EQUILIBRIO ENTRE FLEXIBILIDAD Y RESISTENCIA DE LOS BIOCOMPOSITOS DE NANOFIBRILLAS DE ALMIDÓN HIDROXIPROPILADO/CELULOSA

Autores/as

  • Fernanda Andrade Tigre da Costa Autor/a
  • Henrique Solowej Medeiros Lopes Autor/a
  • Lucas Repecka Alves Autor/a
  • Daniel Komatsu Autor/a
  • Aparecido Junior de Menezes Autor/a
  • Duclerc Fernandes Parra Autor/a

DOI:

https://doi.org/10.56238/levv16n51-094

Palabras clave:

Hidroxipropilación, Almidón, CNF, Plastificación, Biocompositos

Resumen

Este estudio investiga las propiedades termomecánicas del almidón hidroxipropilado (HPS) como plastificante para películas convencionales de almidón termoplástico (TPS), reforzadas con nanofibrillas de celulosa (CNF). Un estudio previo demostró que la hidroxipropilación del almidón condujo a la formación in situ de poli(óxido de propileno) (PPO), lo que induce la gelatinización y produce TPS con un significativo efecto plastificante. Para abordar este problema, se exploró la mezcla de almidón de yuca nativo con HPS e incorporación de CNF, así como CNF hidroxipropilado (mCNF), como una estrategia de refuerzo sostenible. Las películas se prepararon mediante colada y sus propiedades se evaluaron mediante ensayos de resistencia a la tracción, espectroscopia infrarroja por transformada de Fourier (FTIR), calorimetría diferencial de barrido (DSC) y análisis termogravimétrico (TG). Los resultados indican que la incorporación de CNF sin modificar aumentó significativamente la resistencia a la tracción de las películas de HPS/TPS, demostrando su eficaz capacidad de refuerzo. Por el contrario, la adición de mCNF redujo la resistencia a la tracción, lo que sugiere que la modificación química del CNF podría afectar su eficacia de refuerzo debido a interacciones alteradas con la matriz de almidón. La FTIR confirmó las interacciones moleculares, mientras que la DSC y la TG proporcionaron información sobre las transiciones térmicas y la estabilidad. Esta investigación destaca el potencial de combinar HPS, almidón nativo y CNF para crear biocompositos sostenibles y de alto rendimiento a base de almidón con un contenido reducido de plastificantes sintéticos, lo que ofrece un enfoque prometedor para diversas aplicaciones.

Descargas

Los datos de descarga aún no están disponibles.

Referencias

Lopes, H.S.M., da Costa, F.A.T., Komatsu, D., Dufresne, A., de Menezes, A.J.: Gelatinized Cassava Starch Obtained via Low Molar Ratio Hydroxypropylation Reaction. ACS Omega. 10, 12543–12552 (2025). https://doi.org/10.1021/acsomega.5c00246 DOI: https://doi.org/10.1021/acsomega.5c00246

Dufresne, A., Castaño, J.: Polysaccharide nanomaterial reinforced starch nanocomposites: A review. Starch - Stärke. 69, (2017). https://doi.org/10.1002/star.201500307 DOI: https://doi.org/10.1002/star.201500307

Mohammadi Nafchi, A., Moradpour, M., Saeidi, M., Alias, A.K.: Thermoplastic starches: Properties, challenges, and prospects. Starch - Stärke. 65, 61–72 (2013). https://doi.org/10.1002/star.201200201 DOI: https://doi.org/10.1002/star.201200201

Zhang, Y., Rempel, C., Liu, Q.: Thermoplastic Starch Processing and Characteristics—A Review. Crit Rev Food Sci Nutr. 54, 1353–1370 (2014). https://doi.org/10.1080/10408398.2011.636156 DOI: https://doi.org/10.1080/10408398.2011.636156

Gamage, A., Thiviya, P., Mani, S., Ponnusamy, P.G., Manamperi, A., Evon, P., Merah, O., Madhujith, T.: Environmental Properties and Applications of Biodegradable Starch-Based Nanocomposites. Polymers (Basel). 14, 4578 (2022). https://doi.org/10.3390/polym14214578 DOI: https://doi.org/10.3390/polym14214578

Khan, B., Bilal Khan Niazi, M., Samin, G., Jahan, Z.: Thermoplastic Starch: A Possible Biodegradable Food Packaging Material—A Review. J Food Process Eng. 40, (2017). https://doi.org/10.1111/jfpe.12447 DOI: https://doi.org/10.1111/jfpe.12447

Sanyang, M., Sapuan, S., Jawaid, M., Ishak, M., Sahari, J.: Effect of Plasticizer Type and Concentration on Tensile, Thermal and Barrier Properties of Biodegradable Films Based on Sugar Palm (Arenga pinnata) Starch. Polymers (Basel). 7, 1106–1124 (2015). https://doi.org/10.3390/polym7061106 DOI: https://doi.org/10.3390/polym7061106

Niranjana Prabhu, T., Prashantha, K.: A review on present status and future challenges of starch based polymer films and their composites in food packaging applications. Polym Compos. 39, 2499–2522 (2018). https://doi.org/10.1002/pc.2423 DOI: https://doi.org/10.1002/pc.24236

Leroy, L., Stoclet, G., Lefebvre, J.-M., Gaucher, V.: Mechanical Behavior of Thermoplastic Starch: Rationale for the Temperature-Relative Humidity Equivalence. Polymers (Basel). 14, 2531 (2022). https://doi.org/10.3390/polym14132531 DOI: https://doi.org/10.3390/polym14132531

Zhang, Y., Rempel, C.: Retrogradation and Antiplasticization of Thermoplastic Starch. In: Thermoplastic Elastomers. InTech (2012) DOI: https://doi.org/10.5772/35848

Montilla‐Buitrago, C.E., Gómez‐López, R.A., Solanilla‐Duque, J.F., Serna‐Cock, L., Villada Castillo, H.S.: Effect of Plasticizers on Properties, Retrogradation, and Processing of Extrusion‐Obtained Thermoplastic Starch: A Review. Starch - Stärke. 73, (2021). https://doi.org/10.1002/star.202100060 DOI: https://doi.org/10.1002/star.202100060

Fu, Z., Zhang, L., Ren, M., BeMiller, J.N.: Developments in Hydroxypropylation of Starch: A Review. Starch - Stärke. 71, (2019). https://doi.org/10.1002/star.201800167 DOI: https://doi.org/10.1002/star.201800167

Kim, H.-Y., Jane, J., Lamsal, B.: Hydroxypropylation improves film properties of high amylose corn starch. Ind Crops Prod. 95, 175–183 (2017). https://doi.org/10.1016/j.indcrop.2016.10.025 DOI: https://doi.org/10.1016/j.indcrop.2016.10.025

Fazeli, M., Keley, M., Biazar, E.: Preparation and characterization of starch-based composite films reinforced by cellulose nanofibers. Int J Biol Macromol. 116, 272–280 (2018). https://doi.org/10.1016/j.ijbiomac.2018.04.186 DOI: https://doi.org/10.1016/j.ijbiomac.2018.04.186

Li, J., Zhou, M., Cheng, G., Cheng, F., Lin, Y., Zhu, P.: Comparison of Mechanical Reinforcement Effects of Cellulose Nanofibers and Montmorillonite in Starch Composite. Starch - Stärke. 71, (2019). https://doi.org/10.1002/star.201800114 DOI: https://doi.org/10.1002/star.201800114

da Costa, F.A.T., Dufresne, A., Parra, D.F.: Impact of High-Dose Gamma Irradiation on PLA/PBAT Blends Reinforced with Cellulose Nanoparticles from Pineapple Leaves. ACS Omega. 10, 38182–38202 (2025). https://doi.org/10.1021/acsomega.5c06115 DOI: https://doi.org/10.1021/acsomega.5c06115

da Costa, F.A.T., Parra, D.F., Cardoso, E.C.L., Güven, O.: PLA, PBAT, Cellulose Nanocrystals (CNCs), and Their Blends: Biodegradation, Compatibilization, and Nanoparticle Interactions. J Polym Environ. 31, 4662–4690 (2023). https://doi.org/10.1007/s10924-023-02899-7 DOI: https://doi.org/10.1007/s10924-023-02899-7

Dufresne, A.: Nanocellulose: a new ageless bionanomaterial. Materials Today. 16, 220–227 (2013). https://doi.org/10.1016/j.mattod.2013.06.004 DOI: https://doi.org/10.1016/j.mattod.2013.06.004

Babaee, M., Jonoobi, M., Hamzeh, Y., Ashori, A.: Biodegradability and mechanical properties of reinforced starch nanocomposites using cellulose nanofibers. Carbohydr Polym. 132, 1–8 (2015). https://doi.org/10.1016/j.carbpol.2015.06.043 DOI: https://doi.org/10.1016/j.carbpol.2015.06.043

Dufresne, A.: Nanocellulose: From Nature to High Performance Tailored Materials. Walter de Gruyter GmbH & Co KG (2017) DOI: https://doi.org/10.1515/9783110480412

Zhao, Y., Troedsson, C., Bouquet, J.-M., Thompson, E.M., Zheng, B., Wang, M.: Mechanically Reinforced, Flexible, Hydrophobic and UV Impermeable Starch-Cellulose Nanofibers (CNF)-Lignin Composites with Good Barrier and Thermal Properties. Polymers (Basel). 13, 4346 (2021). https://doi.org/10.3390/polym13244346 DOI: https://doi.org/10.3390/polym13244346

Gandini, A., Belgacem, M.N.: Partial or Total Oxypropylation of Natural Polymers and the Use of the Ensuing Materials as Composites or Polyol Macromonomers. In: Monomers, Polymers and Composites from Renewable Resources. pp. 273–288. Elsevier (2008) DOI: https://doi.org/10.1016/B978-0-08-045316-3.00012-0

AMERICAN SOCIETY FOR TESTING AND MATERIALS: Standard Test Method for Tensile Properties of Thin Plastic Sheeting. ASTM D882-00. 1–9 (2001)

da Costa, F.A.T., Dufresne, A., Song, T., Parra, D.F.: Exploring acid hydrolysis conditions and extended mechanical processing for producing cellulose nanocrystal and nanofibrils from pineapple leaf fibers. Int J Biol Macromol. 306, 141755 (2025). https://doi.org/10.1016/j.ijbiomac.2025.141755 DOI: https://doi.org/10.1016/j.ijbiomac.2025.141755

Xie, D., Li, J., Zhang, C., Yang, S., Yang, A., Song, S., Song, Y.: Design of heat-sealing starch-based bioplastics reinforced with different modified starches and TEMPO-CNF. Ind Crops Prod. 232, 121303 (2025). https://doi.org/10.1016/j.indcrop.2025.121303 DOI: https://doi.org/10.1016/j.indcrop.2025.121303

Lopes, H.S.M., Oliveira, G.H.M., Talabi, S.I., Lucas, A.A.: Production of thermoplastic starch and poly (butylene adipate-co-terephthalate) films assisted by solid-state shear pulverization. Carbohydr Polym. 258, 117732 (2021). https://doi.org/10.1016/j.carbpol.2021.117732 DOI: https://doi.org/10.1016/j.carbpol.2021.117732

Descargas

Publicado

2025-08-29

Cómo citar

DA COSTA, Fernanda Andrade Tigre; LOPES, Henrique Solowej Medeiros; ALVES, Lucas Repecka; KOMATSU, Daniel; DE MENEZES, Aparecido Junior; PARRA, Duclerc Fernandes. EQUILIBRIO ENTRE FLEXIBILIDAD Y RESISTENCIA DE LOS BIOCOMPOSITOS DE NANOFIBRILLAS DE ALMIDÓN HIDROXIPROPILADO/CELULOSA. LUMEN ET VIRTUS, [S. l.], v. 16, n. 51, p. e7691 , 2025. DOI: 10.56238/levv16n51-094. Disponível em: https://periodicos.newsciencepubl.com/LEV/article/view/7691. Acesso em: 29 jan. 2026.