THE ROLE OF TUMOR-ASSOCIATED M2 MACROPHAGES IN OSTEOSARCOMA GENESIS: INVASIVE MECHANISMS

Authors

  • Carlos Alberto Pereira da Silva Junior Author
  • Beatriz Maria de Carvalho Paixao Author
  • Jose Eduardo Kenzo Murata Author
  • Lucas Cauê Barbosa Author
  • Luana Souza Author
  • Nathalia Bezerra de Souza Rates Author
  • Victória Dias da Silva Author
  • Yasmin de Sousa Silva Author

DOI:

https://doi.org/10.56238/levv17n57-023

Keywords:

Macrophages, M1 and M2 Phenotypes, Osteosarcoma, Immunosuppression, Tumor Microenvironment

Abstract

Innate immune responses are tightly regulated by various cell types, with macrophages playing a central role due to their remarkable functional plasticity. These cells can polarize into different phenotypes in response to environmental stimuli, forming a functional spectrum ranging from the pro-inflammatory M1 to the anti-inflammatory M2 phenotype. M1 macrophages are induced by Th1 cytokines and microbial components such as LPS and TLR agonists. They are characterized by the production of inflammatory cytokines like IL-6 and by the high expression of major histocompatibility complex molecules (MHC I and II), which are essential for antitumor immunity. Conversely, M2 macrophages respond to a variety of stimuli and are subdivided into M2a, M2b, M2c, and M2d subtypes, each associated with functions such as inflammation resolution, tissue repair, and angiogenesis. Despite their functional differences, all M2 subtypes share immunosuppressive features and are commonly associated with tumor progression. Among them, tumor-associated macrophages (TAMs) are predominantly of the M2 type and are highly abundant within the tumor microenvironment (TME), where they promote immune evasion, tumor proliferation, angiogenesis, and therapeutic resistance. One key immunosuppressive mechanism used by TAMs is the expression of Arginase-1, an enzyme that inhibits T cell-mediated immune responses, thereby facilitating tumor immune evasion. Notably, the distinction between M1 and M2 macrophages is not absolute but represents a dynamic and reversible continuum of activation states that can shift according to changes in the local microenvironment. Understanding the mechanisms underlying macrophage plasticity and function in the TME holds significant clinical potential. Therapeutic strategies aimed at reprogramming TAMs from an M2 to an M1 phenotype, or targeting key molecules such as Arginase-1, offer promising avenues for restoring T cell activity and enhancing antitumor immune responses. Therefore, the findings discussed provide valuable insights into tumor immunology and highlight potential targets for the development of more effective and personalized immunotherapies for cancer treatment.

Downloads

Download data is not yet available.

References

Borges da Silva H, Fonseca R, Pereira RM, Cassado Ados A, Álvarez JM, D'Império Lima MR. Splenic Macrophage Subsets and Their Function during Blood-Borne Infections. Front Immunol. 2015 Sep 22;6:480. doi: 10.3389/fimmu.2015.00480. PMID: 26441984; PMCID: PMC4585205. DOI: https://doi.org/10.3389/fimmu.2015.00480

Cai Z, Cao Y, Luo Y, Hu H, Ling H. Signalling mechanism(s) of epithelial-mesenchymal transition and cancer stem cells in tumour therapeutic resistance. Clin Chim Acta. 2018 Aug;483:156-163. Doi: 10.1016/j.cca.2018.04.033. Epub 2018 Apr 27. PMID: 29709449. DOI: https://doi.org/10.1016/j.cca.2018.04.033

Cersosimo F, Lonardi S, Bernardini G, Telfer B, Mandelli GE, Santucci A, Vermi W, Giurisato E. Tumor-Associated Macrophages in Osteosarcoma: From Mechanisms to Therapy. Int J Mol Sci. 2020 Jul 23;21(15):5207. Doi: 10.3390/ijms21155207. PMID: 32717819; PMCID: PMC7432207. DOI: https://doi.org/10.3390/ijms21155207

Chanmee T, Ontong P, Konno K, Itano N. Tumor-associated macrophages as major players in the tumor microenvironment. Cancers (Basel). 2014 Aug 13;6(3):1670-90. Doi: 10.3390/cancers6031670. PMID: 25125485; PMCID: PMC4190561. DOI: https://doi.org/10.3390/cancers6031670

Corre I, Verrecchia F, Crenn V, Redini F, Trichet V. The Osteosarcoma Microenvironment: A Complex But Targetable Ecosystem. Cells. 2020 Apr 15;9(4):976. Doi: 10.3390/cells9040976. PMID: 32326444; PMCID: PMC7226971. DOI: https://doi.org/10.3390/cells9040976

Dallavalasa S, Beeraka NM, Basavaraju CG, Tulimilli SV, Sadhu SP, Rajesh K, Aliev G, Madhunapantula SV. The Role of Tumor Associated Macrophages (TAMs) in Cancer Progression, Chemoresistance, Angiogenesis and Metastasis – Current Status. Curr Med Chem. 2021;28(39):8203-8236. Doi: 10.2174/0929867328666210720143721. PMID: 34303328. DOI: https://doi.org/10.2174/0929867328666210720143721

Damron TA, Ward WG, Stewart A. Osteosarcoma, chondrosarcoma, and Ewing’s sarcoma: National Cancer Data Base Report. Clin Orthop Relat Res. 2007 Jun;459:40-7. Doi: 10.1097/BLO.0b013e318059b8c9. PMID: 17414166. DOI: https://doi.org/10.1097/BLO.0b013e318059b8c9

Essandoh K, Li Y, Huo J, Fan GC. MiRNA-Mediated Macrophage Polarization and its Potential Role in the Regulation of Inflammatory Response. Shock. 2016 Aug;46(2):122-31. doi: 10.1097/SHK.0000000000000604. PMID: 26954942; PMCID: PMC4949115. DOI: https://doi.org/10.1097/SHK.0000000000000604

Franceschini N, Lam SW, Cleton-Jansen AM, Bovée JVMG. What’s new in bone forming tumours of the skeleton? Virchows Arch. 2020 Jan;476(1):147-157. Doi: 10.1007/s00428-019-02683-w. Epub 2019 Nov 18. PMID: 31741049; PMCID: PMC6969005 DOI: https://doi.org/10.1007/s00428-019-02683-w

Gianferante DM, Mirabello L, Savage AS. Germline and somatic genetics of osteosarcoma – connecting aetiology, biology and therapy. Nat Ver Endocrinol. 2017 Aug;13(8):480-491. Doi: 10.1038/nrendo.2017.16. Epub 2017 Mar 24. PMID: 28338660. DOI: https://doi.org/10.1038/nrendo.2017.16

Han Y, Guo W, Ren T, Huang Y, Wang S, Liu K, Zheng B, Yang K, Zhang H, Liang X. Tumor-associated macrophages promote lung metastasis and induce epithelial-mesenchymal transition in osteosarcoma by activating the COX-2/STAT3 axis. Cancer Lett. 2019 Jan;440-441:116-125. Doi: 10.1016/j.canlet.2018.10.011. Epub 2018 Oct 19. PMID: 30343113. DOI: https://doi.org/10.1016/j.canlet.2018.10.011

Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Invest. 2009 Jun;119(6):1420-8. Doi: 10.1172/JCI39104. Erratum in: J Clin Invest. 2010 May 3;120(5):1786. PMID: 19487818; PMCID: PMC2689101. DOI: https://doi.org/10.1172/JCI39104

Lin S, Dai Y, Han C, Han T, Zhao L, Wu R, Liu J, Zhang B, Huang N, Liu Y, Lai S, Shi J, Wang Y, Lou M, Xie J, Cheng Y, Tang H, Yao H, Fang H, Zhang Y, Wu X, Shen L, Ye Y, Xue L, Wu ZB. Single-cell transcriptomics reveal distinct immune-infiltrating phenotypes and macrophage-tumor interaction axes among different lineages of pituitary neuroendocrine tumors. Genome Med. 2024 Apr 24;16(1):60. doi: 10.1186/s13073-024-01325-4. PMID: 38658971; PMCID: PMC11040908. DOI: https://doi.org/10.1186/s13073-024-01325-4

LOPES, Ademar; CHAMMAS, Roger; IYEYASU, Hirofumi. Oncologia para a graduação. 3. Ed. São Paulo: Lemar, 2013. 752 p.

Mirabello L, Zhu B, Koster R, Karlins E, Dean M, Yeager M, Gianferante M, Spector LG, Morton LM, Karyadi D, Robison LL, Armstrong GT, Bhatia S, Song L, Pankratz N, Pinheiro M, Gastier-Foster JM, Gorlick R, de Toledo SRC, Petrilli AS, Patino-Garcia A, Lecanda F, Gutierrez-Jimeno M, Serra M, Hattinger C, Picci P, Scotlandi K, Flanagan AM, Tirabosco R, Amary MF, Kurucu N, Ilhan IE, Ballinger ML, Thomas DM, Barkauskas DA, Mejia-Baltodano G, Valverde P, Hicks BD, Zhu B, Wang M, Hutchinson AA, Tucker M, Sampson J, Landi MT, Freedman ND, Gapstur S, Carter B, Hoover RN, Chanock SJ, Savage AS. Frequency of Pathogenic Germline Variants in Cancer-Susceptibility Genes in Patients With Osteosarcoma. JAMA Oncol. 2020 May 1;6(5):724-734. Doi: 10.1001/jamaoncol.2020.0197. PMID: 32191290; PMCID: PMC7082769. DOI: https://doi.org/10.1001/jamaoncol.2020.0197

Moriarity BS, Otto GM, Rahrmann EP, Rathe SK, Wolf NK, Weg MT, Manlove LA, LaRue RS, Temiz NA, Molyneux SD, Choi K, Holly KJ, Sarver AL, Scott MC, Forster CL, Modiano JF, Khanna C, Hewitt SM, Khokha R, Yang Y, Gorlick R, Dyer MA, Largaespada DA. A Sleeping Beauty forward genetic screen identifies new genes and pathways driving osteosarcoma development and metastasis. Nat Genet. 2015 Jun;47(6):615-24. Doi: 10.1038/ng.3293. Epub 2015 May 11. PMID: 25961939; PMCID: PMC4767150. DOI: https://doi.org/10.1038/ng.3293

Osteossarcoma Ritter, J. et al.Anais de Oncologia, Volume 21, vii320 – vii325 DOI: https://doi.org/10.1093/annonc/mdq276

Strizova Z, Benesova I, Bartolini R, Novysedlak R, Cecrdlova E, Foley LK, Striz I. M1/M2 macrophages and their overlaps - myth or reality? Clin Sci (Lond). 2023 Aug 14;137(15):1067-1093. doi: 10.1042/CS20220531. PMID: 37530555; PMCID: PMC10407193 DOI: https://doi.org/10.1042/CS20220531

Xing S, Wang C, Tang H, Guo J, Liu X, Yi F, Liu G, Wu X. Down-regulation of PDGFRβ suppresses invasion and migration in osteosarcoma cells by influencing epithelial-mesenchymal transition. FEBS Open Bio. 2020 Sep;10(9):1748-1757. Doi: 10.1002/2211-5463.12915. Epub 2020 Aug 3. PMID: 32580247; PMCID: PMC7459394. DOI: https://doi.org/10.1002/2211-5463.12915

Xu C, Chen J, Tan M, Tan Q. The role of macrophage polarization in ovarian cancer: from molecular mechanism to therapeutic potentials. Front Immunol. 2025 Apr 22;16:1543096. doi: 10.3389/fimmu.2025.1543096. PMID: 40330466; PMCID: PMC12052780. DOI: https://doi.org/10.3389/fimmu.2025.1543096

Published

2026-02-09

How to Cite

DA SILVA JUNIOR, Carlos Alberto Pereira; PAIXAO, Beatriz Maria de Carvalho; MURATA, Jose Eduardo Kenzo; BARBOSA, Lucas Cauê; SOUZA, Luana; RATES, Nathalia Bezerra de Souza; DA SILVA, Victória Dias; SILVA, Yasmin de Sousa. THE ROLE OF TUMOR-ASSOCIATED M2 MACROPHAGES IN OSTEOSARCOMA GENESIS: INVASIVE MECHANISMS. LUMEN ET VIRTUS, [S. l.], v. 17, n. 57, p. e12102, 2026. DOI: 10.56238/levv17n57-023. Disponível em: https://periodicos.newsciencepubl.com/LEV/article/view/12102. Acesso em: 17 feb. 2026.