INFLUENCE OF BACTERIA ON THE BIOREMEDIATION OF SOIL CONTAMINATED WITH CADMIUM AND CULTIVATED WITH CRAMBE ABYSSINICA IN PROTECTED CULTIVATION

Authors

  • Aline Snak Author
  • Affonso Celso Gonçalves Junior Author
  • Matheus Schmidt Author
  • Angélica de Fatima Bortolato Piccioli Author
  • Poliana Ferreira da Costa Author
  • Robie Allan Bombardelli Author

DOI:

https://doi.org/10.56238/levv16n52-071

Keywords:

Plant Growth-Promoting Bacteria, Phytoremediation, Toxic Metals, Microorganisms

Abstract

The increasing concern about Cd contamination, a toxic metal that accumulates in the environment and enters the food chain, poses risks to human health and the environment. This research focuses on remediation methods such as phytoremediation using Crambe abyssinica and bioremediation with plant growth-promoting bacteria (PGPB), highlighting their potential to reduce Cd bioavailability. The experiments were carried out in a protected cultivation system in Paraná, Brazil, using a randomized block design. Seeds were inoculated with A. brasilense and P. fluorescens under varying Cd doses. Evaluated variables included plant growth, anatomical characteristics, and concentrations of macronutrients and Cd in plant tissue and soil. Results showed that bacterial inoculation significantly increased plant growth even under Cd contamination. Inoculated plants exhibited greater root and shoot length, as well as improved vascular structure in xylem and phloem. Nutrient analysis revealed better macronutrient uptake and greater Cd accumulation, especially in aerial plant parts. The results confirm that phytoremediation and bioremediation are effective strategies for mitigating Cd contamination in agricultural soils. Inoculation with PGPB not only improved plant health and growth but also enhanced Cd accumulation capacity, supporting their use in sustainable remediation strategies. The techniques presented offer sustainable approaches for managing environmental risks associated with toxic metals.

Downloads

Download data is not yet available.

References

Almeida IV de. Bactérias promotoras de crescimento vegetal em milho: absorção de nitrogênio, solubilização de fosfato e produção. 2020; http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/8830. accessed 15 April 2024

Andrade RA, Brito RS de, Carvalho CA de, Silva SB da, Silva MAD e, Moraes KNO. Acúmulo de nutrientes nas folhas e produção do capim Tamani inoculado com Azospirillum brasilense. Revista Verde de Agroecologia e Desenvolvimento Sustentável. 2022;17:77–85.

AOAC. Official Methods of Analysis, 22nd Edition (2023). Vol. 22. 2023. https://www.aoac.org/official-methods-of-analysis/

Bashan Y, de-Bashan LE. How the Plant Growth-Promoting Bacterium Azospirillum Promotes Plant Growth—A Critical Assessment. In: Advances in Agronomy. Elsevier; 2010. p. 77–136. https://linkinghub.elsevier.com/retrieve/pii/S0065211310080028. accessed 4 February 2024

Battistus AG. Modulações anatômicas, bioquímicas e fotossintéticas mediadas por Azospirillum brasilense inoculado via semente e pulverização foliar em milho. Marechal Cândido Rondon, PR: Universidade Estadual do Oeste do Paraná, Thesis, 2019.

Boechat CL. Biorremediação de solos contaminados por metais pesados em áreas de beneficiamento de minério de ouro [Tese (Doutorado em Agronomia)]. [Porto Alegre]: Universidade Federal do Rio Grande do Sul; 2014.

Boghdady M, Ali AS. Comparison between effect of Azospirillum brasilense and Anabaena oryzae on growth, yield and anatomical characters of wheat plants. 2013;9:627–37.

Bulegon LG, Rampim L, Klein J, Guimarães V, Battistus AG, Inagaki AM. Componentes de produção e produtividade da cultura da soja submetida à inoculação de Bradyrhizobium E Azospirillum. 2016. https://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0187-57792016000200169

Bush M, Sethi V, Sablowski R. A Phloem-Expressed PECTATE LYASE-LIKE Gene Promotes Cambium and Xylem Development. Front Plant Sci. 2022;13:888201.

Chaves LHG, Souza RS. Crescimento, distribuição e acumulação de cádmio em plantas de Jatropha curcas. Revista de Ciências Agrárias. 2014;37:286–91.

Chavez Apare CL. Tratamiento de las aguas contaminadas por Cadmio y Plomo utilizando microorganismos (Bacillus sp y Pseudomonas sp) en un biorreactor, Río Chili Arequipa – 2019. Repositorio Institucional - UCV. 2019; https://repositorio.ucv.edu.pe/handle/20.500.12692/70761. accessed 15 April 2024

Chiarini L, Bevivino A, Tabacchioni S, Dalmastri C. Inoculation of Burkholderia cepacia, Pseudomonas fluorescens and Enterobacter sp. on Sorghum bicolor: Root colonization and plant growth promotion of dual strain inocula. Soil Biology and Biochemistry. 1998;30:81–7.

Chien SH, Carmona G, Prochnow LI, Austin ER. Cadmium Availability from Granulated and Bulk-Blended Phosphate-Potassium Fertilizers. Journal of Environmental Quality. 2003;32:1911–4.

Ciciliano LG, Santos LK dos, Laviola BG, Favaro SP. Quantificação e caracterização de óleos de canola, carinata e crambe produzidos no Centro-Oeste brasileiro. 2023; http://www.alice.cnptia.embrapa.br/handle/doc/1158076. accessed 5 February 2024

CONAMA. Resolução CONAMA no 420 de 28/12/2009 - Federal - LegisWeb. 2009. https://www.legisweb.com.br/legislacao/?id=111046. accessed 4 July 2023

Cotrim MF, Alvarez RCF, Seron ACC. QUALIDADE FISIOLÓGICA DE SEMENTES DE TRIGO EM RESPOSTA A APLICAÇÃO DE AZOSPIRILLUM BRASILENSE E ÁCIDO HÚMICO. Revista Brasileira de Engenharia de Biossistemas. 2016;10:349–57.

Cruz-Hernández MA, Mendoza-Herrera A, Bocanegra-García V, Rivera G. Azospirillum spp. from Plant Growth-Promoting Bacteria to Their Use in Bioremediation. Microorganisms. 2022;10:1057.

Das P, Samantaray S, Rout GR. Studies on cadmium toxicity in plants: A review. Environmental Pollution. 1997;98:29–36.

Dias M, Monteiro C, Moutinho Pereira J, Correia C, Gonçalves B, Santos conceição. Cadmium toxicity affects photosynthesis and plant growth at different levels. Acta Physiologiae Plantarum. 2012;

Dixit V, Pandey V, Shyam R. Differential antioxidative responses to cadmium in roots and leaves of pea (Pisum sativum L. cv. Azad)1. Journal of Experimental Botany. 2001;52:1101–9.

Domenico P. Effect of Azospirillum brasilense on garlic (Allium sativum L.) cultivation. World Journal of Advanced Research and Reviews. 2019;2:008–13.

Domingos RN. Acúmulo de cádmio por Saccharomyces cerevisiae fermentando mosto de melaço. Universidade de São Paulo; 1997. https://teses.usp.br/teses/disponiveis/11/11138/tde-20191218-155802/. accessed 15 April 2024

Domingues SC de O, Cunha ECP da, Silva LS, Lopes EC, Fernandes SC, Oliveira LCA de, et al. AZOSPIRILLUM BRASILENSE ATUANDO COMO PROMOTOR DE CRESCIMENTO NA CULTURA DA SOJA. In 2019. p. 1. https://www.even3.com.br//anais/comsoja/173120-azospirillum-brasilense-atuando-como-promotor-de-crescimento-na-cultura-da-soja. accessed 15 April 2024

Duarte ANM. UNIVERSIDADE ESTADUAL PAULISTA (UNESP) FACULDADE DE CIÊNCIAS AGRÁRIAS E TECNOLÓGICAS CAMPUS DE DRACENA. 2021;

El-Afry MM, El-Nady MF, Abdelmonteleb EB, Metwaly MMS. Anatomical studies on drought-stressed wheat plants (Triticum aestivum L.) treated with some bacterial strains. 2012;56:165–74.

FAO/WHO. Joint FAO/WHO Expert Committee on Food Additives (JECFA). Evaluation of certain food additives and contaminants: seventy-third report. WHO Technical Report Series No. 960. Geneva: World Health Organization; 2010.

Ferreira DF. SISVAR: A COMPUTER ANALYSIS SYSTEM TO FIXED EFFECTS SPLIT PLOT TYPE DESIGNS. Brazilian Journal of Biometrics. 2019;37:529–35.

Ferreira J de P, Vidal MS, Baldani JI. Método para detecção e quantificação da atividade de ACC de aminase em bactérias diazotróficas promotoras de crescimento vegetal. EMBRAPA. 2020; https://ainfo.cnptia.embrapa.br/digital/bitstream/item/215904/1/Metodo-para-deteccao-e-quantificacao-a-atividade-de-ACC.pdf

Florida Rofner N, Paucar García HJ, Jacobo Salinas SS, Escobar Mamani F, Torres García J. Efecto de compost y NPK sobre los niveles de microorganismos y cadmio en suelo y almendra de cacao. Revista de Investigaciones Altoandinas. 2019;21:264–73.

Gasoni L aura, Cozzi J, Kobayashi K, Yossen V, Zumelzu G, Babbitt S, et al. Yield response of lettuce and potato to bacterial and fungal inoculants under field conditions in Córdoba (Argentina). Zeitschrift fur Pflanzenkrankheiten und Pflanzenschutz. 2001;108:530–5.

Gautam S, Anjani K, Srivastava N. In vitro evaluation of excess copper affecting seedlings and their biochemical characteristics in Carthamus tinctorius L. (variety PBNS-12). Physiol Mol Biol Plants. 2016;22:121–9.

Glick BR. Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res. 2014;169:30–9.

Gordon EM, Mccandless EL. Ultrastructure and Histochemistry of Chondrus crispus Stack. 1973;27:111–33.

Grant C, Bailey L. Nitrogen, phosphorus and zinc management effects on grain yield and cadmium concentration in two cultivars of durum wheat. Can J Plant Sci. 1998;78:63–70.

Greger M. Phytoremediation - Does it work? 7th INTERNATIONAL CONFERENCE ON THE BIOGEOCHEMESTRY OF TRACE ELEMENTS; 2003.

Guimarães VF, Klein J, Klein DK. Promoção de crescimento e solubilização de fosfato na cultura da soja: coinoculação de sementes com Bradyrhizobium japonicum e Pseudomonas fluorescens. RSD. 2021;10:e366101120078.

Hernández LE, Cooke DT. Modification of the root plasma membrane lipid composition of cadmium-treated Pisum sativum. Journal of Experimental Botany. 1997;48:1375–81.

Hungria M. Inoculação com Azospirillum brasilense: inovação em rendimento a baixo custo. Empresa Brasileira de Pesquisa Agropecuária. 325th ed. 2011; https://www.infoteca.cnptia.embrapa.br/infoteca/bitstream/doc/879471/1/DOC325.2011.pdf

HUNGRIA M, NOGUEIRA MA. Inoculação Multifuncional para Pastagens com Braquiárias. Embrapa Soja. 2021;

Jiang RF, Ma DY, Zhao FJ, McGrath SP. Cadmium hyperaccumulation protects Thlaspi caerulescens from leaf feeding damage by thrips (Frankliniella occidentalis). New Phytol. 2005;167:805–14.

Kabata-Pendias A, Pendias H. Trace elements in soils and plants. 3rd ed. Boca Raton, Fla: CRC Press; 2001.

Kang X, Yu X, Zhang Y, Cui Y, Tu W, Wang Q, et al. Inoculation of Sinorhizobium saheli YH1 Leads to Reduced Metal Uptake for Leucaena leucocephala Grown in Mine Tailings and Metal-Polluted Soils. Front Microbiol. 2018;9:1853.

Kargapolova K, Burygin G, Tkachenko O, Evseeva N, Puhalsky J, Belimov A. Effectiveness of inoculation of in vitro-grown potato microplants with rhizosphere bacteria of the genus Azospirillum. Plant Cell Tissue and Organ Culture. 2020;141:351–9.

Kayser A, Schulin R, Felix H. Phytoremediation of heavy metal contaminated areas, case studies. In: Pflanzenbelastung auf kontaminierten Standorten: plant impact at contaminated sites Internationaler Workshop am 1 und 2 Dezember 1997 am Fraunhofer-Institut für Umweltchemie und Ökotoxikologie, Schmallenberg. Erich Schmidt Verlag GmbH & Co (Berlin); 1999. p. 170–82. https://www.cabdirect.org/cabdirect/abstract/20013041132. accessed 5 February 2024

Kazi N, Deaker R, Wilson N, Muhammad K, Trethowan R. The response of wheat genotypes to inoculation with Azospirillum brasilense in the field. Field Crops Research. 2016;196.

Khoshru B, Mitra D, Khoshmanzar E, Myo EM, Uniyal N, Mahakur B, et al. Current scenario and future prospects of plant growth-promoting rhizobacteria: an economic valuable resource for the agriculture revival under stressful conditions. Journal of Plant Nutrition. 2020;43:3062–92.

Korentajer L. A review of the agricultural use of sewage sludge: benefits and potential hazards. 1991; https://www.cabidigitallibrary.org/doi/full/10.5555/19911961563. accessed 15 April 2024

Košćak L, Lamovšek J, Đermić E, Tegli S, Gruntar I, Godena S. Identification and Characterisation of Pseudomonas savastanoi pv. savastanoi as the Causal Agent of Olive Knot Disease in Croatian, Slovenian and Portuguese Olive (Olea europaea L.) Orchards. Plants. 2023;12:307.

Kumar A, Bisht BS, Dhewa T. Review on Bioremediation of Polluted Environment: A Management Tool. 2011;1.

Lima LNA. Monitoramento biológico para identificação de fonte de poluição em área residencial contígua à instalação do porto de Santos em Guarujá-SP, Brasil. Biological monitoring for the identification of pollution sources in a residential area adjacent to the port of Santos facility in Guarujá-SP, Brazil. 2023; http://bibliotecatede.uninove.br/handle/tede/3168. accessed 5 February 2024

Lopes MJDS, Dias-Filho MB, Gurgel ESC. Successful Plant Growth-Promoting Microbes: Inoculation Methods and Abiotic Factors. Front Sustain Food Syst. 2021;5:606454.

Malavolta E, Vitti GC, Oliveira SA. Avaliação do estado nutricional das plantas: princípios e aplicações. 2nd ed. Piracicaba: Associação Brasileira para Pesquisa da Potassa e do Fosfato; 1997. https://www.infraestruturameioambiente.sp.gov.br/institutodebotanica/1997/01/avaliacao-do-estado-nutricional-das-plantas-principios-e-aplicacoes/. accessed 30 July 2023

Marciano Marra L, Fonsêca Sousa Soares CR, de Oliveira SM, Avelar Ferreira PA, Lima Soares B, de Fráguas Carvalho R, et al. Biological nitrogen fixation and phosphate solubilization by bacteria isolated from tropical soils. Plant Soil. 2012;357:289–307.

Marques DS, Silva JA da. ESTUDO DA CONTAMINAÇÃO DOS FERTILIZANTES FOSFATADOS POR CÁDMIO, CHUMBO E CRÔMIO EMPREGADOS NA AGRICULTURA. [CAMPINAS/SP]: FACULDADE DE TECNOLOGIA DE CAMPINAS; 2020. https://ric.cps.sp.gov.br/bitstream/123456789/9295/1/Tecnologiaemprocessoquimicos_2_2020_Janete%20Araujo%20da%20Silva_Estudo%20da%20contamina%C3%A7%C3%A3o%20dos%20fertilizantes%20fosfatados%20por%20c%C3%A2dmio%2C%20chumbo%20e%20cr%C3%B4mio%20empregados%20na%20agricultura.pdf. accessed 25 June 2023

McBride MB. Environna ental Chemistry Of So|| LS. Environna Ental Chemistry Of So|| LS. 1994; https://www.academia.edu/download/35536696/Enviromental_soil.pdf. accessed 15 April 2024

Miller CD, Pettee B, Zhang C, Pabst M, McLean JE, Anderson AJ. Copper and cadmium: responses in Pseudomonas putida KT2440. Letters in Applied Microbiology. 2009;49:775–83.

Moreira FMS, Siqueira JO. Microbiologia e Bioquímica. EDITORA UFLA; 2006. http://biblioteca.unisced.edu.mz/handle/123456789/1700. accessed 14 March 2024

Navarro-León E, Oviedo-Silva J, Ruiz JM, Blasco B. Possible role of HMA4a TILLING mutants of Brassica rapa in cadmium phytoremediation programs. Ecotoxicol Environ Saf. 2019;180:88–94.

Nordberg GF, Nogawa K, Nordberg M, Friberg L. Cadmium. In: Nordberg GF, Costa M, editors. Handbook on the Toxicology of Metals. 4th ed. Academic Press; 2018. p. 445–86.

Novinscak A, Joly DL, Filion M. Complete Genome Sequence of the Plant Growth-Promoting Rhizobacterium Pseudomonas fluorescens LBUM677. Thrash JC, editor. Microbiol Resour Announc. 2019;8:e00438-19.

Oliveira HBD, Rocha E, Teles T, Florentino LA. Microbial Activity in the Agricultural and Forestry System. RSD. 2022;11:e56211226184.

Oliveira MA de, Zucareli C, Ferreira AS, Domingues AR, Spolaor LT, Neves CSVJ. Adubação fosfatada associada à inoculação com Pseudomonas fluorescens no desempenho agronómico do milho. Revista de Ciências Agrárias. 2015;38:18–25.

Oliveira Neto JR de, Murro NC, Nascimento CV, Uliana MR, Antunes PA. EXTRAÇÃO DE METAIS TÓXICOS EM SOLOS CONTAMINADOS UTILIZANDO O MILHO COMO POSSÍVEL FITORREMEDIADOR. COLLOQ EXACTARUM. 2021;13:59–69.

Pereyra MA, García P, Colabelli MN, Barassi CA, Creus CM. A better water status in wheat seedlings induced by Azospirillum under osmotic stress is related to morphological changes in xylem vessels of the coleoptile. Applied Soil Ecology. 2012;53:94–7.

Pérez-Rodriguez MM, Pontin M, Lipinski V, Bottini R, Piccoli P, Cohen AC. Pseudomonas fluorescens and Azospirillum brasilense Increase Yield and Fruit Quality of Tomato Under Field Conditions. J Soil Sci Plant Nutr. 2020;20:1614–24.

Rafiq MT, Aziz R, Yang X, Xiao W, Rafiq MK, Ali B, et al. Cadmium phytoavailability to rice (Oryza sativa L.) grown in representative Chinese soils. A model to improve soil environmental quality guidelines for food safety. Ecotoxicology and Environmental Safety. 2014;103:101–7.

Rafique MZ, Carvalho E, Stracke R, Palmieri L, Herrera L, Feller A, et al. Nonsense Mutation Inside Anthocyanidin Synthase Gene Controls Pigmentation in Yellow Raspberry (Rubus idaeus L.). Front Plant Sci. 2016;7. http://journal.frontiersin.org/article/10.3389/fpls.2016.01892/full. accessed 15 April 2024

Rezende CC, Silva MA, Frasca LLDM, Faria DR, Filippi MCCD, Lanna AC, et al. Microrganismos multifuncionais: utilização na agricultura. RSD. 2021;10:e50810212725.

Romero A, Vega D, Correa O. Azospirillum brasilense mitigates water stress imposed by a vascular disease by increasing xylem vessel area and stem hydraulic conductivity in tomato. Applied Soil Ecology. 2014;38–43.

Salt DE, Prince RC, Pickering IJ, Raskin I. Mechanisms of Cadmium Mobility and Accumulation in Indian Mustard. Plant Physiology. 1995;109:1427–33.

Sanità di Toppi L, Gabbrielli R. Response to cadmium in higher plants. Environmental and Experimental Botany. 1999;41:105–30.

Santos ALF, BORGES LOS, Boaventura GR, Gonçalves LP. METAIS PESADOS NO RIBEIRÃO PIANCÓ, ANÁPOLIS-GO E SUAS IMPLICAÇÕES AMBIENTAIS. 2015;8.

Satarug S, Moore MR. Adverse health effects of chronic exposure to low-level cadmium in foodstuffs and cigarette smoke. Environ Health Perspect. 2010;118(2):182–90. doi:10.1289/ehp.0901239.

Satarug S, Vesey DA, Gobe GC. Health risk assessment of dietary cadmium intake: Do current guidelines indicate how much is safe? Environ Health Perspect. 2019;127(3):037001. doi:10.1289/EHP4141.

Silva ASL. Promoção de crescimento em milho pela inoculação e coinoculação de Azospirillum, Bacillus E Pseudomonas. 2022; https://tede.unioeste.br/handle/tede/6370. accessed 15 April 2024

Silva FC da. Manual de análises químicas de solos, plantas e fertilizantes. Brasília, DF: Embrapa Informação Tecnológica; Rio de Janeiro: Embrapa Solos, 2009.; 2009. http://www.infoteca.cnptia.embrapa.br/handle/doc/330496. accessed 15 April 2024

Silva ML de S, Vitti GC, Trevizam AR. Concentração de metais pesados em grãos de plantas cultivadas em solo com diferentes níveis de contaminação. Pesq agropec bras. 2007;42:527–35.

de Siqueira KA, Liotti RG, Mendes TA de O, Soares MA. Draft Genome Sequences of Pseudomonas sp. Strain 382 and Pantoea coffeiphila 342, Endophytic Bacteria Isolated from Brazilian Guarana [Paullinia cupana (Mart.) Ducke]. Genome Announcements. 2018;6:10.1128/genomea.00287-18.

Sorce C, Giovannelli A, Sebastiani L, Anfodillo T. Hormonal signals involved in the regulation of cambial activity, xylogenesis and vessel patterning in trees. Plant Cell Rep. 2013;32:885–98.

Souza AFC. Caracterização molecular e avaliação de resistência a chumbo e cádmio em bactérias isoladas de rizosferas de plantas coletadas em Santo Amaro (BA) [Mestrado em Biotecnologia]. Universidade Estadual de Feira de Santana; 2013. http://tede2.uefs.br:8080/handle/tede/254. accessed 4 July 2023

Taiz L, Zeiger E. Fisiologia e Desenvolvimento Vegetal 6a Edição. 2017. https://www.editoraufv.com.br/produto/fisiologia-e-desenvolvimento-vegetal-6-edicao/1109573

Terra ABC, Souza FRDC, Mantovani JR, Rezende AVD, Florentino LA. PHYSIOLOGICAL CHARACTERIZATION OF DIAZOTROPHIC BACTERIA ISOLATED FROM Brachiaria brizantha RHIZOSPHERE. Rev Caatinga. 2019;32:658–66.

Vamerali T, Bandiera M, Mosca G. Field crops for phytoremediation of metal-contaminated land. A review. Environ Chem Lett. 2010;8:1–17.

Vasconcellos RDS. RESPOSTA INICIAL DE PLANTAS DE ARROZ (Oryza sativa L.) TRATADAS COM INSUMOS BIOLÓGICOS. 2022;

Vogel AI. Análise Química Quantitativa. 5th ed. Câmara Brasileira do Livro, SP: Mestre JOU; 1981.

Wong MK, Chuah GK, Koh LL, Ang KP, Hew CS. The uptake of cadmium by Brassica chinensis and its effect on plant zinc and iron distribution. Environmental and Experimental Botany. 1984;24:189–95.

Yang JH, Wang H. Molecular Mechanisms for Vascular Development and Secondary Cell Wall Formation. Front Plant Sci. 2016;7. http://journal.frontiersin.org/Article/10.3389/fpls.2016.00356/abstract. accessed 15 April 2024

Yang XE, Long XX, Ye HB, He ZL, Calvert DV, Stoffella PJ. Cadmium tolerance and hyperaccumulation in a new Zn-hyperaccumulating plant species (Sedum alfredii Hance). Plant and Soil. 2004;259:181–9.

Zeittouni C de F, Berton RS, Abreu CA de. Fitoextração de cádmio e zinco de um latossolo vermelho-amarelo contaminado com metais pesados. Bragantia. 2007;66:649–57.

Zhang F-Q, Wang Y-S, Lou Z-P, Dong J-D. Effect of heavy metal stress on antioxidative enzymes and lipid peroxidation in leaves and roots of two mangrove plant seedlings (Kandelia candel and Bruguiera gymnorrhiza). Chemosphere. 2007;67:44–50.

Zhang X, Zhang X, Gao B, Li Z, Xia H, Li H, et al. Effect of cadmium on growth, photosynthesis, mineral nutrition and metal accumulation of an energy crop, king grass (Pennisetum americanum × P. purpureum). Biomass and Bioenergy. 2014;67:179–87.

Zhong X, Chen Z, Li Y, Ding K, Liu W, Liu Y, et al. Factors influencing heavy metal availability and risk assessment of soils at typical metal mines in Eastern China. Journal of Hazardous Materials. 2020;400:123289.

Published

2025-09-29

How to Cite

SNAK, Aline; GONÇALVES JUNIOR, Affonso Celso; SCHMIDT, Matheus; PICCIOLI, Angélica de Fatima Bortolato; DA COSTA, Poliana Ferreira; BOMBARDELLI, Robie Allan. INFLUENCE OF BACTERIA ON THE BIOREMEDIATION OF SOIL CONTAMINATED WITH CADMIUM AND CULTIVATED WITH CRAMBE ABYSSINICA IN PROTECTED CULTIVATION. LUMEN ET VIRTUS, [S. l.], v. 16, n. 52, p. e8534, 2025. DOI: 10.56238/levv16n52-071. Disponível em: https://periodicos.newsciencepubl.com/LEV/article/view/8534. Acesso em: 5 dec. 2025.