O USO DA INTELIGÊNCIA ARTIFICIAL COMO AUXÍLIO NO DIAGNÓSTICO DO CÂNCER DE MAMA

Autores

  • Joanderson Nunes Cardoso Autor
  • Larissa Lacerda Lodonio Autor
  • Livia Romana Lima Gonçalves Arrais Autor
  • Jackeline Lima Vidal Autor
  • Maria Jeanne Alencar Tavares Autor
  • Cicera Janielly de Matos Cassiano Pinheiro Autor
  • Uilna Natércia Soares Feitosa Pedro Autor
  • Janaina Farias Rebouças Autor

DOI:

https://doi.org/10.56238/arev7n9-200

Palavras-chave:

Inteligência Artificial, Diagnóstico, Ressonância Magnética, Câncer de Mama

Resumo

A Inteligência Artificial tem demostrado bastante eficiente no auxílio do diagnóstico de câncer, entre eles o de mama. Há diversas ferramentas que podem ser utilizadas nesse processo, o que facilitam a escolha por aquela que seja mais eficiente há depender de cada caso. Apesar dos avanços, é preciso compreender suas limitações e buscar soluções para superá-las. Este estudo propõe discutir um pouco sobre a utilização da Inteligência Artificial como ferramenta auxiliar no diagnóstico do câncer. Utilizou-se para isso a construção de uma revisão integrativa da literatura, realizada nos meses de julho a setembro do ano 2025. Nas bases da Biblioteca Virtual da Saúde (BVS) e Biblioteca Nacional de Medicina dos Estados Unidos (PUBMED), com os descritores e MeSH: Inteligência Artificial, Diagnóstico, Ressonância Magnética e Câncer de mama; Artificial Intelligence, diagnosis, Magnetic Resonance Imaging and breast cancer. Critérios de inclusão: artigos completos publicados na língua portuguesa, inglesa e espanhola, entre os anos de 2020 a 2025 com disponibilidade na integra. Após a primeira filtragem foram realizadas leituras e aplicação dos critérios de exclusão: artigos duplicados, que fugissem da temática abordada, temáticas paralelas ao tema escolhido, editoriais e com mais de cinco anos de publicação. Foram incluídos neste estudo 39 artigos para construção da discussão entre os autores. O uso de IA tem revolucionado o diagnóstico do câncer de mama na avaliação de imagens radiológicas. Sua utilização aumenta a precisão nos resultados e melhora a qualidade de vida dos pacientes. A redução da sobrecarga de trabalho dos radiologistas e a diminuição de erros humanos são vantagens no uso dessas ferramentas. Modelos multimodais e radiômicos têm se destacado na previsão de resposta à quimioterapia e status de linfonodos. É importante salientar que tais ferramentas requerem aperfeiçoamento e supervisão humana para corrigir e evitar possíveis erros. Deste modo, os avanços apresentados pela Inteligência Artificial se consolidam como uma ferramenta aliada no diagnóstico do câncer de mama. Seu uso na medicina potencializa a eficiência nas tomadas de decisões. Porém, exige constante aprimoramento e validação, entre os pesquisadores e profissionais da saúde. O fortalecimento da integração entre a IA e a experiência médica é essencial para garantia da segurança e precisão dos diagnósticos de câncer de mama.

Downloads

Os dados de download ainda não estão disponíveis.

Referências

AL-HEJRI, A. M. et al. A hybrid explainable federated-based vision transformer framework for breast cancer prediction via risk factors. Scientific Reports, v. 15, n. 1, p. 01-23, 2025. DOI: https://doi.org/10.1038/s41598-025-96527-0

ALSAMHORI, J. F. et al. Artificial intelligence for breast cancer: implications for diagnosis and management. J Med Surg Public Health, v. 3, p. 100120, 2024. DOI: 10.1016/j.glmedi.2024.100120. DOI: https://doi.org/10.1016/j.glmedi.2024.100120

AMIR, T. et al. A role for breast ultrasound artificial intelligence decision support in the evaluation of small invasive lobular carcinomas. Clinical Imaging, v.101, p.77-85, 2023.

https://doi.org/10.1016/j.clinimag.2023.05.005 DOI: https://doi.org/10.1016/j.clinimag.2023.05.005

ARBYN, M., et al. Estimates of incidence and mortality of cervical cancer in 2018: a worldwide analysis. Lancet Glob Health, v.8, n.2, p.191-203, 2020. DOI: https://doi.org/10.1016/S2214-109X(19)30482-6

BAHL, M. Artificial intelligence applications in breast imaging: validation in real-world clinical settings. Semin Roentgenol., v. 57, n. 2, p. 160–167, 2022. DOI: 10.1053/j.ro.2021.12.005. DOI: https://doi.org/10.1053/j.ro.2021.12.005

BALTZER, P. A. T. Künstliche Intelligenz in der Mammadiagnostik. Anwendungsgebiete aus klinischer Perspektive. Radiologe, v. 61, p. 192–198, 2021. DOI: 10.1007/s00117-020-00802-2. DOI: https://doi.org/10.1007/s00117-020-00802-2

BITENCOURT, A. G. V. et al. AI-enhanced breast imaging: applications in risk prediction, lesion detection/classification, radiogenomics. Eur J Radiol., v. 142, p. 109882, 2021. DOI: 10.1016/j.ejrad.2021.109882. DOI: https://doi.org/10.1016/j.ejrad.2021.109882

BITENCOURT, A. G. V. et al. Clinical and MRI radiomic features coupled with machine learning to assess HER2 expression level and predict pathologic response (pCR) in HER2 overexpressing breast cancer patients receiving neoadjuvant chemotherapy (NAC). EBioMedicine, v. 61, p. 103042, 2020. DOI: 10.1016/j.ebiom.2020.103042. DOI: https://doi.org/10.1016/j.ebiom.2020.103042

BYEON, H. et al. A study on the combination of fine-tuned Inception V3 methods for improved classification of cancer and noncancer images. Wolters Kluwer Health, 2025.

CASTILHO, B; BENINI, G; CASSENOTE, A. Pesquisa em Inteligência Artiicial para Detecção Precoce do Câncer de Mama. In: REPOSITÓRIO VIRTUAL -PRÊMIO MARCOS MORAES 2023, n° 2, 2023, Campinas, Galoá, 2023.

CHALLA, B. et al. Artificial Intelligence-Aided Diagnosis of Breast Cancer Lymph Node Metastasis on Histologic Slides in a Digital Workflow. Modern Pathology, v.36, n.8, p.100216, 2023.

https://doi.org/10.1016/j.modpat.2023.100216 DOI: https://doi.org/10.1016/j.modpat.2023.100216

CHEN, Y. et al., Review of AI trends in breast cancer imaging research. Seminars in Nuclear Medicine, v. 55, n. 3, p. 358-370, 2025. DOI: 10.1053/j.semnuclmed.2025.01.008. DOI: https://doi.org/10.1053/j.semnuclmed.2025.01.008

CHUNG, H. S. et al. Simulated contrast-enhanced breast MRIs generated using deep learning demonstrate no significant quantitative or qualitative differences compared to real contrast-enhanced MRIs. Radiology, v. 306, n. 3, p. e213199, 2023. DOI: 10.1148/radiol.213199. DOI: https://doi.org/10.1148/radiol.213199

GOTO, M. et al. Use of a deep learning algorithm for non-mass enhancement on breast MRI: comparison with radiologists’ interpretations at various levels. Japanese Journal of Radiology, v. 41, p. 1094–1103, 2023. DOI: 10.1007/s11604-023-01435-w. DOI: https://doi.org/10.1007/s11604-023-01435-w

GUERREIRO, A. A. P. et al. Integrando inteligência artificial à mamografia: uma abordagem complementar no diagnóstico do câncer de mama. Revista Ibero-Americana de Humanidades, v.10, n. 5, p.479-485, 2024. DOI: https://doi.org/10.51891/rease.v10i5.13684

HE, J. et al. New progress in imaging diagnosis and immunotherapy of breast cancer. Front. Immunol., v. 16, p. 1560257, 2025. DOI: 10.3389/fimmu.2025.1560257. DOI: https://doi.org/10.3389/fimmu.2025.1560257

HUANG, Y.-H. et al. Artificial intelligence model construction, independent validation, and biological interpretability analysis in breast cancer. Advanced Science, 2025. DOI: 10.1002/advs.202413702. DOI: https://doi.org/10.1002/advs.202413702

JING, X. et al. Using deep learning to safely exclude lesions with only ultrafast breast MRI to shorten acquisition and reading time. Eur Radiol, v. 32, n. 12, p. 8706–8715, 2022. DOI: 10.1007/s00330-022-08706-9. DOI: https://doi.org/10.1007/s00330-022-08863-8

LI, W. et al. Artificial Intelligence for Early Predicting Residual Cancer Burden in Breast Cancer. Annals of Surgery, v. 281, n. 4, p. 649, 2025. DOI: https://doi.org/10.1097/SLA.0000000000006279

LI, Z. et al. Multiregional dynamic contrast-enhanced MRI-based integrated system for predicting pathological complete response of axillary lymphnode to neoadjuvant chemotherapy in breast cancer: multicentre study. eBioMedicine, v. 107, p. 105311, 2024. DOI: 10.1016/j.ebiom.2024.105311. DOI: https://doi.org/10.1016/j.ebiom.2024.105311

LIN, Y. et al. Non-invasive combining models to predict the therapeutic response of primary breast cancer and axillary positive-node prior to NAC. The Breast, v. 76, p. 103737, 2024. DOI: 10.1016/j.breast.2024.103737. DOI: https://doi.org/10.1016/j.breast.2024.103737

MAHANT, S. et al. Traditional machine learning. Cureus, v. 14, n. 9, p. e28945, 2022. DOI: 10.7759/cureus.28945. DOI: https://doi.org/10.7759/cureus.28945

MARCON, M. et al. Summary recommendations on breast cancer screening. European Radiology, v. 34, p. 6348–6357, 2024. DOI: 10.1007/s00330-024-10681-z. DOI: https://doi.org/10.1007/s00330-024-10740-5

MCCAFFREY, C. et al. Artificial intelligence in digital histopathology for predicting patient prognosis and treatment efficacy in breast cancer. Expert Rev Mol Diagn., v. 24, p. 363-77, 2024. DOI: 10.1080/14737159.2024.2346545. DOI: https://doi.org/10.1080/14737159.2024.2346545

MELLO, J. M. R. B. Inteligência artificial na imaginologia mamária. Radiologia Brasileira, v.56, 2023. DOI: https://doi.org/10.1590/0100-3984.2023.56.5e1-en

NASCIMENTO, G. R. et al. Câncer de mama: A importância do diagnóstico precoce para o controle de doença. Revista de Epidemiologia e Saúde Pública-RESP, v.1, n.2, 2023. DOI: https://doi.org/10.59788/resp.v1i2.23

NG, A. Y. et al. Evaluate an Artificial Intelligence (AI) system in breast screening through stratified results across age, breast density, ethnicity and screening centres, from different UK regions. BMJ Health & Care Informatics, p. 10.1136/bmjhci-2024-101318, 2025. DOI: 10.1136/bmjhci-2024-101318. DOI: https://doi.org/10.1136/bmjhci-2024-101318

NISHIZAWA, T. et al. Pathologic complete response after neoadjuvant chemotherapy and impact on breast cancer recurrence and survival. Journal of Translational Medicine, v. 23, p. 774, 2025. DOI: 10.1186/s12967-025-06617-w. DOI: https://doi.org/10.1186/s12967-025-06617-w

OVIEDO, F. et al. Anomaly detection model for cancer detection on screening breast MRI scans using large, imbalanced breast MRI data-sets. Radiology, v. 316, n. 1, p. e241629, 2025. DOI: 10.1148/radiol.241629. DOI: https://doi.org/10.1148/radiol.241629

POLAT, D. S. et al. Machine Learning Prediction of Lymph Node Metastasis in Breast Cancer: Performance of a Multi-institutional MRI-based 4D Convolutional Neural Network. Radiology: Imaging Cancer, v. 6, n. 3, p. e230107, 2024. DOI: 10.1148/rycan.230107. DOI: https://doi.org/10.1148/rycan.230107

SILVA, R. L. et al. Inteligência Artificial no rastreio do câncer de mama: novas tecnologias e suas influências na saúde da mulher. Revista de Estudos Multidisciplinares UNDB, v.3, n.3, 2023.

SOUZA, M. T.; SILVA, M. D.; CARVALHO, R. Revisão integrativa: o que é e como fazer Integrative review: what is it? How to do it? Einstein, v. 8, n. 1, p. 102–108, 2010. DOI: https://doi.org/10.1590/s1679-45082010rw1134

TURIBIO, E. C. et al., O USO DE INTELIGÊNCIA ARTIFICIAL (IA) NO DIAGNÓSTICO PRECOCE DO CÂNCER DE MAMA. Revista Contemporânea, v.5, n.4, p.e7971, 2025. DOI: 10.56083/RCV5N4-078. DOI: https://doi.org/10.56083/RCV5N4-078

UWIMANA, A. et al. Artificial intelligence for breast cancer detection and its health technology assessment: a scoping review. Comput Biol Med., v. 184, p. 109391, 2025. DOI: 10.1016/j.compbiomed.2024.109391. DOI: https://doi.org/10.1016/j.compbiomed.2024.109391

WANG, W.; WANG, Y. Deep Learning-Based Modified YOLACT Algorithm on Magnetic Resonance Imaging Images for Screening Common and Difficult Samples of Breast Cancer. Diagnostics, v. 13, p. 1582, 2023. DOI: 10.3390/diagnostics13091582. DOI: https://doi.org/10.3390/diagnostics13091582

WITOWSKI, J. et al. AI system to predict the probability of breast cancer in patients undergoing DCE-MRI. Sci Transl Med., v. 14, n. 664, p. eabo4802, 2022. DOI: 10.1126/scitranslmed.abo4802. DOI: https://doi.org/10.1126/scitranslmed.abo4802

YU, Y. et al. Magnetic resonance imaging radiomics predicts preoperative axillary lymph node metastasis to support surgical decisions and is associated with tumor microenvironment in invasive breast cancer: A machine learning, multicenter study. EBioMedicine, v. 69, p. 103460, 2021. DOI: 10.1016/j.ebiom.2021.103460. DOI: https://doi.org/10.1016/j.ebiom.2021.103460

YUE, W. et al. Radiomics model performance among several breast cancer subtype classifications. J Comput Assist Tomogr, v. 47, n. 5, 2023.

ZHANG, M. et al. Discrimination of benign and malignant breast lesions on dynamic contrast enhanced magnetic resonance imaging using deep learning. J Can Res Ther, v. 19, p. 1589-1596, 2023. DOI: 10.4103/jcrt.jcrt_325_23. DOI: https://doi.org/10.4103/jcrt.jcrt_325_23

ZHANG, Y. et al. Recurrent network using CLSTM to track changes in signal intensity during DCE acquisition for breast cancer molecular subtype classification. Eur Radiol., v. 31, n. 4, p. 2559–2567, 2021. DOI: 10.1007/s00330-020-07274-x. DOI: https://doi.org/10.1007/s00330-020-07274-x

ZHU, T. et al. A non-invasive artificial intelligence model for identifying axillary pathological complete response to neoadjuvant chemotherapy in breast cancer: a secondary analysis to multicenter clinical trial. British Journal of Cancer p. 692 – 701, 2024. DOI: 10.1038/s41416-024-02726-3. DOI: https://doi.org/10.1038/s41416-024-02726-3

ZHU, T. et al. A retrospective cohort study on predicting axillary lymph node response to NAC and non-sentinel lymph node metastasis in breast cancer. International Journal of Surgery, v. 109, p. 3383–3394, 2023. DOI: 10.1097/JS9.0000000000000621. DOI: https://doi.org/10.1097/JS9.0000000000000621

Downloads

Publicado

2025-09-18

Edição

Seção

Artigos

Como Citar

CARDOSO, Joanderson Nunes; LODONIO, Larissa Lacerda; ARRAIS, Livia Romana Lima Gonçalves; VIDAL, Jackeline Lima; TAVARES, Maria Jeanne Alencar; PINHEIRO, Cicera Janielly de Matos Cassiano; PEDRO, Uilna Natércia Soares Feitosa; REBOUÇAS, Janaina Farias. O USO DA INTELIGÊNCIA ARTIFICIAL COMO AUXÍLIO NO DIAGNÓSTICO DO CÂNCER DE MAMA. ARACÊ , [S. l.], v. 7, n. 9, p. e8251 , 2025. DOI: 10.56238/arev7n9-200. Disponível em: https://periodicos.newsciencepubl.com/arace/article/view/8251. Acesso em: 5 dez. 2025.