PLANTAS QUE APRENDEN: UNA REVISIÓN DEL COMPORTAMIENTO ADAPTATIVO Y LA MEMORIA VEGETAL
DOI:
https://doi.org/10.56238/arev7n10-313Palabras clave:
Inteligencia Vegetal, Aprendizaje Asociativo, Comportamiento Adaptativo, Memoria, Implicaciones para la InvestigaciónResumen
La supervivencia en entornos complejos e inestables requiere habilidades adaptativas, incluida la capacidad de aprender de la experiencia, lo que permite a los organismos ajustar su comportamiento en respuesta a señales, eventos y circunstancias específicas. Si bien esta capacidad se ha estudiado ampliamente en animales, evidencia experimental reciente sugiere que las plantas también exhiben aprendizaje asociativo. Este descubrimiento tiene implicaciones significativas para nuestra comprensión de la biología vegetal, así como para la comprensión más amplia de la inteligencia y el comportamiento en los organismos vivos. En este artículo, revisamos la literatura actual sobre los procesos de memoria y aprendizaje en plantas, destacando los hallazgos recientes y analizando su relevancia para la ciencia. Además, exploramos las implicaciones de estos hallazgos para la biología vegetal y para la investigación en sostenibilidad y conservación ambiental.
Descargas
Referencias
Abramson, C. I., & Chicas-Mosier, A. M. (2016). Aprendizagem nas plantas: Lições da Mimosa pudica. Frontiers in Psychology, 7, Article 417. DOI: https://doi.org/10.3389/fpsyg.2016.00417
Adamec, R. (1998). The mechanism of entrainment of the circadian rhythm of the leaf movement of Mimosa pudica. Chronobiology International, 15(5), 467–480. https://doi.org/10.3109/07420529808999783
Adelman, B. E. (2018a). A review of the context and conduct of the first electrophysiological experiment in plants: With an eye to the future. Frontiers in Plant Science, 9, Article 1095. https://doi.org/10.3389/fpls.2018.01095 DOI: https://doi.org/10.3389/fpls.2018.01095
Adelman, B. E. (2018b). The physiology of learning. In Encyclopedia of animal behavior (pp. 318–325). https://doi.org/10.1016/B978-0-12-809633-8.20184-5
Adelman, B. E. (2018). On the conditioning of plants: A review of experimental evidence. Perspectives on Behavior Science, 41(2), 431–446. DOI: https://doi.org/10.1007/s40614-018-0173-6
Alkon, D. L., & Farley, J. (1981a). Associative learning in invertebrates. Science, 212(4497), 951–957.
Alkon, D. L., & Farley, J. (1981b). Learning in invertebrates. Annual Review of Psychology, 32, 435–486.
Applewhite, P. B. (1972). Action spectra for the phototropic and growth responses of corn roots. Plant Physiology, 49(4), 515–518. https://doi.org/10.1104/pp.49.4.515
Ballaré, C. L., & Casal, J. J. (2000). Light signals perceived by crop and weed plants. Field Crops Research, 67(2), 149–160. DOI: https://doi.org/10.1016/S0378-4290(00)00090-3
Baluška, F., Levkowitz, G., & Mancuso, S. (2006). Plant intelligence: An overview. Biologia, 61(5), 527–542.
Baluška, F., & Mancuso, S. (2009). Deep evolutionary origins of neurobiology: Turning the essence of ‘neural’ upside-down. Communicative & Integrative Biology, 2(1), 60–65. https://doi.org/10.4161/cib.2.1.7459 DOI: https://doi.org/10.4161/cib.2.1.7620
Baluška, F., Mancuso, S., & Volkmann, D. (2006). Communication in plants: Neuronal aspects of plant life (pp. 1–12). Springer. https://doi.org/10.1007/3-540-27618-7_1 DOI: https://doi.org/10.1007/3-540-28516-4
Baluška, F., Mancuso, S., Volkmann, D., & Barlow, P. W. (2003). Root apices as plant command centres: The unique ‘brain-like’ status of the root apex transition zone. Biologia Plantarum, 46(2), 203–215.
Baluška, F., Gagliano, M., & Witzany, G. (Eds.). (2018). Memory and learning in plants. Springer International Publishing. DOI: https://doi.org/10.1007/978-3-319-75596-0
Berger, S. L., Kouzarides, T., Shiekhattar, R., & Shilatifard, A. (2009). An operational definition of epigenetics. Genes & Development, 23, 781–783. DOI: https://doi.org/10.1101/gad.1787609
Biju Kumar, M. (2016). Memory in plants: A review. Plant Systematics and Evolution, 302(8), 907–923. https://doi.org/10.1007/s00606-016-1358-2
Bose, J. C. (1927). The nervous mechanism of plants. Longmans, Green and Co. DOI: https://doi.org/10.5962/bhl.title.139322
Bose, J. C. (1928). Response in the living and non-living. Longmans, Green and Company.
Brenner, E. D., Stahlberg, R., Mancuso, S., & Vivanco, J. (2006). Plant neurobiology: An integrated view of plant signaling. Trends in Plant Science, 11(8), 413–419. DOI: https://doi.org/10.1016/j.tplants.2006.06.009
Brook, B. S., Eissenstat, D. M., Lynch, J. P., McCulloh, K. A., McIvor, I. R., & White, C. S. (2016). Plant movement: Subcellular to global scales. American Journal of Botany, 103(2), 209–211.
Burdon-Sanderson, J., & Page, D. E. (1873). On the electrical phenomena which accompany irritation of the leaf of Dionaea muscipula. Proceedings of the Royal Society of London, 21(140–146), 495–496. https://doi.org/10.1098/rspl.1873.0088 DOI: https://doi.org/10.1098/rspl.1872.0092
Butt, M. S., et al. (2008). Morus alba L. nature’s functional tonic. Trends in Food Science and Technology, 19(10), 505–512. https://doi.org/10.1016/j.tifs.2008.06.002 DOI: https://doi.org/10.1016/j.tifs.2008.06.002
Chamovitz, D. A. (2012). What a plant knows: A field guide to the senses. Scientific American / Farrar, Straus and Giroux.
Chamovitz, D. A. (2017). Plants as sensitive and communicative beings. Trends in Plant Science, 22(10), 877–879.
Chinnusamy, V., & Zhu, J. K. (2009). Epigenetic regulation of stress responses in plants. Current Opinion in Plant Biology, 12, 133–139. DOI: https://doi.org/10.1016/j.pbi.2008.12.006
Chua, L., Sbitnev, V., & Kim, H. (2012). Hodgkin–Huxley axon is made of memristors. International Journal of Bifurcation and Chaos, 22(03), Article 1230011. DOI: https://doi.org/10.1142/S021812741230011X
Coutinho, J. F., Silva, A. P., & Oliveira, G. (2019). Memory mechanisms and learning in plants. Plant Signaling & Behavior, 14(1), Article e1537254.
Darwin, C. (1875). Insectivorous plants. John Murray. DOI: https://doi.org/10.5962/bhl.title.99933
Darwin, C. (1880). The power of movement in plants. John Murray. DOI: https://doi.org/10.5962/bhl.title.102319
Davies, E., et al. (1991). Electrical signals and their physiological significance in plants. Plant, Cell and Environment, 14, 681–688.
Dodd, A. N., & Webb, A. A. R. (2019). Plants and the circadian clock. Developmental Cell, 49(3), 351–367. https://doi.org/10.1016/j.devcel.2019.03.024 DOI: https://doi.org/10.1016/j.devcel.2019.03.024
Fericean, M. L., Rada, O., & Badilita, M. (2015a). The behaviorism and the cognitive psychology: Two approaches to the study of human behavior. Procedia Economics and Finance, 23, 339–343.
Fericean, M. L., Rada, O., & Badilita, M. (2015b). The history and development of ethology. Research Journal of Agricultural Science, 47(2), 45–51.
Filek, M., et al. (1997). The effect of electrical stimulation on respiratory processes in roots of maize seedlings. Journal of Plant Physiology, 151, 460–464.
Foa, L., & Mondino, E. (2021). Memory in plants. In L. Foa & E. Mondino (Eds.), Plant memory: A naturalist’s guide to a wilder consciousness (pp. 15–38). University of Chicago Press.
Fromm, J., et al. (1995). Electrical signaling and systemic proteinase inhibitor induction in the wounded plant. Plant Physiology, 109, 157–160. DOI: https://doi.org/10.1104/pp.109.2.375
Fromm, J., & Bauer, B. (1994). Electrical signaling and long-distance protein movement in higher plants. Plant, Cell and Environment, 17, 717–728.
Gagliano, M. (2014). The consciousness of plants. The New Yorker, 92(26), 28–34.
Gagliano, M., Renton, M., Depczynski, M., & Mancuso, S. (2014). Experience teaches plants to learn faster and forget slower in environments where it matters. Oecologia, 175(1), 63–72. https://doi.org/10.1007/s00442-013-2873-7 DOI: https://doi.org/10.1007/s00442-013-2873-7
Gagliano, M., Renton, M., Depczynski, M., & Mancuso, S. (2016). Experience teaches plants to learn faster and forget slower in environments where it matters. Oecologia, 182(2), 417–426. https://doi.org/10.1007/s00442-016-3650-1 DOI: https://doi.org/10.1007/s00442-016-3650-1
Gagliano, M., Vyazovskiy, V. V., Borbely, A. A., Grimonprez, M., & Depczynski, M. (2016). Learning by association in plants. Scientific Reports, 6, Article 38427. DOI: https://doi.org/10.1038/srep38427
Hossain, M. B., et al. (2010). Effect of drying method on the antioxidant capacity of six Lamiaceae herbs. Food Chemistry, 123(1), 85–91. https://doi.org/10.1016/j.foodchem.2010.04.003 DOI: https://doi.org/10.1016/j.foodchem.2010.04.003
Hunyadi, A., et al. (2012). Chlorogenic acid and rutin play a major role in the in vivo anti-diabetic activity of Morus alba leaf extract on type II diabetic rats. PLoS ONE, 7(11), Article e50619. https://doi.org/10.1371/journal.pone.0050619 DOI: https://doi.org/10.1371/journal.pone.0050619
Iqbal, S., et al. (2012). Proximate composition and antioxidant potential of leaves from three varieties of mulberry (Morus sp.): A comparative study. International Journal of Molecular Sciences, 13(6), 6651–6664. https://doi.org/10.3390/ijms13066651 DOI: https://doi.org/10.3390/ijms13066651
Jaynes, J. (1976). The origin of consciousness in the breakdown of the bicameral mind. Houghton Mifflin.
Karban, R. (2015). Plant behavior and communication. Ecology Letters, 18(9), 507–514. DOI: https://doi.org/10.7208/chicago/9780226264844.003.0002
Katsube, T., et al. (2009). Effect of air-drying temperature on antioxidant capacity and stability of polyphenolic compounds in mulberry (Morus alba L.) leaves. Food Chemistry, 113(4), 964–969. https://doi.org/10.1016/j.foodchem.2008.08.041 DOI: https://doi.org/10.1016/j.foodchem.2008.08.041
Kiss, J. Z. (2018). Plant biology: An introduction to plant science. Routledge.
Kobus, J., et al. (2009). Phenolic compounds and antioxidant activity of extracts of ginkgo leaves. European Journal of Lipid Science and Technology, 111, 1140–1150. https://doi.org/10.1002/ejlt.200800299 DOI: https://doi.org/10.1002/ejlt.200800299
Mancuso, S. (2019). Brilliant green: The surprising history and science of plant intelligence. Island Press.
Mancuso, S. (2019). Revolução das plantas: Um novo modelo para o futuro. Ubu Editora.
Mancuso, S., & Viola, A. (2015). Brilliant green: The surprising history and science of plant intelligence. Island Press.
Masi, E., et al. (2009). Electrical signalling and gas exchange in maize plants under moderate salinity. Planta, 230(2), 363–372.
Minorsky, P. V. (2020). The secret life of plants: Plant physiology and the development of the plant sciences. American Journal of Botany, 107(7), 985–988.
Parise, A. (2017). Touching and feeling: A history of tactile perception in media studies. Routledge.
Parise, A. G., et al. (2017). Aprendizagem e comunicação em plantas: Um estudo sobre transmissão de aprendizado em Mimosa pudica L. (Fabaceae).
Pavlov, I. P. (1927). Conditioned reflexes: An investigation of the physiological activity of the cerebral cortex (G. V. Anrep, Trans.). Oxford University Press.
Pavlov, I. P. (1928). Lectures on conditioned reflexes: Twenty-five years of objective study of the higher nervous activity (behaviour) of animals. International Publishers. DOI: https://doi.org/10.1037/11081-000
Pearce, J. M. (2008). Animal learning and cognition: An introduction. Psychology Press.
Qin, P., et al. (2013). Changes in phytochemical compositions, antioxidant and α-glucosidase inhibitory activities during the processing of tartary buckwheat tea. Food Research International, 50(2), 562–567. https://doi.org/10.1016/j.foodres.2011.03.028 DOI: https://doi.org/10.1016/j.foodres.2011.03.028
Radojković, M., et al. (2016). Biological activities and chemical composition of Morus leaves extracts obtained by maceration and supercritical fluid extraction. The Journal of Supercritical Fluids, 117, 50–58. https://doi.org/10.1016/j.supflu.2016.05.004 DOI: https://doi.org/10.1016/j.supflu.2016.05.004
Rescorla, R. A., & Wagner, A. R. (1972). A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement and nonreinforcement. In A. H. Black & W. F. Prokasy (Eds.), Classical conditioning II: Current research and theory (pp. 64–99). Appleton-Century-Crofts.
Roshchina, V. V. (2001). Neurotransmitters in plant life. Science Publishers. DOI: https://doi.org/10.1201/9781482279856
Ryan, C. A. (1990). Protease inhibitors in plants: Genes for improving defenses against insects and pathogens. Annual Review of Phytopathology, 28, 425–449. DOI: https://doi.org/10.1146/annurev.py.28.090190.002233
Samoilov, V. O. (2007). Animal behavior: An evolutionary approach. KMK Scientific Press.
Samoilov, V. O. (2007). Ivan Petrovich Pavlov (1849–1936). Journal of the History of the Neurosciences, 16(1–2), 74–89. DOI: https://doi.org/10.1080/09647040600793232
Sánchez-Salcedo, E., et al. (2015). (Poly)phenolic compounds and antioxidant activity of white (Morus alba) and black (Morus nigra) mulberry leaves: Their potential for new products rich in phytochemicals. Journal of Functional Foods, 18, 1039–1046. https://doi.org/10.1016/j.jff.2015.03.053 DOI: https://doi.org/10.1016/j.jff.2015.03.053
Schmitz, J. F., & Gallie, D. R. (2019). Plant learning: An emerging field. Journal of Experimental Botany, 70(3), 797–800.
Schneider, S. M., & Morris, E. K. (1987a). A history of the term radical behaviorism: From Watson to Skinner. The Behavior Analyst, 10(1), 27–39. DOI: https://doi.org/10.1007/BF03392404
Schneider, S. M., & Morris, E. K. (1987b). Ethology: An introduction. John Wiley & Sons.
Schroeder, J. I., Hedrich, R., & Fernández, J. M. (1984). Potassium-selective single channels in guard cell protoplasts of Vicia faba. Nature, 312(5993), 361–362. DOI: https://doi.org/10.1038/312361a0
Siger, A., et al. (2004). Zawartość związków fenolowych w nowych odmianach rzepaku. Rośliny Oleiste, 25, 263–274.
Silvertown, J. W., & Gordon, D. M. (1989). A framework for plant behavior. Annual Review of Ecology and Systematics, 20(1), 349–366. DOI: https://doi.org/10.1146/annurev.ecolsys.20.1.349
Skinner, B. F. (1938). The behavior of organisms: An experimental analysis. Appleton-Century.
Skinner, B. F. (2011a). About behaviorism. Vintage.
Skinner, B. F. (2011b). Science and human behavior. Simon and Schuster.
Struik, P. C., Wierenga, P. A., & Van der Loos, F. (2008). Plant neurobiology: An integrated view of plant signaling. Trends in Plant Science, 13(7), 360–365.
Szechyńska-Hebda, M., Kruk, J., Górecka, M., Karpińska, B., & Karpiński, S. (2010). Evidence for light wavelength-specific photoelectrophysiological signaling and memory of excess light episodes in Arabidopsis. Plant, Cell & Environment, 33(9), 1614–1626. https://doi.org/10.1111/j.1365-3040.2010.02163.x DOI: https://doi.org/10.1111/j.1365-3040.2010.02163.x
Taiz, L., & Zeiger, E. (2017). Fisiologia vegetal (6ª ed.). Artmed.
Tamaoki, M., & Karahara, I. (2018). Circadian rhythms in plants: Physiological and molecular aspects. Springer International Publishing.
Thabti, I., et al. (2012). Identification and quantification of phenolic acids and flavonol glycosides in Tunisian Morus species by HPLC-DAD and HPLC-MS. Journal of Functional Foods, 4(1), 367–374. https://doi.org/10.1016/j.jff.2012.01.006 DOI: https://doi.org/10.1016/j.jff.2012.01.006
Thorndike, E. L. (1898). Animal intelligence: An experimental study of the associative processes in animals. The Psychological Review, 2(1), 1–26. DOI: https://doi.org/10.1037/h0092987
Trewavas, A. (2003). Aspects of plant intelligence. Annals of Applied Biology, 142(2), 157–180. https://doi.org/10.1111/j.1744-7348.2003.tb00240.x DOI: https://doi.org/10.1111/j.1744-7348.2003.tb00240.x
Trewavas, A. (2005). Green plants as intelligent organisms. Trends in Plant Science, 10(8), 413–419. DOI: https://doi.org/10.1016/j.tplants.2005.07.005
Umrath, K. (1930). Elektrophysiologische untersuchungen an Zellen. Pflüger's Archiv für die Gesamte Physiologie des Menschen und der Tiere, 225(1–2), 394–408.
Volkov, A. G. (2021). Memory and learning in plants. The Plant Cell, 33(1), 1–23.
Volkov, A. G., Carrell, H., Adesina, T., Markin, V. S., & Jovanov, E. (2013). Plant electrophysiology: Electrostimulation and electrocommunication. Plant Signaling & Behavior, 8(7), Article e24610.
Volkov, A. G., et al. (2008). Plant electrical memory. Plant Signaling & Behavior, 3(7), 490–492. DOI: https://doi.org/10.4161/psb.3.7.5684
Volkov, A. G., et al. (2014). Memristors in plants. Plant Signaling & Behavior, 9(3), Article e28152. DOI: https://doi.org/10.4161/psb.28152
Watson, J. B. (1913). Psychology as the behaviorist views it. Psychological Review, 20(2), 158–177. DOI: https://doi.org/10.1037/h0074428
Wheeler, W. M. (2015a). The behavior of six-legged robots. The MIT Press.
Wheeler, W. M. (2015b). The social insects: Their origin and evolution. Routledge.
Wildon, D. C., et al. (1992). Electrical signaling and systemic proteinase inhibitor induction in the wounded plant. Nature, 360, 62–65. DOI: https://doi.org/10.1038/360062a0
Williams, S. E., & Pickard, B. G. (1980). The physiology and anatomy of two colossendeid octopods from the North Atlantic. Journal of Experimental Marine Biology and Ecology, 46(2), 91–109. https://doi.org/10.1016/0022-0981(80)90122-3
Wipf, D., Ludewig, U., Tegeder, M., Rentsch, D., Koch, W., & Frommer, W. B. (2002). Conservation of amino acid transporters in fungi. DOI: https://doi.org/10.1016/S0968-0004(01)02054-0
Zimmermann, M. R., Maischak, H., Mithöfer, A., Boland, W., Felle, H. H., & Becker, D. (2009). Electrical signals control wound healing through phosphatidylinositol-3-OH kinase– and PTEN-dependent signaling pathways in plants. Proceedings of the National Academy of Sciences, 106(9), 3186–3191.
Zou, Y.-X. (2015). The roles of fermentation technologies in mulberry foods processing: Application and outlooks. Medicinal Chemistry, 5(4), 4–5. https://doi.org/10.4172/2161-0444.1000e107 DOI: https://doi.org/10.4172/2161-0444.1000e107
