AI APPLICATIONS IN FACIAL RECOGNITION AND PORTRAIT OPTIMIZATION
DOI:
https://doi.org/10.56238/levv15n43-145Keywords:
Artificial Intelligence, Facial Recognition, Portrait Optimization, Digital Ethics, Technology and SocietyAbstract
This study analyzes the applications of artificial intelligence in facial recognition and portrait optimization, highlighting technological advances, ethical, legal, and social implications, as well as interdisciplinary possibilities. The objective was to understand how deep learning algorithms, especially convolutional neural networks, have transformed biometrics and digital authentication systems while raising debates on privacy, algorithmic bias, and regulation. The justification lies in the need to critically examine a technology that, while offering greater efficiency and practicality, may also generate risks of excessive surveillance and violations of fundamental rights. The methodology followed a qualitative, exploratory, and bibliographic approach, grounded in Lakatos and Gil, using documentary analysis of Brazilian scientific articles in PDF. The results showed that although current models achieve high levels of accuracy in controlled environments, they still face limitations in real-world scenarios and generate social distrust. It was also observed that portrait optimization is relevant in several areas, such as medicine, psychology, advertising, and digital security, demonstrating the interdisciplinary nature of the subject. It is concluded that the evolution of facial recognition must be tied to regulatory mechanisms, transparency, and social responsibility, in order to align technological innovation with the preservation of rights and human values.
Downloads
References
ALMANÇA, Camille Hilgemann; ROSPA, Aline Martins. Tecnologias de reconhecimento facial e desafios em proteção de dados. 2024.
ALMEIDA, Eduarda Costa. Os grandes irmãos: o uso de tecnologias de reconhecimento facial para persecução penal. 2022.
BÖHM, Samara Maria; SOBIERANSKI, André. Análise de performance de um algoritmo de reconhecimento facial em sistemas embarcados. 2021.
DIAS, Mattheus Veloso. Otimização de algoritmo de reconhecimento facial via aplicação de arquitetura FaceNet residual baseada em Deep Learning. CEFET-MG, 2020.
GIL, Antonio Carlos. Métodos e técnicas de pesquisa social. 6. ed. São Paulo: Atlas, 2008.
LAKATOS, Eva Maria; MARCONI, Marina de Andrade. Fundamentos de metodologia científica. 5. ed. São Paulo: Atlas, 2003.
MASCARENHAS, Gabriel Silva dos Anjos. O uso da tecnologia de reconhecimento facial na segurança pública: uma revisão da literatura. 2021.
PONTES, Marco Aurélio Muniz de; SILVA, Diogo Severino Ramos da. O impacto da tecnologia de reconhecimento facial na eficiência da prova pericial e garantia dos direitos individuais. 2023.
SARTORI, Bruno; REVEJES, Gilmar Wilian. Sistema de reconhecimento facial utilizando deep learning. Catanduva: IFSP, 2021.
SILVA, Ewerton Vitor Costa. Avaliação de algoritmos de reconhecimento facial para autenticação. UFU, 2023.
SILVA, Julio Cesar Ribeiro; FILHO, Pedro Luiz de Paula. Reconhecimento facial utilizando transferência de aprendizado e redes neurais. UTFPR, 2023.