOLINA, O. E. et al. Regulatory and memory T lymphocytes infiltrating prostate cancer tissue. Frontiers in Immunology, v. 15, p. 11180786, 2024. DOI: https://doi.org/10.3389/fimmu.2024.1372837

MOHAMED, Osama AA et al. The role of hypoxia on prostate cancer progression and metastasis. Molecular biology reports, v. 50, n. 4, p. 3873-3884, 2023. DOI: https://doi.org/10.1007/s11033-023-08251-5

NIU, Fanglin et al. Arginase: An emerging and promising therapeutic target for cancer treatment. Biomedicine & Pharmacotherapy, v. 149, p. 112840, 2022. DOI: https://doi.org/10.1016/j.biopha.2022.112840

NORDBY, Yngve et al. High expression of PDGFR-β in prostate cancer stroma is independently associated with clinical and biochemical prostate cancer recurrence. Scientific reports, v. 7, n. 1, p. 43378, 2017. DOI: https://doi.org/10.1038/srep43378

NOVYSEDLAK, Rene et al. The immune microenvironment in prostate cancer: a comprehensive review. Oncology, v. 103, n. 6, p. 521-545, 2025. DOI: https://doi.org/10.1159/000541881

PAN, Yueyun et al. Tumor-associated macrophages in tumor immunity. Frontiers in immunology, v. 11, p. 583084, 2020. DOI: https://doi.org/10.3389/fimmu.2020.583084

RASKOV, Hans et al. Neutrophils and polymorphonuclear myeloid-derived suppressor cells: an emerging battleground in cancer therapy. Oncogenesis, v. 11, n. 1, p. 22, 2022. DOI: https://doi.org/10.1038/s41389-022-00398-3

RÉBÉ, Cédric; GHIRINGHELLI, François. Interleukin-1β and cancer. Cancers, v. 12, n. 7, p. 1791, 2020. DOI: https://doi.org/10.3390/cancers12071791

SEKHOACHA, Mamello et al. Prostate cancer review: genetics, diagnosis, treatment options, and alternative approaches. Molecules, v. 27, n. 17, p. 5730, 2022. DOI: https://doi.org/10.3390/molecules27175730

SHAUL, Merav E.; FRIDLENDER, Zvi G. Tumour-associated neutrophils in patients with cancer. Nature reviews Clinical oncology, v. 16, n. 10, p. 601-620, 2019. DOI: https://doi.org/10.1038/s41571-019-0222-4

SIEMIŃSKA, Izabela; BARAN, Jarek. Myeloid-derived suppressor cells as key players and promising therapy targets in prostate cancer. Frontiers in Oncology, v. 12, p. 862416, 2022. DOI: https://doi.org/10.3389/fonc.2022.862416

SILVA, Estela Vieira de Souza et al. Elucidating tumor immunosurveillance and immunoediting: a comprehensive review. Ciência Animal Brasileira, v. 22, p. e-68544, 2021. DOI: https://doi.org/10.1590/1809-6891v22e-68544

SUAREZ‐CARMONA, Meggy et al. EMT and inflammation: inseparable actors of cancer progression. Molecular oncology, v. 11, n. 7, p. 805-823, 2017. DOI: https://doi.org/10.1002/1878-0261.12095

STULTZ, Jacob; FONG, Lawrence. How to turn up the heat on the cold immune microenvironment of metastatic prostate cancer. Prostate cancer and prostatic diseases, v. 24, n. 3, p. 697-717, 2021. DOI: https://doi.org/10.1038/s41391-021-00340-5

TAKASUGI, Masaki; YOSHIDA, Yuya; OHTANI, Naoko. Cellular senescence and the tumour microenvironment. Molecular oncology, v. 16, n. 18, p. 3333-3351, 2022. DOI: https://doi.org/10.1002/1878-0261.13268

THOMPSON-ELLIOTT, Bethtrice; JOHNSON, Rarnice; KHAN, Shafiq A. Alterations in TGFβ signaling during prostate cancer progression. American journal of clinical and experimental urology, v. 9, n. 4, p. 318, 2021.

URIBE-QUEROL, Eileen; ROSALES, Carlos. Neutrophils in cancer: two sides of the same coin. Journal of immunology research, v. 2015, n. 1, p. 983698, 2015. DOI: https://doi.org/10.1155/2015/983698

WANG, Yutao; CHEN, Yiming; WANG, Jianfeng. Role of Tumor Microenvironment in Prostate Cancer Immunometabolism. Biomolecules, v. 15, n. 6, p. 826, 2025. DOI: https://doi.org/10.3390/biom15060826

WANG, Yutao; CHEN, Yiming; WANG, Jianfeng. Targeting the tumor microenvironment, a new therapeutic approach for prostate cancer. [S.l.]: [s.n.], 2024.

WASIM, Sobia; LEE, Sang-Yoon; KIM, Jaehong. Complexities of prostate cancer. International journal of molecular sciences, v. 23, n. 22, p. 14257, 2022. DOI: https://doi.org/10.3390/ijms232214257

WYLIE, Ben et al. Dendritic cells and cancer: from biology to therapeutic intervention. Cancers, v. 11, n. 4, p. 521, 2019. DOI: https://doi.org/10.3390/cancers11040521

XIA, Haoran et al. Identification of a hypoxia-related gene signature for predicting systemic metastasis in prostate cancer. Frontiers in Cell and Developmental Biology, v. 9, p. 696364, 2021. DOI: https://doi.org/10.3389/fcell.2021.696364

ZITVOGEL, Laurence et al. Microbiome and anticancer immunosurveillance. Cell, v. 165, n. 2, p. 276-287, 2016. DOI: https://doi.org/10.1016/j.cell.2016.03.001

Publicado

2025-11-12

Cómo citar

BARROSO, Leandro Costa; ROMERO, Ogla Anakarina Rodriguez; SILVA, Jorge Luís Santos; REZENDE, Gabriel de Oliveira. EVASIÓN DE LA RESPUESTA INMUNITARIA EN EL CÁNCER DE PRÓSTATA: PAPEL DEL MICROAMBIENTE TUMORIAL. LUMEN ET VIRTUS, [S. l.], v. 16, n. 54, p. e9882, 2025. DOI: 10.56238/10.56238/levv16n54-050. Disponível em: https://periodicos.newsciencepubl.com/LEV/article/view/9882. Acesso em: 5 dec. 2025.