EQUILIBRIO ENTRE FLEXIBILIDAD Y RESISTENCIA DE LOS BIOCOMPOSITOS DE NANOFIBRILLAS DE ALMIDÓN HIDROXIPROPILADO/CELULOSA
DOI:
https://doi.org/10.56238/levv16n51-094Palabras clave:
Hidroxipropilación, Almidón, CNF, Plastificación, BiocompositosResumen
Este estudio investiga las propiedades termomecánicas del almidón hidroxipropilado (HPS) como plastificante para películas convencionales de almidón termoplástico (TPS), reforzadas con nanofibrillas de celulosa (CNF). Un estudio previo demostró que la hidroxipropilación del almidón condujo a la formación in situ de poli(óxido de propileno) (PPO), lo que induce la gelatinización y produce TPS con un significativo efecto plastificante. Para abordar este problema, se exploró la mezcla de almidón de yuca nativo con HPS e incorporación de CNF, así como CNF hidroxipropilado (mCNF), como una estrategia de refuerzo sostenible. Las películas se prepararon mediante colada y sus propiedades se evaluaron mediante ensayos de resistencia a la tracción, espectroscopia infrarroja por transformada de Fourier (FTIR), calorimetría diferencial de barrido (DSC) y análisis termogravimétrico (TG). Los resultados indican que la incorporación de CNF sin modificar aumentó significativamente la resistencia a la tracción de las películas de HPS/TPS, demostrando su eficaz capacidad de refuerzo. Por el contrario, la adición de mCNF redujo la resistencia a la tracción, lo que sugiere que la modificación química del CNF podría afectar su eficacia de refuerzo debido a interacciones alteradas con la matriz de almidón. La FTIR confirmó las interacciones moleculares, mientras que la DSC y la TG proporcionaron información sobre las transiciones térmicas y la estabilidad. Esta investigación destaca el potencial de combinar HPS, almidón nativo y CNF para crear biocompositos sostenibles y de alto rendimiento a base de almidón con un contenido reducido de plastificantes sintéticos, lo que ofrece un enfoque prometedor para diversas aplicaciones.
Descargas
Referencias
Lopes, H.S.M., da Costa, F.A.T., Komatsu, D., Dufresne, A., de Menezes, A.J.: Gelatinized Cassava Starch Obtained via Low Molar Ratio Hydroxypropylation Reaction. ACS Omega. 10, 12543–12552 (2025). https://doi.org/10.1021/acsomega.5c00246 DOI: https://doi.org/10.1021/acsomega.5c00246
Dufresne, A., Castaño, J.: Polysaccharide nanomaterial reinforced starch nanocomposites: A review. Starch - Stärke. 69, (2017). https://doi.org/10.1002/star.201500307 DOI: https://doi.org/10.1002/star.201500307
Mohammadi Nafchi, A., Moradpour, M., Saeidi, M., Alias, A.K.: Thermoplastic starches: Properties, challenges, and prospects. Starch - Stärke. 65, 61–72 (2013). https://doi.org/10.1002/star.201200201 DOI: https://doi.org/10.1002/star.201200201
Zhang, Y., Rempel, C., Liu, Q.: Thermoplastic Starch Processing and Characteristics—A Review. Crit Rev Food Sci Nutr. 54, 1353–1370 (2014). https://doi.org/10.1080/10408398.2011.636156 DOI: https://doi.org/10.1080/10408398.2011.636156
Gamage, A., Thiviya, P., Mani, S., Ponnusamy, P.G., Manamperi, A., Evon, P., Merah, O., Madhujith, T.: Environmental Properties and Applications of Biodegradable Starch-Based Nanocomposites. Polymers (Basel). 14, 4578 (2022). https://doi.org/10.3390/polym14214578 DOI: https://doi.org/10.3390/polym14214578
Khan, B., Bilal Khan Niazi, M., Samin, G., Jahan, Z.: Thermoplastic Starch: A Possible Biodegradable Food Packaging Material—A Review. J Food Process Eng. 40, (2017). https://doi.org/10.1111/jfpe.12447 DOI: https://doi.org/10.1111/jfpe.12447
Sanyang, M., Sapuan, S., Jawaid, M., Ishak, M., Sahari, J.: Effect of Plasticizer Type and Concentration on Tensile, Thermal and Barrier Properties of Biodegradable Films Based on Sugar Palm (Arenga pinnata) Starch. Polymers (Basel). 7, 1106–1124 (2015). https://doi.org/10.3390/polym7061106 DOI: https://doi.org/10.3390/polym7061106
Niranjana Prabhu, T., Prashantha, K.: A review on present status and future challenges of starch based polymer films and their composites in food packaging applications. Polym Compos. 39, 2499–2522 (2018). https://doi.org/10.1002/pc.2423 DOI: https://doi.org/10.1002/pc.24236
Leroy, L., Stoclet, G., Lefebvre, J.-M., Gaucher, V.: Mechanical Behavior of Thermoplastic Starch: Rationale for the Temperature-Relative Humidity Equivalence. Polymers (Basel). 14, 2531 (2022). https://doi.org/10.3390/polym14132531 DOI: https://doi.org/10.3390/polym14132531
Zhang, Y., Rempel, C.: Retrogradation and Antiplasticization of Thermoplastic Starch. In: Thermoplastic Elastomers. InTech (2012) DOI: https://doi.org/10.5772/35848
Montilla‐Buitrago, C.E., Gómez‐López, R.A., Solanilla‐Duque, J.F., Serna‐Cock, L., Villada Castillo, H.S.: Effect of Plasticizers on Properties, Retrogradation, and Processing of Extrusion‐Obtained Thermoplastic Starch: A Review. Starch - Stärke. 73, (2021). https://doi.org/10.1002/star.202100060 DOI: https://doi.org/10.1002/star.202100060
Fu, Z., Zhang, L., Ren, M., BeMiller, J.N.: Developments in Hydroxypropylation of Starch: A Review. Starch - Stärke. 71, (2019). https://doi.org/10.1002/star.201800167 DOI: https://doi.org/10.1002/star.201800167
Kim, H.-Y., Jane, J., Lamsal, B.: Hydroxypropylation improves film properties of high amylose corn starch. Ind Crops Prod. 95, 175–183 (2017). https://doi.org/10.1016/j.indcrop.2016.10.025 DOI: https://doi.org/10.1016/j.indcrop.2016.10.025
Fazeli, M., Keley, M., Biazar, E.: Preparation and characterization of starch-based composite films reinforced by cellulose nanofibers. Int J Biol Macromol. 116, 272–280 (2018). https://doi.org/10.1016/j.ijbiomac.2018.04.186 DOI: https://doi.org/10.1016/j.ijbiomac.2018.04.186
Li, J., Zhou, M., Cheng, G., Cheng, F., Lin, Y., Zhu, P.: Comparison of Mechanical Reinforcement Effects of Cellulose Nanofibers and Montmorillonite in Starch Composite. Starch - Stärke. 71, (2019). https://doi.org/10.1002/star.201800114 DOI: https://doi.org/10.1002/star.201800114
da Costa, F.A.T., Dufresne, A., Parra, D.F.: Impact of High-Dose Gamma Irradiation on PLA/PBAT Blends Reinforced with Cellulose Nanoparticles from Pineapple Leaves. ACS Omega. 10, 38182–38202 (2025). https://doi.org/10.1021/acsomega.5c06115 DOI: https://doi.org/10.1021/acsomega.5c06115
da Costa, F.A.T., Parra, D.F., Cardoso, E.C.L., Güven, O.: PLA, PBAT, Cellulose Nanocrystals (CNCs), and Their Blends: Biodegradation, Compatibilization, and Nanoparticle Interactions. J Polym Environ. 31, 4662–4690 (2023). https://doi.org/10.1007/s10924-023-02899-7 DOI: https://doi.org/10.1007/s10924-023-02899-7
Dufresne, A.: Nanocellulose: a new ageless bionanomaterial. Materials Today. 16, 220–227 (2013). https://doi.org/10.1016/j.mattod.2013.06.004 DOI: https://doi.org/10.1016/j.mattod.2013.06.004
Babaee, M., Jonoobi, M., Hamzeh, Y., Ashori, A.: Biodegradability and mechanical properties of reinforced starch nanocomposites using cellulose nanofibers. Carbohydr Polym. 132, 1–8 (2015). https://doi.org/10.1016/j.carbpol.2015.06.043 DOI: https://doi.org/10.1016/j.carbpol.2015.06.043
Dufresne, A.: Nanocellulose: From Nature to High Performance Tailored Materials. Walter de Gruyter GmbH & Co KG (2017) DOI: https://doi.org/10.1515/9783110480412
Zhao, Y., Troedsson, C., Bouquet, J.-M., Thompson, E.M., Zheng, B., Wang, M.: Mechanically Reinforced, Flexible, Hydrophobic and UV Impermeable Starch-Cellulose Nanofibers (CNF)-Lignin Composites with Good Barrier and Thermal Properties. Polymers (Basel). 13, 4346 (2021). https://doi.org/10.3390/polym13244346 DOI: https://doi.org/10.3390/polym13244346
Gandini, A., Belgacem, M.N.: Partial or Total Oxypropylation of Natural Polymers and the Use of the Ensuing Materials as Composites or Polyol Macromonomers. In: Monomers, Polymers and Composites from Renewable Resources. pp. 273–288. Elsevier (2008) DOI: https://doi.org/10.1016/B978-0-08-045316-3.00012-0
AMERICAN SOCIETY FOR TESTING AND MATERIALS: Standard Test Method for Tensile Properties of Thin Plastic Sheeting. ASTM D882-00. 1–9 (2001)
da Costa, F.A.T., Dufresne, A., Song, T., Parra, D.F.: Exploring acid hydrolysis conditions and extended mechanical processing for producing cellulose nanocrystal and nanofibrils from pineapple leaf fibers. Int J Biol Macromol. 306, 141755 (2025). https://doi.org/10.1016/j.ijbiomac.2025.141755 DOI: https://doi.org/10.1016/j.ijbiomac.2025.141755
Xie, D., Li, J., Zhang, C., Yang, S., Yang, A., Song, S., Song, Y.: Design of heat-sealing starch-based bioplastics reinforced with different modified starches and TEMPO-CNF. Ind Crops Prod. 232, 121303 (2025). https://doi.org/10.1016/j.indcrop.2025.121303 DOI: https://doi.org/10.1016/j.indcrop.2025.121303
Lopes, H.S.M., Oliveira, G.H.M., Talabi, S.I., Lucas, A.A.: Production of thermoplastic starch and poly (butylene adipate-co-terephthalate) films assisted by solid-state shear pulverization. Carbohydr Polym. 258, 117732 (2021). https://doi.org/10.1016/j.carbpol.2021.117732 DOI: https://doi.org/10.1016/j.carbpol.2021.117732