INTELIGENCIA ARTIFICIAL BASADA EN LOS BIENES COMUNES: UNA CRÍTICA SOCIOMETABÓLICA DEL MODELO HEGEMÓNICO Y CAMINOS HACIA LA EMANCIPACIÓN

Autores/as

  • Edi Augusto Benini Autor/a

DOI:

https://doi.org/10.56238/arev7n10-309

Palabras clave:

Inteligencia Artificial Basada en los Bienes Comunes, Los Bienes Comunes, Transformación Sociometabólica, IA Emancipadora, Protocolo Kairos, Gobernanza Colectiva

Resumen

Este artículo presenta una crítica sociometabólica del paradigma dominante de la inteligencia artificial (IA) y articula una propuesta transformadora para la IA basada en los bienes comunes. Aquí, el concepto de «basada en los bienes comunes» trasciende la gestión de recursos o el uso compartido de infraestructura: siguiendo a Dardot y Laval (2017), lo común se conceptualiza como una praxis instituyente, un proceso dinámico y colectivo de autogobierno, coproducción y emancipación social. Así, el artículo plantea la IA no solo como un bien que gestionar, sino como un campo para instituir nuevas relaciones sociales, gobernanza democrática y una transición sociometabólica emancipadora. El argumento integra epistemologías marxistas, feministas y del Sur Global con casos prácticos, proponiendo un marco triádico —memoria colectiva, gobernanza dialógica y propósito emancipador— y mecanismos concretos para la financiación, la validación y la equidad global. El Protocolo Kairós se presenta como un método pionero para la coautoría reflexiva y dialógica entre humanos e IA. Al conectar la innovación teórica con la práctica vivida, el artículo demuestra que reorientar la IA como un bien común es factible y urgente para la transformación social.

Descargas

Los datos de descarga aún no están disponibles.

Referencias

Altieri, M.A., 2018. Agroecology: The science of sustainable agriculture. Boca Raton, FL: CRC Press.

Benini, E.A., 2017. Sistema orgânico do trabalho. São Paulo: Ícone.

Benjamin, R., 2019. Race after technology: abolitionist tools for the new Jim Code. Cambridge, UK: Polity Press.

Bianchi, M. and Marin, L., 2023. Algorithmic governance and social emancipation: rethinking AI through critical praxis. AI & Society, 38(1), pp.103–115.

BigScience Workshop, 2022. BLOOM: open and transparent large language models for the public good. BigScience Workshop White Paper.

Brevini, B., 2022. The pedagogical politics of EdTech: neuroscience, gamification, and the automation of learning. Learning, Media and Technology, 47(1), pp.1–14.

Casilli, A., 2020. En attendant les robots: enquête sur le travail du clic. Paris: Seuil.

Chalmers, D., 1996. The conscious mind: in search of a fundamental theory. Oxford: Oxford University Press.

Clark, A., 2013. Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behavioral and Brain Sciences, 36(3), pp.181–204.

Couldry, N. and Mejias, U.A., 2019. The costs of connection: how data is colonizing human life and appropriating it for capitalism. Stanford, CA: Stanford University Press.

Crawford, K., 2021. Atlas of AI: power, politics, and the planetary costs of artificial intelligence. New Haven, CT: Yale University Press.

Cubitt, S., 2020. Finite media: environmental implications of digital technologies. Durham, NC: Duke University Press.

Dagnino, R., 2014. Tecnologia social: ferramenta para construção de outra sociedade. São Paulo: Fundação Perseu Abramo.

Dardot, P. and Laval, C., 2017. Common: on revolution in the 21st century. London: Bloomsbury.

Dehaene, S., 2014. Consciousness and the brain: deciphering how the brain codes our thoughts. New York, NY: Viking.

Dencik, L., Hintz, A. and Cable, J., 2019. Towards Data Justice? The Ambiguity of Anti-Surveillance Resistance in Political Activism. Big Data & Society, 6(1), pp.1–12. https://doi.org/10.1177/2053951718823802.

Digital Public Goods Alliance, 2022. Public cloud solutions for cities: economic and technological feasibility study. Geneva: Digital Public Goods Alliance.

Dyer-Witheford, N., 2015. Economic transitions and cognitive capitalism. Journal of Post Keynesian Economics, 37(1), pp.157–173.

Federici, S., 2012. Revolution at point zero: housework, reproduction, and feminist struggle. Oakland, CA: PM Press.

Fraser, N., 2016. Contradictions of capital and care. New Left Review, 100, pp.99–117.

Freire, P., 1970. Pedagogy of the oppressed. New York, NY: Herder and Herder.

Gazzaniga, M.S., 2018. The consciousness instinct: unraveling the mystery of how the brain makes the mind. New York, NY: Farrar, Straus and Giroux.

Giampietro, M., Velasco-Fernández, R., & Ripa, M., 2022. Regenerative Social Metabolism: Sustainability in the Anthropocene. Cham: Springer.

Gibson-Graham, J.K., 2006. The end of capitalism (as we knew it): a feminist critique of political economy. Minneapolis, MN: University of Minnesota Press.

Harvey, D., 2014. Seventeen contradictions and the end of capitalism. London: Profile Books.

Internet Society, 2023. Global Internet report 2023. Reston, VA: Internet Society.

Jones, N., 2023. How to stop data centres from gobbling up the world’s electricity. Nature, 614(7946), pp.418–421.

Laboria Cuboniks, 2015. The Xenofeminist manifesto: a politics for alienation. Available at: https://www.laboriacuboniks.net/manifesto/xenofeminism [Accessed: 14 June 2024].

Marx, K., 1857/1993. Grundrisse: foundations of the critique of political economy. London: Penguin Classics.

Mészáros, I., 2002. Beyond capital: toward a theory of transition. London: Pluto Press.

Mészáros, I., 2008. The challenge and burden of historical time. New York, NY: Monthly Review Press.

Noble, S.U., 2018. Algorithms of oppression: how search engines reinforce racism. New York, NY: NYU Press.

OECD, 2021. OECD AI policy observatory: infrastructure. Paris: OECD Publishing.

OECD, 2024. OECD AI outlook 2024. Paris: OECD Publishing.

Ostrom, E., 1990. Governing the commons: the evolution of institutions for collective action. Cambridge: Cambridge University Press.

Pasquinelli, M., 2023. The myth of the machine: preserving knowledge commons in the age of digital capitalism. Amsterdam: Institute of Network Cultures.

Ricaurte, P., Dencik, L. and Hintz, A., 2019. Data justice: mapping advocacy and research. Big Data & Society, 6(1), pp.1–17.

Santos, B. de S., 2014. Epistemologies of the south: justice against epistemicide. Boulder, CO: Paradigm Publishers.

Srnicek, N., 2017. Platform capitalism. Cambridge, UK: Polity Press.

Stephany, F., Kässi, O., Rani, U. and Lehdonvirta, V., 2021. Crowdwork and the gig economy. Work, Employment and Society, 35(1), pp.45–67.

UNESCO, 2021. Recommendation on the ethics of artificial intelligence. Available at: https://unesdoc.unesco.org/ark:/48223/pf0000379920 [Accessed: 14 June 2024].

UNICEF, 2021. The impact of EdTech on learning: a global review. New York, NY: UNICEF Office of Research.

Williamson, B., 2020. Big data in education: the digital future of learning, policy and practice. London: Sage Publications.

Zuboff, S., 2019. The age of surveillance capitalism: the fight for a human future at the new frontier of power. London: Profile Books.

Descargas

Publicado

2025-10-31

Número

Sección

Artigos

Cómo citar

BENINI, Edi Augusto. INTELIGENCIA ARTIFICIAL BASADA EN LOS BIENES COMUNES: UNA CRÍTICA SOCIOMETABÓLICA DEL MODELO HEGEMÓNICO Y CAMINOS HACIA LA EMANCIPACIÓN . ARACÊ , [S. l.], v. 7, n. 10, p. e9513 , 2025. DOI: 10.56238/arev7n10-309. Disponível em: https://periodicos.newsciencepubl.com/arace/article/view/9513. Acesso em: 5 dec. 2025.