CONCENTRAÇÕES DE GLIFOSATO (N-(FOSFONOMETIL)GLICINA) EM CURSOS DE ÁGUA – REVISÃO SISTEMÁTICA E ANÁLISE CIENTOMÉTRICA

Autores

  • Sandria Ferreira Cavassani Autor
  • Karla da Silva Malaquias Autor
  • Michelle Nauara Gomes do Nascimento Autor
  • Isadora Barboza Silva Autor
  • Sandra Aparecida Benite-Ribeiro Autor

DOI:

https://doi.org/10.56238/arev7n9-168

Palavras-chave:

Águas Superficiais, Águas Subterrâneas, Glifosato, Contaminação, Revisão Sistemática, Cienciometria

Resumo

O glifosato, que se degrada em ácido aminometilfosfônico (AMPA), é o ingrediente ativo mais amplamente utilizado em herbicidas em todo o mundo. Ambos os compostos podem entrar em sistemas aquáticos por meio de escoamento superficial, lixiviação, deriva de pulverização e irrigação, levando à contaminação da água e subsequente incorporação na cadeia alimentar. Este estudo teve como objetivo realizar uma revisão sistemática e análise cienciométrica de pesquisas publicadas entre 2015 e 2025 sobre concentrações de glifosato e AMPA em águas superficiais e subterrâneas, e comparar concentrações detectadas geograficamente com limites regulatórios nacionais. Uma revisão sistemática foi conduzida seguindo o protocolo PRISMA, complementada por análise cienciométrica. Buscas bibliográficas foram realizadas nas bases de dados Web of Science, PubMed, ScienceDirect e SciELO. Um total de 127 artigos relatando concentrações de glifosato e AMPA em águas superficiais e subterrâneas foram selecionados. Os países que contribuíram com o maior número de estudos foram Argentina, Brasil, Canadá, Estados Unidos, México e Itália. A análise cienciométrica revelou que essas nações não apenas dominam a produção científica, mas também constituem as redes de cocitação mais influentes, com o estudo mais frequentemente citado originário dos Estados Unidos. A maior concentração relatada foi no Brasil (8.700 µg/L), o que é 133 vezes acima do limite regulatório brasileiro (65 µg/L). As análises estatísticas mostraram ainda que as concentrações de glifosato variam significativamente por região geográfica, com diferenças notáveis ​​entre a Europa e a América do Norte. As concentrações de glifosato frequentemente excedem os limites máximos permitidos nacionais, mesmo em países com legislação rigorosa como os da Europa, onde os valores ultrapassaram o limite legal de 0,1 µg/L em vários locais. Essas descobertas ressaltam a natureza generalizada da contaminação por glifosato e destacam a necessidade de monitoramento e fiscalização regulatória mais rigorosos.

Downloads

Os dados de download ainda não estão disponíveis.

Referências

Agarski, M., & et al. (2024). Detection of glyphosate and its metabolite aminomethylphosphonic acid: Risk assessment for the aquatic organisms. Journal of Central European Agriculture, 25(2), 567–579. DOI: https://doi.org/10.5513/JCEA01/25.2.4247

Alonso, L. L., & et al. (2018). Glyphosate and atrazine in rainfall and soils in agroproductive areas of the pampas region in Argentina. Science of The Total Environment, 645, 89–96. DOI: https://doi.org/10.1016/j.scitotenv.2018.07.134

Alvarez Bayona, M. A., & et al. (2022). Occurrence of glyphosate in surface and drinking water sources in Cucuta, Norte de Santander, and its removal using membrane technology. Frontiers in Environmental Science, 10. https://doi.org/10.3389/fenvs.2022.1035481 DOI: https://doi.org/10.3389/fenvs.2022.941836

Andrade, V. S., & et al. (2021). Influence of rainfall and seasonal crop practices on nutrient and pesticide runoff from soybean dominated agricultural areas in Pampean streams, Argentina. Science of The Total Environment, 788, 147863. https://doi.org/10.1016/j.scitotenv.2021.147863 DOI: https://doi.org/10.1016/j.scitotenv.2021.147676

Aparicio, V., & Gerónimo, E. D. (2024). Pesticide pollution in argentine drinking water: A call to ensure safe access. Environmental Challenges, 14, 100808. https://doi.org/10.1016/j.envc.2023.100808 DOI: https://doi.org/10.1016/j.envc.2023.100808

Aranha, C. F., & et al. (2023). Treatment of synthetic industrial effluent aiming at the removal of glyphosate by means of advanced oxidation. Revista de Gestão Social e Ambiental, 17(3), e03376. https://rgsa.openaccesspublications.org/rgsa/article/view/3376 DOI: https://doi.org/10.24857/rgsa.v17n3-026

Avigliano, E., & Schenone, N. F. (2015). Human health risk assessment and environmental distribution of trace elements, glyphosate, fecal coliform and total coliform in Atlantic Rainforest mountain rivers (South America). Microchemical Journal, 122, 149–158. https://doi.org/10.1016/j.microc.2015.08.009 DOI: https://doi.org/10.1016/j.microc.2015.05.004

Aydin, Z., & et al. (2023). A novel fluorescent sensor based on an enzyme-free system for highly selective and sensitive detection of glyphosate and malathion in real samples. Journal of Photochemistry and Photobiology A: Chemistry, 435, 114298. https://doi.org/10.1016/j.jphotochem.2022.114298 DOI: https://doi.org/10.1016/j.jphotochem.2022.114340

Ayoola, R. T., & et al. (2023). Seasonal variations in the levels of glyphosate in soil, water and crops from three farm settlements in Oyo state, Nigeria. Heliyon, 9(9), e20324. https://doi.org/10.1016/j.heliyon.2023.e20324 DOI: https://doi.org/10.1016/j.heliyon.2023.e20324

Bahamón-Pinzón, D., & et al. (2024). Confined within a sugarcane monoculture: A participatory assessment of water pollution and potential health risks in the community of El Tiple, Colombia. Science of The Total Environment, 946, 174072. https://doi.org/10.1016/j.scitotenv.2024.174072 DOI: https://doi.org/10.1016/j.scitotenv.2024.174072

Battaglin, W., & et al. (2023). Changes in chemical occurrence, concentration, and bioactivity in the Colorado River before and after replacement of the Moab, Utah wastewater treatment plant. Science of The Total Environment, 904, 166231. https://doi.org/10.1016/j.scitotenv.2023.166231 DOI: https://doi.org/10.1016/j.scitotenv.2023.166231

Berman, M. C., & et al. (2018). Occurrence and levels of glyphosate and AMPA in shallow lakes from the Pampean and Patagonian regions of Argentina. Chemosphere, 200, 513–522. https://doi.org/10.1016/j.chemosphere.2018.02.054 DOI: https://doi.org/10.1016/j.chemosphere.2018.02.103

Bianco, C. D., & et al. (2023). Glyphosate-induced glioblastoma cell proliferation: Unraveling the interplay of oxidative, inflammatory, proliferative, and survival signaling pathways. Environmental Pollution, 338, 122695. https://doi.org/10.1016/j.envpol.2023.122695 DOI: https://doi.org/10.1016/j.envpol.2023.122695

Bonansea, R. I., & et al. (2017). The fate of glyphosate and AMPA in a freshwater endorheic basin: An ecotoxicological risk assessment. Toxics, 6(1), 3. https://doi.org/10.3390/toxics6010003 DOI: https://doi.org/10.3390/toxics6010003

Bradley, P. M., & et al. (2017). Expanded target-chemical analysis reveals extensive mixed-organic-contaminant exposure in U.S. streams. Environmental Science & Technology, 51(9), 4792–4802. https://doi.org/10.1021/acs.est.7b00012 DOI: https://doi.org/10.1021/acs.est.7b00012

Broers, H. P., & et al. (2024). Mobility and persistence of pesticides and emerging contaminants in age-dated and redox-classified groundwater under a range of land use types. Science of The Total Environment, 954, 176344. https://doi.org/10.1016/j.scitotenv.2024.176344 DOI: https://doi.org/10.1016/j.scitotenv.2024.176344

Brovini, E. M., & et al. (2021). Glyphosate concentrations in global freshwaters: Are aquatic organisms at risk? Environmental Science and Pollution Research, 28(43), 60635–60648. https://doi.org/10.1007/s11356-021-15149-4 DOI: https://doi.org/10.1007/s11356-021-14609-8

Brown, A. K., & Farenhorst, A. (2024). Quantitation of glyphosate, glufosinate, and AMPA in drinking water and surface waters using direct injection and charged-surface ultra-high performance liquid chromatography-tandem mass spectrometry. Chemosphere, 349, 140924. https://doi.org/10.1016/j.chemosphere.2023.140924 DOI: https://doi.org/10.1016/j.chemosphere.2023.140924

Bukowska, B., & et al. (2022). Glyphosate disturbs various epigenetic processes in vitro and in vivo – A mini review. Science of The Total Environment, 851, 158259. https://doi.org/10.1016/j.scitotenv.2022.158259 DOI: https://doi.org/10.1016/j.scitotenv.2022.158259

Byers, E. N., & et al. (2025). The occurrence and persistence of surface water contaminants across different landscapes. Science of The Total Environment, 958, 177837. https://doi.org/10.1016/j.scitotenv.2024.177837 DOI: https://doi.org/10.1016/j.scitotenv.2024.177837

Camicia, M., & et al. (2022). Determination of glyphosate in breast milk of lactating women in a rural area from Parana state, Brazil. Brazilian Journal of Medical and Biological Research, 55(1), e11896. https://doi.org/10.1590/1414-431X2022e11896 DOI: https://doi.org/10.1590/1414-431x2022e12194

Campanale, C., & et al. (2024). Assessing glyphosate and AMPA pesticides in the Ofanto River waters and sediments. Marine Pollution Bulletin, 202, 116376. https://doi.org/10.1016/j.marpolbul.2024.116376 DOI: https://doi.org/10.1016/j.marpolbul.2024.116376

Campbell, G., & et al. (2025). Occurrence and fate of glyphosate and AMPA in wastewater treatment plants in Australia. Science of The Total Environment, 969, 178964. https://doi.org/10.1016/j.scitotenv.2024.178964 DOI: https://doi.org/10.1016/j.scitotenv.2025.178964

Centanni, M., & et al. (2024). Modeling pesticides and ecotoxicological risk assessment in an intermittent river using SWAT. Scientific Reports, 14(1), 6389. https://doi.org/10.1038/s41598-024-56347-5 DOI: https://doi.org/10.1038/s41598-024-56991-6

Chen, C. (2014). Location of the manual. http://cluster.ischool.drexel.edu/~cchen/citespace/CiteSpaceManual.pdf

Conselho Nacional do Meio Ambiente. (2005). Resolução nº 357, de 17 de março de 2005. http://conama.mma.gov.br/?option=com_sisconama&task=arquivo.download&id=450

Conselho Nacional do Meio Ambiente. (2008). Resolução nº 396, de 3 de abril de 2008. http://conama.mma.gov.br/?option=com_sisconama&task=arquivo.download&id=496

Connolly, A., Coggins, M. A., & Koch, H. M. (2020). Human biomonitoring of glyphosate exposures: State-of-the-art and future research challenges. Toxics, 8(3), 60. https://doi.org/10.3390/toxics8030060 DOI: https://doi.org/10.3390/toxics8030060

Correia, N. M., Carbonari, C. A., & Velini, E. D. (2020). Detection of herbicides in water bodies of the Samambaia River sub-basin in the Federal District and eastern Goiás. Journal of Environmental Science and Health, Part B, 55(6), 574–582. https://doi.org/10.1080/03601234.2020.1728656 DOI: https://doi.org/10.1080/03601234.2020.1742000

Curwin, B. D., & et al. (2006). Urinary pesticide concentrations among children, mothers and fathers living in farm and non-farm households in Iowa. Annals of Occupational Hygiene, 51(1), 53–65. https://doi.org/10.1093/annhyg/mel062 DOI: https://doi.org/10.1093/annhyg/mel062

Dahmeni, G., Grünberger, O., & Chaabane, H. (2024). Assessment of pesticide contamination in hill reservoirs: Combination of a rainfed farming survey and water multiresidue monitoring (Lebna watershed, Cap Bon, Tunisia). Environmental Monitoring and Assessment, 196(12), 1257. https://doi.org/10.1007/s10661-024-13273-4 DOI: https://doi.org/10.1007/s10661-024-13403-6

Damiani, S., & et al. (2023). Water and sediment pesticide contamination on indigenous lands surrounded by oil palm plantations in the Brazilian Amazon. Heliyon, 9(10), e20803. https://doi.org/10.1016/j.heliyon.2023.e20803 DOI: https://doi.org/10.1016/j.heliyon.2023.e19920

De Araújo, E. P., Caldas, E. D., & Oliveira-Filho, E. C. (2022). Pesticides in surface freshwater: A critical review. Environmental Monitoring and Assessment, 194(6), 452. https://doi.org/10.1007/s10661-022-10005-y DOI: https://doi.org/10.1007/s10661-022-10005-y

De Castilhos Ghisi, N., & et al. (2020). Glyphosate and its toxicology: A scientometric review. Science of The Total Environment, 733, 139359. https://doi.org/10.1016/j.scitotenv.2020.139359 DOI: https://doi.org/10.1016/j.scitotenv.2020.139359

De J. Bastidas-Bastidas, P., & et al. (2024). Validation and application of UPLC-MS/MS method to analysis of glyphosate and its metabolites in water. Journal of Chromatographic Science, 62(4), 364–371. https://doi.org/10.1093/chromsci/bmad087 DOI: https://doi.org/10.1093/chromsci/bmad045

De Matos, F. S., & et al. (2023). Simultaneous determination of glyphosate, AMPA and inorganic anions in water samples by gradient capillary ion chromatography. Journal of the Brazilian Chemical Society, 34(11), 1691–1697. https://doi.org/10.21577/0103-5053.20230092 DOI: https://doi.org/10.21577/0103-5053.20230109

De Souza, R. M., & et al. (2020). Occurrence, impacts and general aspects of pesticides in surface water: A review. Process Safety and Environmental Protection, 135, 22–37. https://doi.org/10.1016/j.psep.2019.12.025 DOI: https://doi.org/10.1016/j.psep.2019.12.035

Delmonico, E. L., & et al. (2014). Determination of glyphosate and aminomethylphosphonic acid for assessing the quality tap water using SPE and HPLC. Acta Scientiarum. Technology, 36(3), 513. http://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/22406 DOI: https://doi.org/10.4025/actascitechnol.v36i3.22406

Demonte, L. D., & et al. (2018). Determination of glyphosate, AMPA and glufosinate in dairy farm water from Argentina using a simplified UHPLC-MS/MS method. Science of The Total Environment, 645, 34–43. https://doi.org/10.1016/j.scitotenv.2018.06.340 DOI: https://doi.org/10.1016/j.scitotenv.2018.06.340

Desmet, N., & et al. (2016). A hybrid monitoring and modelling approach to assess the contribution of sources of glyphosate and AMPA in large river catchments. Science of The Total Environment, 573, 1580–1588. https://doi.org/10.1016/j.scitotenv.2016.09.144 DOI: https://doi.org/10.1016/j.scitotenv.2016.09.100

Didone, E. J., & et al. (2021). Mobilization and transport of pesticides with runoff and suspended sediment during flooding events in an agricultural catchment of Southern Brazil. Environmental Science and Pollution Research, 28(29), 39370–39386. https://doi.org/10.1007/s11356-021-13352-9 DOI: https://doi.org/10.1007/s11356-021-13303-z

Donald, D. B., Cessna, A. J., & Farenhorst, A. (2018). Concentrations of herbicides in wetlands on organic and minimum-tillage farms. Journal of Environmental Quality, 47(6), 1554–1563. https://doi.org/10.2134/jeq2018.04.0141 DOI: https://doi.org/10.2134/jeq2018.03.0100

Dovidauskas, S., & et al. (2022). Analysis of factors involving drinking water contamination by glyphosate and/or nitrate in urban areas. Orbital-The Electronic Journal of Chemistry, 14(3), 139–152. https://doi.org/10.17807/orbital.v14i3.1693 DOI: https://doi.org/10.17807/orbital.v14i3.17386

Edge, C. B., & et al. (2023). Low detection of glyphosate in rivers following application in forestry. Pest Management Science, 79(8), 2951–2958. https://doi.org/10.1002/ps.7465 DOI: https://doi.org/10.1002/ps.7473

Eskenazi, B., & et al. (2023). Association of lifetime exposure to glyphosate and aminomethylphosphonic acid (AMPA) with liver inflammation and metabolic syndrome at young adulthood: Findings from the CHAMACOS study. Environmental Health Perspectives, 131(3), 37001. https://doi.org/10.1289/EHP11721 DOI: https://doi.org/10.1289/EHP11721

Farrow, L., & et al. (2025). Charting water quality improvements and practice reversion with pesticide interventions at catchment scale. Science of The Total Environment, 960, 178243. https://doi.org/10.1016/j.scitotenv.2024.178243 DOI: https://doi.org/10.1016/j.scitotenv.2024.178243

Feliciano, C. dos R., & et al. (2025). A novel fluorescent and magnetic molecularly imprinted sensor for the determination of glyphosate in environmental and potable water samples. Chemical Engineering Journal, 507, 157326. https://doi.org/10.1016/j.cej.2024.157326 DOI: https://doi.org/10.1016/j.cej.2025.160340

Feltracco, M., & et al. (2022a). Assessing glyphosate in water, marine particulate matter, and sediments in the Lagoon of Venice. Environmental Science and Pollution Research, 29(11), 16383–16391. https://doi.org/10.1007/s11356-021-16708-9 DOI: https://doi.org/10.1007/s11356-021-16957-x

Feltracco, M., & et al. (2022b). Detection of glyphosate residues in feed, saliva, urine and faeces from a cattle farm: A pilot study. Food Additives & Contaminants: Part A, 39(7), 1248–1254. https://doi.org/10.1080/19440049.2022.2073910 DOI: https://doi.org/10.1080/19440049.2022.2066194

Feng, X., & et al. (2024). Pesticides and transformation products in surface waters of western Montérégie, Canada: Occurrence, spatial distribution and ecotoxicological risks. Environmental Science-Advances, 3(6), 861–874. https://doi.org/10.1039/D3VA00339J DOI: https://doi.org/10.1039/D3VA00231D

Feng, X., & et al. (2025). Temporal trends of 46 pesticides and 8 transformation products in surface and drinking water in Quebec, Canada (2021-2023): Potential higher health risks of transformation products than parent pesticides. Water Research, 277, 121665. https://doi.org/10.1016/j.watres.2024.121665 DOI: https://doi.org/10.1016/j.watres.2025.123339

Gabardo, R. P., Cordeiro, G. A., & Peralta-Zamora, P. (2024). LC-FLD determination of glyphosate, AMPA and glufosinate in surface water from the Paraná River Basin. Journal of the Brazilian Chemical Society, 35(9), e20240009. https://doi.org/10.21577/0103-5053.20240009 DOI: https://doi.org/10.21577/0103-5053.20240047

Geerdink, R. B., & et al. (2020). Analysis of glyphosate, AMPA, glufosinate and MPPA with ion chromatography tandem mass spectrometry using a membrane suppressor in the ammonium form application to surface water of low to moderate salinity. Analytica Chimica Acta, 1133, 66–76. https://doi.org/10.1016/j.aca.2020.07.045 DOI: https://doi.org/10.1016/j.aca.2020.05.058

Geng, Y., & et al. (2021). Glyphosate, aminomethylphosphonic acid, and glufosinate ammonium in agricultural groundwater and surface water in China from 2017 to 2018: Occurrence, main drivers, and environmental risk assessment. Science of The Total Environment, 769, 144396. https://doi.org/10.1016/j.scitotenv.2020.144396 DOI: https://doi.org/10.1016/j.scitotenv.2020.144396

Giacobone, D. B., & et al. (2023). Hydrodynamic and hydrogeochemical evaluation of groundwater and linkage with herbicide pollution: Central Argentina. Sustainable Water Resources Management, 9(5), 151. https://doi.org/10.1007/s40899-023-00917-9 DOI: https://doi.org/10.1007/s40899-023-00930-2

Ginebreda, A., & et al. (2018). Reconciling monitoring and modeling: An appraisal of river monitoring networks based on a spatial autocorrelation approach - Emerging pollutants in the Danube River as a case study. Science of The Total Environment, 618, 323–335. https://doi.org/10.1016/j.scitotenv.2017.11.022 DOI: https://doi.org/10.1016/j.scitotenv.2017.11.020

Gomarasca, S., & et al. (2024). Regional evaluation of glyphosate pollution in the minor irrigation network. Chemosphere, 355, 141679. https://doi.org/10.1016/j.chemosphere.2024.141679 DOI: https://doi.org/10.1016/j.chemosphere.2024.141679

Gomes, M. P., & et al. (2022). Emerging contaminants in streams of Doce River Watershed, Minas Gerais, Brazil. Frontiers in Environmental Science, 9, 801143. https://doi.org/10.3389/fenvs.2021.801143 DOI: https://doi.org/10.3389/fenvs.2021.801599

Grünberger, O., & et al. (2024). Pesticide contamination pattern of surface water in an urban-agricultural Mediterranean watershed (Wadi Guenniche, Bizerte Lagoon, Northern Tunisia). Journal of Environmental Science and Health, Part B, 59(8), 521–539. https://doi.org/10.1080/03601234.2024.2370996 DOI: https://doi.org/10.1080/03601234.2024.2375905

Gunarathna, S., & et al. (2018). Glyphosate and AMPA of agricultural soil, surface water, groundwater and sediments in areas prevalent with chronic kidney disease of unknown etiology, Sri Lanka. Journal of Environmental Science and Health, Part B, 53(11), 729–737. https://doi.org/10.1080/03601234.2018.1480157 DOI: https://doi.org/10.1080/03601234.2018.1480157

Horn, S., Pieters, R., & Bohn, T. (2019). A first assessment of glyphosate, 2,4-D and Cry proteins in surface water of South Africa. South African Journal of Science, 115(9–10), 1–7. https://doi.org/10.17159/sajs.2019/5988 DOI: https://doi.org/10.17159/sajs.2019/5988

Huntscha, S., & et al. (2018). Seasonal dynamics of glyphosate and AMPA in Lake Greifensee: Rapid microbial degradation in the epilimnion during summer. Environmental Science & Technology, 52(8), 4641–4649. https://doi.org/10.1021/acs.est.8b00314 DOI: https://doi.org/10.1021/acs.est.8b00314

Ijzerman, M. M., & et al. (2024). Pesticide presence in stream water, suspended sediment and biofilm is strongly linked to upstream catchment land use and crop type. Ecotoxicology and Environmental Safety, 288, 116801. https://doi.org/10.1016/j.ecoenv.2024.116801 DOI: https://doi.org/10.1016/j.ecoenv.2024.117382

Inês, S., Ana, L., & Silva, E. (2024). Environmental risk assessment of glyphosate and aminomethylphosphonic acid (AMPA) in Portuguese groundwater ecosystems. Environments, 11(11), 258. https://doi.org/10.3390/environments11110258 DOI: https://doi.org/10.3390/environments11110258

Jayasiri, M. M. J. G. C. N., & et al. (2022). Spatio-temporal analysis of water quality for pesticides and other agricultural pollutants in Deduru Oya river basin of Sri Lanka. Journal of Cleaner Production, 330, 129897. https://doi.org/10.1016/j.jclepro.2021.129897 DOI: https://doi.org/10.1016/j.jclepro.2021.129897

Jayasumana, C., & et al. (2015). Drinking well water and occupational exposure to herbicides is associated with chronic kidney disease, in Padavi-Sripura, Sri Lanka. Environmental Health, 14, 6. https://doi.org/10.1186/1476-069X-14-6 DOI: https://doi.org/10.1186/1476-069X-14-6

Jesabel Perez, D., & et al. (2017). Can an aquatic macrophyte bioaccumulate glyphosate? Development of a new method of glyphosate extraction in Ludwigia peploides and watershed scale validation. Chemosphere, 185, 975–982. https://doi.org/10.1016/j.chemosphere.2017.07.093 DOI: https://doi.org/10.1016/j.chemosphere.2017.07.093

Jing, X., & et al. (2021). Monitoring and risk assessment of pesticide residue in plant-soil-groundwater system about medlar planting in Golmud. Environmental Science and Pollution Research, 28(21), 26413–26426. https://doi.org/10.1007/s11356-020-11839-3 DOI: https://doi.org/10.1007/s11356-021-12403-0

Joni, A. A. M., & et al. (2021). Baseline distribution and sources of selected agricultural runoff in the bottom water of an active cockle farming area, Bagan Pasir, Perak, Malaysia. Marine Pollution Bulletin, 167, 112276. https://doi.org/10.1016/j.marpolbul.2021.112276 DOI: https://doi.org/10.1016/j.marpolbul.2021.112276

Kalantary, R. R., Barzegar, G., & Jorfi, S. (2022). Monitoring of pesticides in surface water, pesticides removal efficiency in drinking water treatment plant and potential health risk to consumers using Monte Carlo simulation in Behbahan City, Iran. Chemosphere, 286, 131667. https://doi.org/10.1016/j.chemosphere.2021.131667 DOI: https://doi.org/10.1016/j.chemosphere.2021.131667

Khan, N., & et al. (2020). Assessment of health risk due to pesticide residues in fruits, vegetables, soil, and water. Journal of Chemistry, 2020, 5497952. https://doi.org/10.1155/2020/5497952 DOI: https://doi.org/10.1155/2020/5497952

Klaimala, P., & et al. (2022). Pesticide residues on children’s hands, home indoor surfaces, and drinking water among conventional and organic farmers in Thailand. Environmental Monitoring and Assessment, 194(6), 427. https://doi.org/10.1007/s10661-022-10008-9 DOI: https://doi.org/10.1007/s10661-022-10051-6

Larsen, K. E., & et al. (2016). The herbicide glyphosate is a weak inhibitor of acetylcholinesterase in rats. Environmental Toxicology and Pharmacology, 45, 41–44. https://doi.org/10.1016/j.etap.2016.05.012 DOI: https://doi.org/10.1016/j.etap.2016.05.012

Le Cor, F., & et al. (2021). Occurrence of pesticides and their transformation products in headwater streams: Contamination status and effect of ponds on contaminant concentrations. Science of The Total Environment, 788, 147715. https://doi.org/10.1016/j.scitotenv.2021.147715 DOI: https://doi.org/10.1016/j.scitotenv.2021.147715

Lefrancq, M., & et al. (2017). High frequency monitoring of pesticides in runoff water to improve understanding of their transport and environmental impacts. Science of The Total Environment, 587, 75–86. https://doi.org/10.1016/j.scitotenv.2017.02.022 DOI: https://doi.org/10.1016/j.scitotenv.2017.02.022

Lima, I. B., & et al. (2023). Glyphosate pollution of surface runoff, stream water, and drinking water resources in Southeast Brazil. Environmental Science and Pollution Research, 30(10), 27030–27040. https://doi.org/10.1007/s11356-022-24158-3 DOI: https://doi.org/10.1007/s11356-022-24167-2

Lin, Y., & et al. (2022). Molecular mechanisms of exercise on cancer: A bibliometrics study and visualization analysis via CiteSpace. Frontiers in Molecular Biosciences, 8, 797294. https://doi.org/10.3389/fmolb.2021.797294 DOI: https://doi.org/10.3389/fmolb.2021.797902

Lin, J.-F., Chang, F.-C., & Sheen, J.-F. (2022). Determination of glyphosate, aminomethylphosphonic acid, and glufosinate in river water and sediments using microwave-assisted rapid derivatization and LC-MS/MS. Environmental Science and Pollution Research, 29(30), 46282–46292. https://doi.org/10.1007/s11356-022-19076-2 DOI: https://doi.org/10.1007/s11356-022-19189-9

Lopez-Vazquez, J., & et al. (2023). Direct, automated and sensitive determination of glyphosate and related anionic pesticides in environmental water samples using solid-phase extraction on-line combined with liquid chromatography tandem mass spectrometry. Journal of Chromatography A, 1687, 463695. https://doi.org/10.1016/j.chroma.2022.463695 DOI: https://doi.org/10.1016/j.chroma.2022.463697

Lupi, L., & et al. (2015). Occurrence of glyphosate and AMPA in an agricultural watershed from the southeastern region of Argentina. Science of The Total Environment, 536, 687–694. https://doi.org/10.1016/j.scitotenv.2015.07.090 DOI: https://doi.org/10.1016/j.scitotenv.2015.07.090

Lutri, V. F., & et al. (2020). Hydrogeological features affecting spatial distribution of glyphosate and AMPA in groundwater and surface water in an agroecosystem. Córdoba, Argentina. Science of The Total Environment, 711, 134557. https://doi.org/10.1016/j.scitotenv.2019.134557 DOI: https://doi.org/10.1016/j.scitotenv.2019.134557

Mac Loughlin, T. M., & et al. (2020). Contribution of soluble and particulate-matter fractions to the total glyphosate and AMPA load in water bodies associated with horticulture. Science of The Total Environment, 703, 135430. https://doi.org/10.1016/j.scitotenv.2019.135430 DOI: https://doi.org/10.1016/j.scitotenv.2019.134717

Mahler, B. J., & et al. (2017). Similarities and differences in occurrence and temporal fluctuations in glyphosate and atrazine in small Midwestern streams (USA) during the 2013 growing season. Science of The Total Environment, 579, 149–158. https://doi.org/10.1016/j.scitotenv.2016.10.236 DOI: https://doi.org/10.1016/j.scitotenv.2016.10.236

Marino, M., & et al. (2021). Pleiotropic outcomes of glyphosate exposure: From organ damage to effects on inflammation, cancer, reproduction and development. International Journal of Molecular Sciences, 22(22), 12606. https://doi.org/10.3390/ijms222212606 DOI: https://doi.org/10.3390/ijms222212606

Mas, L. I., & et al. (2020). Pesticides in water sources used for human consumption in the semiarid region of Argentina. SN Applied Sciences, 2(4), 693. https://doi.org/10.1007/s42452-020-2491-6 DOI: https://doi.org/10.1007/s42452-020-2513-x

Masiol, M., Giannì, B., & Prete, M. (2018). Herbicides in river water across the northeastern Italy: Occurrence and spatial patterns of glyphosate, aminomethylphosphonic acid, and glufosinate ammonium. Environmental Science and Pollution Research, 25(24), 24368–24378. https://doi.org/10.1007/s11356-018-2480-y DOI: https://doi.org/10.1007/s11356-018-2511-3

Mayora, G., & et al. (2024). Spatiotemporal patterns of multiple pesticide residues in central Argentina streams. Science of The Total Environment, 906, 167014. https://doi.org/10.1016/j.scitotenv.2023.167014 DOI: https://doi.org/10.1016/j.scitotenv.2023.167014

Medalie, L., & et al. (2020). Influence of land use and region on glyphosate and aminomethylphosphonic acid in streams in the USA. Science of The Total Environment, 707, 136008. https://doi.org/10.1016/j.scitotenv.2019.136008 DOI: https://doi.org/10.1016/j.scitotenv.2019.136008

Melendez-Pastor, I., & et al. (2021). Occurrence of pesticides associated with an agricultural drainage system in a Mediterranean environment. Applied Sciences, 11(21), 10343. https://doi.org/10.3390/app112110343 DOI: https://doi.org/10.3390/app112110212

Mendonça, C. F. R., & et al. (2020). Glyphosate and AMPA occurrence in agricultural watershed: The case of Paraná Basin 3, Brazil. Journal of Environmental Science and Health, Part B, 55(10), 909–920. https://doi.org/10.1080/03601234.2020.1794703 DOI: https://doi.org/10.1080/03601234.2020.1794703

Merdy, P., & et al. (2025). Wastewater treatment plant efficiency and contaminant levels in a Mediterranean coastal area: A comprehensive inventory and assessment. International Journal of Environmental Science and Technology, 22(4), 2191–2204. https://doi.org/10.1007/s13762-024-05576-5 DOI: https://doi.org/10.1007/s13762-024-05801-7

Mesnage, R., & et al. (2015). Transcriptome profile analysis reflects rat liver and kidney damage following chronic ultra-low dose Roundup exposure. Environmental Health, 14, 70. https://doi.org/10.1186/s12940-015-0056-1 DOI: https://doi.org/10.1186/s12940-015-0056-1

Montiel-León, J. M., & et al. (2019). Widespread occurrence and spatial distribution of glyphosate, atrazine, and neonicotinoids pesticides in the St. Lawrence and tributary rivers. Environmental Pollution, 250, 29–39. https://doi.org/10.1016/j.envpol.2019.03.125 DOI: https://doi.org/10.1016/j.envpol.2019.03.125

Navarro, I., & et al. (2024). Assessing pesticide residues occurrence and risks in water systems: A Pan-European and Argentina perspective. Water Research, 254, 121419. https://doi.org/10.1016/j.watres.2024.121419 DOI: https://doi.org/10.1016/j.watres.2024.121419

Nunes, R. F. N., & et al. (2024). Glyphosate contamination of drinking water and the occurrence of oxidative stress: Exposure assessment to rural Brazilian populations. Environmental Toxicology and Pharmacology, 108, 104476. https://doi.org/10.1016/j.etap.2024.104476 DOI: https://doi.org/10.1016/j.etap.2024.104476

Nwinyimagu, A. J., Eyo, J. E., & Nwonumara, G. N. (2023). Distribution and ecological risk assessment of herbicide residues in water, sediment and fish from Anyim River, Ebonyi State, Nigeria. Environmental Toxicology and Pharmacology, 100, 104131. https://doi.org/10.1016/j.etap.2023.104131 DOI: https://doi.org/10.1016/j.etap.2023.104131

Ohse, S. T., & et al. (2024). Nanostructured TiO2-X/CuXO-based electrochemical sensor for ultra-sensitive glyphosate detection in real water samples. Microchemical Journal, 205, 111251. https://doi.org/10.1016/j.microc.2024.111251 DOI: https://doi.org/10.1016/j.microc.2024.111316

Okada, E., & et al. (2018). Non-point source pollution of glyphosate and AMPA in a rural basin from the southeast Pampas, Argentina. Environmental Science and Pollution Research, 25(15), 15120–15132. https://doi.org/10.1007/s11356-018-1654-9 DOI: https://doi.org/10.1007/s11356-018-1734-7

Okada, E., & et al. (2019). A simple and rapid direct injection method for the determination of glyphosate and AMPA in environmental water samples. Analytical and Bioanalytical Chemistry, 411(3), 715–724. https://doi.org/10.1007/s00216-018-1490-6 DOI: https://doi.org/10.1007/s00216-018-1490-z

Okada, E., & et al. (2020). Glyphosate and aminomethylphosphonic acid (AMPA) are commonly found in urban streams and wetlands of Melbourne, Australia. Water Research, 168, 115139. https://doi.org/10.1016/j.watres.2019.115139 DOI: https://doi.org/10.1016/j.watres.2019.115139

Osten, J. R., & Dzul-Caamal, R. (2017). Glyphosate residues in groundwater, drinking water and urine of subsistence farmers from intensive agriculture localities: A survey in Hopelchén, Campeche, Mexico. International Journal of Environmental Research and Public Health, 14(6), 595. https://doi.org/10.3390/ijerph14060595 DOI: https://doi.org/10.3390/ijerph14060595

Osten, J. R., & et al. (2025). Glyphosate and AMPA in groundwater, surface water, and soils related to different types of crops in Mexico. Bulletin of Environmental Contamination and Toxicology, 114(3), 44. https://doi.org/10.1007/s00128-025-04033-5 DOI: https://doi.org/10.1007/s00128-025-04022-z

Pakzad, P., & et al. (2023). Evaluation of health risk of glyphosate pesticide intake via surface and subsurface water consumption: A deterministic and probabilistic approach. MethodsX, 11, 102369. https://doi.org/10.1016/j.mex.2023.102369 DOI: https://doi.org/10.1016/j.mex.2023.102369

Pandey, A., Dabhade, P., & Kumarasamy, A. (2019). Inflammatory effects of subacute exposure of Roundup in rat liver and adipose tissue. Dose-Response, 17(2), 1559325819843380. https://doi.org/10.1177/1559325819843380 DOI: https://doi.org/10.1177/1559325819843380

Patel, D. P., & et al. (2024). Associations of chronic liver disease and liver cancer with glyphosate and its metabolites in Thailand. International Journal of Cancer, 155(10), 1786–1796. https://doi.org/10.1002/ijc.35091 DOI: https://doi.org/10.1002/ijc.35282

Peluso, J., & et al. (2020). Integrated analysis of the quality of water bodies from the lower Paraná River basin with different productive uses by physicochemical and biological indicators. Environmental Pollution, 263(B), 114496. https://doi.org/10.1016/j.envpol.2020.114496 DOI: https://doi.org/10.1016/j.envpol.2020.114434

Peluso, J., & et al. (2022). Ecotoxicological assessment of complex environmental matrices from the lower Paraná River basin. Chemosphere, 305, 135369. https://doi.org/10.1016/j.chemosphere.2022.135369 DOI: https://doi.org/10.1016/j.chemosphere.2022.135385

Peluso, J., & et al. (2023). Metals, pesticides, and emerging contaminants on water bodies from agricultural areas and the effects on a native amphibian. Environmental Research, 226, 115692. https://doi.org/10.1016/j.envres.2023.115692 DOI: https://doi.org/10.1016/j.envres.2023.115692

Pérez, D. J., & et al. (2017). Spatial and temporal trends and flow dynamics of glyphosate and other pesticides within an agricultural watershed in Argentina. Environmental Toxicology and Chemistry, 36(12), 3206–3216. https://doi.org/10.1002/etc.3897 DOI: https://doi.org/10.1002/etc.3897

Picard, J.-C., & et al. (2021). Longitudinal and vertical variations of waterborne emerging contaminants in the St. Lawrence Estuary and Gulf during winter conditions. Science of The Total Environment, 777, 146073. https://doi.org/10.1016/j.scitotenv.2021.146073 DOI: https://doi.org/10.1016/j.scitotenv.2021.146073

Pimenta, E. M., & et al. (2020). Quantification of glyphosate and AMPA by HPLC-ICP-MS/MS and HPLC-DAD: A comparative study. Journal of the Brazilian Chemical Society, 31(2), 298–304. https://doi.org/10.21577/0103-5053.20190180 DOI: https://doi.org/10.21577/0103-5053.20190175

Pires, N. L., & et al. (2020). Determination of glyphosate, AMPA and glufosinate by high performance liquid chromatography with fluorescence detection in waters of the Santarem Plateau, Brazilian Amazon. Journal of Environmental Science and Health, Part B, 55(9), 794–802. https://doi.org/10.1080/03601234.2020.1774466 DOI: https://doi.org/10.1080/03601234.2020.1784668

Pires, N. L., & et al. (2023). An ultrasensitive LC-MS/MS method for the determination of glyphosate, AMPA and glufosinate in water – Analysis of surface and groundwater from a hydrographic basin in the Midwestern region of Brazil. Science of The Total Environment, 875, 162499. https://doi.org/10.1016/j.scitotenv.2023.162499 DOI: https://doi.org/10.1016/j.scitotenv.2023.162499

Poiger, T., & et al. (2017). Occurrence of the herbicide glyphosate and its metabolite AMPA in surface waters in Switzerland determined with on-line solid phase extraction LC-MS/MS. Environmental Science and Pollution Research, 24(2), 1588–1596. https://doi.org/10.1007/s11356-016-7830-6 DOI: https://doi.org/10.1007/s11356-016-7835-2

Poiger, T., & et al. (2020). Behavior of glyphosate in wastewater treatment plants. Chimia, 74(3), 156–160. https://doi.org/10.2533/chimia.2020.156 DOI: https://doi.org/10.2533/chimia.2020.156

Prezilius, A. C. M., & et al. (2022). Development of an electroanalytical methodology associated with screen-printed electrodes for the determination of glyphosate in river waters. Ionics, 28(8), 4035–4043. https://doi.org/10.1007/s11581-022-04602-8 DOI: https://doi.org/10.1007/s11581-022-04606-3

Primost, J. E., & et al. (2017). Glyphosate and AMPA, “pseudo-persistent” pollutants under real world agricultural management practices in the Mesopotamic Pampas agroecosystem, Argentina. Environmental Pollution, 229, 771–779. https://doi.org/10.1016/j.envpol.2017.06.006 DOI: https://doi.org/10.1016/j.envpol.2017.06.006

Quaglia, G., & et al. (2024). Mitigating glyphosate levels in surface waters: Long-term assessment in an agricultural catchment in Belgium. Journal of Environmental Management, 359, 120954. https://doi.org/10.1016/j.jenvman.2024.120954 DOI: https://doi.org/10.1016/j.jenvman.2024.121046

Raby, M., & et al. (2022). Characterizing the exposure of streams in southern Ontario to agricultural pesticides. Chemosphere, 294, 133740. https://doi.org/10.1016/j.chemosphere.2022.133740 DOI: https://doi.org/10.1016/j.chemosphere.2022.133769

Reoyo-Prats, B., & et al. (2017). Multicontamination phenomena occur more often than expected in Mediterranean coastal watercourses: Study case of the Têt River (France). Science of The Total Environment, 579, 10–21. https://doi.org/10.1016/j.scitotenv.2016.11.019 DOI: https://doi.org/10.1016/j.scitotenv.2016.11.019

Reynoso, E. C., & et al. (2020). Determination of glyphosate in water from a rural locality in México and its implications for the population based on water consumption and use habits. International Journal of Environmental Research and Public Health, 17(19), 7102. https://doi.org/10.3390/ijerph17197102 DOI: https://doi.org/10.3390/ijerph17197102

Richmond, M. E. (2018). Glyphosate: A review of its global use, environmental impact, and potential health effects on humans and other species. Journal of Environmental Studies and Sciences, 8(4), 416–434. https://doi.org/10.1007/s13412-018-0517-2 DOI: https://doi.org/10.1007/s13412-018-0517-2

Rodrigues, L. de B., & et al. (2019). Impact of the glyphosate-based commercial herbicide, its components and its metabolite AMPA on non-target aquatic organisms. Mutation Research-Genetic Toxicology and Environmental Mutagenesis, 842, 94–101. https://doi.org/10.1016/j.mrgentox.2019.02.002 DOI: https://doi.org/10.1016/j.mrgentox.2019.05.002

Rodríguez-Bolaña, C., & et al. (2023). Multicompartmental monitoring of legacy and currently used pesticides in a subtropical lake used as a drinking water source (Laguna del Cisne, Uruguay). Science of The Total Environment, 874, 162310. https://doi.org/10.1016/j.scitotenv.2023.162310 DOI: https://doi.org/10.1016/j.scitotenv.2023.162310

Ronco, A. E., & et al. (2016). Water quality of the main tributaries of the Paraná Basin: Glyphosate and AMPA in surface water and bottom sediments. Environmental Monitoring and Assessment, 188(8), 458. https://doi.org/10.1007/s10661-016-5461-2 DOI: https://doi.org/10.1007/s10661-016-5467-0

Ruiz-Toledo, J., & et al. (2014). Occurrence of glyphosate in water bodies derived from intensive agriculture in a tropical region of southern Mexico. Bulletin of Environmental Contamination and Toxicology, 93(3), 289–293. https://doi.org/10.1007/s00128-014-1320-6 DOI: https://doi.org/10.1007/s00128-014-1328-0

Samargandi, M. R., & et al. (2017). Residue analysis of pesticides, herbicides, and fungicides in various water sources using gas chromatography-mass detection. Polish Journal of Environmental Studies, 26(5), 2189–2195. https://doi.org/10.15244/pjoes/69418 DOI: https://doi.org/10.15244/pjoes/70387

Sanford, M., & Prosser, R. S. (2020). High-frequency sampling of small streams in the agroecosystems of Southwestern Ontario, Canada, to characterize pesticide exposure and associated risk to aquatic life. Environmental Toxicology and Chemistry, 39(12), 2570–2587. https://doi.org/10.1002/etc.4890 DOI: https://doi.org/10.1002/etc.4884

Silva-Madera, R. J., & et al. (2021). Pesticide contamination in drinking and surface water in the Cienega, Jalisco, Mexico. Water, Air, & Soil Pollution, 232(2), 46. https://doi.org/10.1007/s11270-021-05004-8 DOI: https://doi.org/10.1007/s11270-021-04990-y

Stenrød, M. (2015). Long-term trends of pesticides in Norwegian agricultural streams and potential future challenges in northern climate. Acta Agriculturae Scandinavica, Section B — Soil & Plant Science, 65(sup2), 199–216. https://doi.org/10.1080/09064710.2015.1045933 DOI: https://doi.org/10.1080/09064710.2014.977339

Struger, J., Van Stempvoort, D. R., & Brown, S. J. (2015). Sources of aminomethylphosphonic acid (AMPA) in urban and rural catchments in Ontario, Canada: Glyphosate or phosphonates in wastewater? Environmental Pollution, 204, 289–297. https://doi.org/10.1016/j.envpol.2015.05.013 DOI: https://doi.org/10.1016/j.envpol.2015.03.038

Suciu, N., & et al. (2023). Glyphosate, glufosinate ammonium, and AMPA occurrences and sources in groundwater of hilly vineyards. Science of The Total Environment, 866, 161171. https://doi.org/10.1016/j.scitotenv.2022.161171 DOI: https://doi.org/10.1016/j.scitotenv.2022.161171

Swartz, M. K. (2011). The PRISMA statement: A guideline for systematic reviews and meta-analyses. Journal of Pediatric Health Care, 25(1), 1–2. https://doi.org/10.1016/j.pedhc.2010.09.005 DOI: https://doi.org/10.1016/j.pedhc.2010.09.006

Szekacs, A., Mörtl, M., & Darvas, B. (2015). Monitoring pesticide residues in surface and ground water in Hungary: Surveys in 1990–2015. Journal of Chemistry, 2015, 717948. https://doi.org/10.1155/2015/717948 DOI: https://doi.org/10.1155/2015/717948

Tan, H., & et al. (2024). Occurrence, multiphase partitioning, drivers, and ecological risks of current-use herbicides in a river basin dominated by rice-vegetable rotations in tropical China. Science of The Total Environment, 908, 168389. https://doi.org/10.1016/j.scitotenv.2023.168389 DOI: https://doi.org/10.1016/j.scitotenv.2023.168270

Tang, T., & et al. (2015). Quantification and characterization of glyphosate use and loss in a residential area. Science of The Total Environment, 517, 207–214. https://doi.org/10.1016/j.scitotenv.2015.02.040 DOI: https://doi.org/10.1016/j.scitotenv.2015.02.040

Tauchnitz, N., & et al. (2020). Assessment of pesticide inputs into surface waters by agricultural and urban sources - A case study in the Querne/Weida catchment, central Germany. Environmental Pollution, 267, 115186. https://doi.org/10.1016/j.envpol.2020.115186 DOI: https://doi.org/10.1016/j.envpol.2020.115186

Tongo, I., & et al. (2022). Levels, bioaccumulation and biomagnification of pesticide residues in a tropical freshwater food web. International Journal of Environmental Science and Technology, 19(3), 1467–1482. https://doi.org/10.1007/s13762-021-03225-5 DOI: https://doi.org/10.1007/s13762-021-03212-6

Toth, G., & et al. (2022). Spatiotemporal analysis of multi-pesticide residues in the largest Central European shallow lake, Lake Balaton, and its sub-catchment area. Environmental Sciences Europe, 34(1), 65. https://doi.org/10.1186/s12302-022-00637-7 DOI: https://doi.org/10.1186/s12302-022-00630-2

Ulrich, J. C., & Ferguson, P. L. (2021). Development of a sensitive direct injection LC-MS/MS method for the detection of glyphosate and aminomethylphosphonic acid (AMPA) in hard waters. Analytical and Bioanalytical Chemistry, 413(14), 3763–3774. https://doi.org/10.1007/s00216-021-03323-9 DOI: https://doi.org/10.1007/s00216-021-03324-5

Ulrich, J. C., & et al. (2023). Glyphosate and fluoride in high-hardness drinking water are positively associated with chronic kidney disease of unknown etiology (CKDu) in Sri Lanka. Environmental Science & Technology Letters, 10(10), 916–923. https://doi.org/10.1021/acs.estlett.3c00504 DOI: https://doi.org/10.1021/acs.estlett.3c00504

Urbańska-Kozłowska, H., Wolska, M., & Solipiwko-Pieścik, A. (2025). An assessment of contaminations levels of source and tap water in light of the new EU Directive 2020/2184. Desalination and Water Treatment, 321, 101031. https://doi.org/10.1016/j.dwt.2025.101031 DOI: https://doi.org/10.1016/j.dwt.2025.101031

Van Bruggen, A. H. C., & et al. (2018). Environmental and health effects of the herbicide glyphosate. Science of The Total Environment, 616–617, 255–268. https://doi.org/10.1016/j.scitotenv.2017.10.309 DOI: https://doi.org/10.1016/j.scitotenv.2017.10.309

Van Opstal, N. V., & et al. (2023). Spatial distribution of pesticides in surface water of the Estacas stream (Argentine Espinal region) associated with crop production. Environmental Science and Pollution Research, 30(15), 43573–43585. https://doi.org/10.1007/s11356-023-25281-7 DOI: https://doi.org/10.1007/s11356-023-25373-2

Van Stempvoort, D. R., & et al. (2016). Glyphosate residues in rural groundwater, Nottawasaga River Watershed, Ontario, Canada. Pest Management Science, 72(10), 1862–1872. https://doi.org/10.1002/ps.4218 DOI: https://doi.org/10.1002/ps.4218

Vera-Candioti, J., & et al. (2021). Pesticides detected in surface and groundwater from agroecosystems in the Pampas region of Argentina: Occurrence and ecological risk assessment. Environmental Monitoring and Assessment, 193(10), 689. https://doi.org/10.1007/s10661-021-09452-8 DOI: https://doi.org/10.1007/s10661-021-09462-8

Vlassa, M., & et al. (2022). Glyphosate and aminomethylphosphonic acid levels in water and soil samples from Transylvanian Roma community analyzed by HPLC-FLD method. Studia Universitatis Babes-Bolyai Chemia, 67(4), 273–285. https://doi.org/10.24193/subbchem.2022.4.18 DOI: https://doi.org/10.24193/subbchem.2022.4.18

Vu, C. T., & et al. (2023). First hydrological study on the seasonal occurrence of glyphosate, glufosinate, and their metabolites in the Red River system, North Vietnam. Environmental Nanotechnology, Monitoring & Management, 20, 100833. https://doi.org/10.1016/j.enmm.2023.100833 DOI: https://doi.org/10.1016/j.enmm.2023.100833

Wang, L., & et al. (2016). Carbon dots based turn-on fluorescent probes for the sensitive determination of glyphosate in environmental water samples. RSC Advances, 6(89), 85820–85828. https://doi.org/10.1039/C6RA17119B DOI: https://doi.org/10.1039/C6RA10115A

Welch, E. M., & et al. (2019). Submarine groundwater discharge and stream baseflow sustain pesticide and nutrient fluxes in Faga’alu Bay, American Samoa. Frontiers in Environmental Science, 7, 162. https://doi.org/10.3389/fenvs.2019.00162 DOI: https://doi.org/10.3389/fenvs.2019.00162

Wirth, M. A., Schulz-Bull, D. E., & Kanwischer, M. (2021). The challenge of detecting the herbicide glyphosate and its metabolite AMPA in seawater - Method development and application in the Baltic Sea. Chemosphere, 262, 128327. https://doi.org/10.1016/j.chemosphere.2020.128327 DOI: https://doi.org/10.1016/j.chemosphere.2020.128327

Yusa, V., & et al. (2021). Quick determination of glyphosate and AMPA at sub μg/L in drinking water by direct injection into LC-MS/MS. Talanta Open, 4, 100059. https://doi.org/10.1016/j.talo.2021.100059 DOI: https://doi.org/10.1016/j.talo.2021.100061

Zhang, Q., & et al. (2022). The study of human serum metabolome on the health effects of glyphosate and early warning of potential damage. Chemosphere, 298, 134246. https://doi.org/10.1016/j.chemosphere.2022.134246 DOI: https://doi.org/10.1016/j.chemosphere.2022.134308

Zhou, F.-Y., & et al. (2023). Aldo-keto reductase may contribute to glyphosate resistance in Lolium rigidum. Pest Management Science, 79(4), 1528–1537. https://doi.org/10.1002/ps.7320 DOI: https://doi.org/10.1002/ps.7325

Downloads

Publicado

2025-09-15

Edição

Seção

Artigos

Como Citar

CAVASSANI, Sandria Ferreira; DA SILVA MALAQUIAS, Karla; DO NASCIMENTO, Michelle Nauara Gomes; SILVA, Isadora Barboza; BENITE-RIBEIRO, Sandra Aparecida. CONCENTRAÇÕES DE GLIFOSATO (N-(FOSFONOMETIL)GLICINA) EM CURSOS DE ÁGUA – REVISÃO SISTEMÁTICA E ANÁLISE CIENTOMÉTRICA. ARACÊ , [S. l.], v. 7, n. 9, p. e8088, 2025. DOI: 10.56238/arev7n9-168. Disponível em: https://periodicos.newsciencepubl.com/arace/article/view/8088. Acesso em: 5 dez. 2025.