INTELIGENCIA ARTIFICIAL EN CITOLOGÍA ONCÓTICA: UNA REVISIÓN SISTEMÁTICA SOBRE AVANCES Y APLICACIONES DIAGNÓSTICAS
DOI:
https://doi.org/10.56238/arev7n10-282Palabras clave:
Redes Neuronales Artificiales, Papanicolaou, Neoplasias del Cuello Uterino, Diagnóstico Asistido por Computadora, CitopatologíaResumen
La Inteligencia Artificial (IA) se ha destacado como una tecnología prometedora para el perfeccionamiento de la Citología oncótica, impulsando avances en el tamizaje y diagnóstico del Cáncer de cuello uterino. Este estudio tuvo como objetivo investigar los progresos y las aplicaciones de la IA en la Citología oncótica, analizando su eficacia diagnóstica, los impactos en la rutina de laboratorio y las perspectivas para el fortalecimiento de la práctica biomédica. Se trata de una revisión sistemática realizada en las bases de datos PubMed y LILACS, entre los años 2019 y 2025, utilizando descriptores en inglés. Además, se realizó una búsqueda en portugués para contextualizar la realidad brasileña en relación con este tema, abordada en los apartados de Introducción y Desarrollo de este artículo científico. Se seleccionaron 54 artículos que cumplieron los criterios de inclusión, abarcando técnicas con énfasis en Deep Learning, Machine Learning, Redes Neuronales Convolucionales, Modelos Híbridos y Sistemas de Diagnóstico Asistido por Computadora. Los resultados mostraron una precisión media superior al 95%, con un desempeño comparable al de los especialistas humanos, además de beneficios como la estandarización diagnóstica, la reducción de sesgos y la optimización del tiempo de análisis. También se observó que la IA tiene potencial para ampliar el acceso al tamizaje citológico, especialmente en regiones con limitaciones de recursos. Se concluye que la Inteligencia Artificial representa un hito en la modernización de la Citología oncótica y la Citopatología, fortaleciendo el papel del profesional Biomédico y contribuyendo a una práctica diagnóstica más precisa, eficiente y humanizada.
Descargas
Referencias
AKASH, R. S.; HOSSAIN, Md. M.; ISLAM, Md. H. K.; HASAN, Md. M.; AHMED, S. M. K.; HOSSAIN, Md. N.; BHUIYAN, Md. F. A. CerviXpert: A multi-structural convolutional neural network for predicting cervix type and cervical cell abnormalities. Computers in Biology and Medicine, v. 169, p. 107670, 2024. Disponível em: https://doi.org/10.1016/j.compbiomed.2024.107670. Acesso em: 10 out. 2025.
ALBUQUERQUE, T.; COSTA, L. A.; MARTINS, D. M.; ARAÚJO, V. P.; FONSECA, F. J. Ordinal losses for classification of cervical cancer risk. Biomedical Signal Processing and Control, v. 68, p. 102639, 2021. Disponível em: https://doi.org/10.1016/j.bspc.2021.102639. Acesso em: 10 out. 2025.
ALIAS, N. A.; RAZALI, S. N.; ABDUL RAHMAN, N. A.; ISMAIL, R.; MOHD, Z. A. Pap smear images classification using machine learning: a literature matrix. Malaysian Journal of Medical Sciences, v. 29, n. 3, p. 55–72, 2022. Disponível em: https://doi.org/10.21315/mjms2022.29.3.6. Acesso em: 10 out. 2025.
ALLAHQOLI, L.; SALARI, N.; DARVISHI, N.; ABDOLLAHI, M.; MOHAMMADIAN, F.; MOHAMMADIAN, M.; MOOSAVI, A. O uso da inteligência artificial no rastreio e diagnóstico de diferentes tipos de câncer: uma revisão sistemática. Revista Contemporânea, v. 27, n. 3, p. 45–62, 2022. Disponível em: https://ojs.revistacontemporanea.com/ojs/index.php/home/article/download/4994/3807/15095. Acesso em: 10 out. 2025.
ALLANSON, E. R.; O’BRIEN, J.; NG, J.; DOWNS, K.; MILLER, A.; HILL, C. Accuracy of smartphone images of the cervix after acetic acid application for diagnosing cervical intraepithelial neoplasia grade 2 or greater in women with positive cervical screening: a systematic review and meta-analysis. BMJ Open, v. 11, n. 9, p. e045598, 2021. Disponível em: https://doi.org/10.1136/bmjopen-2020-045598. Acesso em: 22 out. 2025.
ALQURAN, H.; ABDULQADER, E.; AL-MAIMANI, A.; AL-HADDAD, S.; AL-GHAFRI, K.; AL-BALUSHI, S. Cervical Net: a novel cervical cancer classification using feature fusion. Computers in Biology and Medicine, v. 157, p. 106683, 2022. Disponível em: https://doi.org/10.1016/j.compbiomed.2022.106683. Acesso em: 10 out. 2025.
ALSALATIE, M.; AL-JUBOURY, A. F.; SALMAN, A. H.; ALDABBAGH, S. H.; MOHAMED, M. M. Analysis of cytology Pap smear images based on ensemble deep learning approach. Biomedical Signal Processing and Control, v. 75, p. 103599, 2022a. Disponível em: https://doi.org/10.1016/j.bspc.2022.103599. Acesso em: 10 out. 2025.
ALSALATIE, M.; HUSSEIN, A. F.; IBRAHIM, R. A.; MOHAMMED, M. A.; MAJID, M. A.; ABDULKAREEM, K. H. A new weighted deep learning feature using particle swarm and ant lion optimization for cervical cancer diagnosis on Pap smear images. Biomedical Signal Processing and Control, v. 85, p. 105048, 2023b. Disponível em: https://doi.org/10.1016/j.bspc.2023.105048. Acesso em: 10 out. 2025.
ALSAFFAR, M. F.; FEKRI-ERSHAD, S. Developing a tuned three-layer perceptron fed with trained deep convolutional neural networks for cervical cancer diagnosis. Computers in Biology and Medicine, v. 156, p. 106751, 2023. Disponível em: https://doi.org/10.1016/j.compbiomed.2023.106751. Acesso em: 10 out. 2025.
ANDO, Y.; SUZUKI, R.; MIYAMOTO, K.; ISHIKAWA, H.; TAKEDA, S.; FUJIMOTO, K. Toward interpretable cell image representation and abnormality scoring for cervical cancer screening using Pap smears. Artificial Intelligence in Medicine, v. 152, p. 102012, 2024. Disponível em: https://doi.org/10.1016/j.artmed.2024.102012. Acesso em: 10 out. 2025.
ARAÚJO, J.; SILVA, M.; PEREIRA, J.. Aplicação da Inteligência Artificial na Citologia Oncótica para Triagem de Lesões Cervicais. Revista Brasileira de Citopatologia, v. 45, n. 2, p. 134-142, 2023. Disponível em: https://www.revistacito.com/artigo001. Acesso em: 24 abr. 2025.
ARBYN, M.; CASTELLARNAU, A.; SMITH, S. B.; PERTUZ, M. Cervical cancer screening: cytology vs. HPV testing. Lancet Oncology, v. 21, n. 2, p. 145–157, 2020. Disponível em: https://www.thelancet.com/journals/lanonc/article/PIIS1470-2045(19)30792-X/fulltext. Acesso em: 10 out. 2025.
ARKANGEL AI. Use a IA para prever o câncer cervical. 2023. Disponível em: https://www.arkangel.ai/br/apps/cervical-cancer-prediction. Acesso em: 4 mar. 2025.
ARRIVILLAGA, M.; MONTOYA, A.; HERRERA, L.; SALAZAR, D.; VASQUEZ, R. Patient acceptability of CITOBOT for cervical cancer screening: a mixed-method study. BMC Women’s Health, v. 25, n. 1, p. 174, 2025. Disponível em: https://doi.org/10.1186/s12905-025-03184-3. Acesso em: 10 out. 2025.
AUSTIN, R.; PARVATHI, R. CNN based method for classifying cervical cancer cells in Pap smear images. Biomedical Signal Processing and Control, v. 98, p. 107305, 2025. Disponível em: https://doi.org/10.1016/j.bspc.2025.107305. Acesso em: 10 out. 2025.
BAETEN, I. G. T.; VAN DEN HAUTTE, S.; VAN DAM, P.; HERTEN, M.; VANKEERBERGHEN, P.; VERHEIJEN, R. H. M. Learning curve and factors influencing successful robot-assisted bilateral sentinel lymph node mapping in early-stage cervical cancer: an observational cohort study. Cancers, v. 15, n. 7, p. 1824, 2023. Disponível em: https://doi.org/10.3390/cancers15071824. Acesso em: 10 out. 2025.
BARRAGÁN-MARTÍNEZ, C.; TORRES, A. I.; RODRÍGUEZ, J. D.; MARTÍNEZ, E. Artificial intelligence in pathology: impact on diagnostic precision. Journal of Pathology Informatics, v. 13, p. 56-73, 2022. Disponível em: https://www.pathologyinformatics.com/article/Artificial-intelligence-in-pathology. Acesso em: 4 mar. 2025.
BENYES, Y. K.; KARASU, Y.; CANDAN, E.; YILDIRIM, M. A comparative analysis of deep learning models for automated cross-preparation diagnosis of multi-cell liquid Pap smear images. Journal of Pathology Informatics, v. 13, n. 1, p. 45–59, 2022. Disponível em: https://doi.org/10.4103/jpi.jpi_48_22. Acesso em: 10 out. 2025.
BHATT, A. R.; PATEL, D.; DAVE, S.; SHAH, A.; MEHTA, P.; PARMAR, R. Cervical cancer detection in Pap smear whole slide images using ConvNet with transfer learning and progressive resizing. Informatics in Medicine Unlocked, v. 24, p. 100615, 2021. Disponível em: https://doi.org/10.1016/j.imu.2021.100615. Acesso em: 22 out. 2025.
BIZZARRI, N.; FERRANDINA, G.; GATTA, M.; SCARPELLINI, L.; SCAMBIA, G.; FAGOTTI, A. Validation of tumour-free distance as novel prognostic marker in early-stage cervical cancer: a retrospective, single-centre cohort study. British Journal of Cancer, v. 125, n. 5, p. 719–726, 2021. Disponível em: https://doi.org/10.1038/s41416-021-01489-1. Acesso em: 10 out. 2025.
BJØRKELI, K.; ESMAEILI, M. RunicNet: Leveraging CNNs with Attention Mechanisms for Cervical Cancer Cell Classification. Computers in Biology and Medicine, v. 174, p. 108160, 2025. Disponível em: https://doi.org/10.1016/j.compbiomed.2025.108160. Acesso em: 10 out. 2025.
BRASIL. Ministério da Saúde. Plano de expansão da inteligência artificial na atenção oncológica do SUS. Brasília: Ministério da Saúde, 2024. Disponível em: https://www.gov.br/saude/ia-oncologia-2024. Acesso em: 10 out. 2025.
BRAY, F.; FERLAY, J.; SOERJOMATARAM, I.; SIEGEL, R. L.; TORRE, L. A.; JEMAL, A. Global cancer statistics 2020: GLOBOCAN estimates. CA: A Cancer Journal for Clinicians, v. 71, n. 3, p. 209–249, 2021. Disponível em: https://doi.org/10.3322/caac.21660. Acesso em: 10 out. 2025.
CARVALHO, C. F.; TEIXEIRA, J. C.; BRAGANÇA, J. F.; DERCHAIN, S.; ZEFERINO, L. C.; VALE, D. B. Cervical Cancer Screening with HPV Testing: Updates on the Recommendation. Revista Brasileira de Ginecologia e Obstetrícia, v. 44, n. 3, p. 264–271, 2022. Disponível em: https://www.scielo.br/j/rbgo/a/XFfWwJ9hM5yq2HLsPvbDqDR/. Acesso em: 10 out. 2025.
CEPATHO. A telecitologia na rotina do rastreamento do câncer do colo uterino. Revista Brasileira de Análises Clínicas, v. 38, n. 2, p. 123–130, 2023. Disponível em: https://www.rbac.org.br/artigos/telecitologia-na-rotina-do-rastreamento-do-cancer-do-colo-uterino/. Acesso em: 10 out. 2025.
CHAUHAN, N. K.; SINGH, R.; MALIK, A.; KUMAR, V.; YADAV, R.; AGRAWAL, A. HDFCN: A robust hybrid deep network based on feature concatenation for cervical cancer diagnosis on WSI Pap smear slides. Computer Methods and Programs in Biomedicine, v. 234, p. 107687, 2023. Disponível em: https://doi.org/10.1016/j.cmpb.2023.107687. Acesso em: 10 out. 2025.
CHATTERJEE, P.; SINGH, R.; DAS, A.; GHOSH, A.; DEY, S. Attention-enhanced lightweight architecture with hybrid loss for colposcopic image segmentation. Diagnostics, v. 15, n. 2, p. 276, 2025. Disponível em: https://doi.org/10.3390/diagnostics15020276. Acesso em: 10 out. 2025.
CHEN, H.; WANG, L.; ZHAO, J.; WU, Y.; LIN, H.; GUO, S. Fourier Imager Network (FIN): A deep neural network for hologram reconstruction with superior external generalization. Optics Express, v. 30, n. 6, p. 10347–10362, 2022. Disponível em: https://doi.org/10.1364/OE.450511. Acesso em: 10 out. 2025.a
CHEN, X.; ZHANG, H.; WANG, Y.; LIU, Q.; LI, Y. AI-assisted cervical cancer screening. Biomedical Signal Processing, v. 67, p. 101-113, 2023.b
CHRISTLEY, S.; SMITH, M.; LIU, P.; JIANG, Z.; DAVIS, W. T cell receptor repertoires acquired via routine Pap testing may help refine cervical cancer and precancer risk estimates. JAMA Network Open, v. 4, n. 7, p. e211894, 2021. Disponível em: https://doi.org/10.1001/jamanetworkopen.2021.1894. Acesso em: 10 out. 2025.
CHOWDARY, G. J.; REDDY, B. V.; KUMAR, R.; BHARGAVA, S. Nucleus segmentation and classification using residual SE-UNet and feature concatenation approach in cervical cytopathology cell images. Biomedical Signal Processing and Control, v. 85, p. 104883, 2023. Disponível em: https://doi.org/10.1016/j.bspc.2023.104883. Acesso em: 10 out. 2025.
COSTA, L. et al. Aplicação de Inteligência Artificial na predição da progressão de lesões cervicais no Brasil. Jornal Brasileiro de Patologia, v. 58, p. 120-130, 2022.
DINIZ, D. N.; SANTOS, J. P.; MARTINS, L. R.; LOPES, T. R.; OLIVEIRA, R. A.; COSTA, V. H. A deep learning ensemble method to assist cytopathologists in Pap test image classification. Acta Cytologica, v. 65, n. 4, p. 347–359, 2021. Disponível em: https://doi.org/10.1159/000517451. Acesso em: 10 out. 2025.
DU, Y.; ZHANG, X.; LIU, H.; ZHAO, Y.; TANG, X.; WU, H. Development and validation of an ultrasound-based deep learning radiomics nomogram for predicting the malignant risk of ovarian tumours. European Radiology, v. 34, n. 2, p. 875–888, 2024. Disponível em: https://doi.org/10.1007/s00330-023-10158-0. Acesso em: 10 out. 2025.
ESTEVA, A.; KUPREL, B.; NOVOA, R. A.; KO, J.; SWETT, K.; BLANCO, E.; THRUN, S. Deep learning classification of skin cancer images. Nature, v. 542, p. 115–118, 2019. Disponível em: https://doi.org/10.1038/nature21056. Acesso em: 10 out. 2025.
FEKRI-ERSHAD, S.; ALSAFFAR, M. F. Developing a tuned three-layer perceptron fed with trained deep convolutional neural networks for cervical cancer diagnosis. Computers in Biology and Medicine, v. 156, p. 106751, 2023. Disponível em: https://doi.org/10.1016/j.compbiomed.2023.106751. Acesso em: 22 out. 2025.
FENG, X.; WU, J.; SHI, Y.; ZHANG, Q. AI-assisted cervical cancer screening. Biomedical Signal Processing, v. 67, p. 101–113, 2021. Disponível em: https://www.journals.elsevier.com/biomedical-signal-processing. Acesso em: 10 out. 2025.
FERREIRA, R.; ARAÚJO, T.; FONSECA, N. A.; MORAIS, P.; GONÇALVES, L.; PINTO, D.; MENDES, J.; OLIVEIRA, A. L. Saliency-driven system models for cell analysis with deep learning. Journal of Medical Systems, v. 43, n. 8, p. 256, 2019. Disponível em: https://link.springer.com/article/10.1007/s10916-019-1424-7. Acesso em: 10 out. 2025.
FRÉMOND, S.; DORRELL, R.; VERMEULEN, S.; PETERS, L.; VAN DEN BERG, E.; CREUTZBERG, C. Interpretable deep learning model to predict the molecular classification of endometrial cancer from haematoxylin and eosin-stained whole-slide images: a combined analysis of the PORTEC randomised trials and clinical cohorts. The Lancet Digital Health, v. 5, n. 1, p. e45–e57, 2023. Disponível em: https://doi.org/10.1016/S2589-7500(22)00241-5. Acesso em: 10 out. 2025.
GANGRADE, J.; PATEL, N.; SHAH, A.; DAVE, P.; RAJPUT, P. A deep ensemble learning approach for squamous cell classification in cervical cancer. Computers in Biology and Medicine, v. 177, p. 108232, 2025. Disponível em: https://doi.org/10.1016/j.compbiomed.2025.108232. Acesso em: 10 out. 2025.
GARCÍA, M.; LÓPEZ, D.; HERNÁNDEZ, P.; MARTÍNEZ, A. AI in cervical lesion prediction: a systematic review. Cancer Prevention Journal, v. 18, n. 1, p. 45-62, 2022. Disponível em: https://www.cancerpreventionjournal.com/article/AI-in-cervical-lesion-prediction. Acesso em: 4 mar. 2025.
GAONA, Y. J.; ROMERO, R.; GARCÍA, L.; SÁNCHEZ, D.; FERNÁNDEZ, J. Radiomics diagnostic tool based on deep learning for colposcopy image classification. BMC Medical Imaging, v. 22, n. 1, p. 177, 2022. Disponível em: https://doi.org/10.1186/s12880-022-00953-4. Acesso em: 10 out. 2025.
GONZÁLEZ-RODRÍGUEZ, A.; RIVERA, L. M.; LIMA, D.; FRANCO, A. R. The role of AI in telecytology: current applications. International Journal of Cytology, v. 9, n. 4, p. 315–328, 2021. Disponível em: https://www.internationalcytologyjournal.com/article/AI-in-telecytology. Acesso em: 10 out. 2025.
GUPTA, N.; CHANDRA, S.; SINGH, V.; KAPOOR, R. AI-driven cytopathology: Challenges and advancements. Cytopathology Journal, v. 34, p. 245–267, 2022. Disponível em: https://www.cytopathologyjournal.com. Acesso em: 10 out. 2025.
HARANGI, B.; NÉMETH, G.; SZÉKELY, G.; TÓTH, J.; KOVÁCS, L. Pixel-wise segmentation of cells in digitized Pap smear images. Sensors, v. 24, n. 2, p. 721, 2024. Disponível em: https://doi.org/10.3390/s24020721. Acesso em: 10 out. 2025.
HARRIS, J.; EDWARDS, M.; PEREIRA, F.; WANG, T. Standardization challenges in AI-based cytology. Journal of Digital Pathology, v. 19, p. 89–104, 2021. Acesso em: 10 out. 2025.
HAYS, P. Artificial intelligence in cytopathological applications for cancer: a review of accuracy and analytic validity. Cancers, v. 16, n. 2, p. 421–440, 2024. Disponível em: https://doi.org/10.3390/cancers16020421. Acesso em: 10 out. 2025.
HIGGINS, J. P.; THOMAS, J.; CHANDLER, J.; CUMPSTON, M.; LI, T.; PAGE, M. J.; WELCH, V. A. Cochrane Handbook for Systematic Reviews of Interventions. 2. ed. London: Wiley, 2021. Disponível em: https://training.cochrane.org/handbook. Acesso em: 10 out. 2025.
HOLMSTRÖM, O.; KOIVISTO, J.; KAUPPILA, R.; PALO, R.; KALLIOMÄKI, S. Point-of-care digital cytology with artificial intelligence for cervical cancer screening in a resource-limited setting. JAMA Network Open, v. 4, n. 3, p. e211486, 2021. Disponível em: https://doi.org/10.1001/jamanetworkopen.2021.1486. Acesso em: 10 out. 2025.
HOU, J.; CHEN, L.; ZHOU, Y.; LIU, R.; ZHANG, S. Artificial intelligence in cervical cancer screening and diagnosis. Journal of the National Cancer Institute, v. 114, n. 8, p. 1123–1134, 2022. Disponível em: https://pmc.ncbi.nlm.nih.gov/articles/PMC8963491/. Acesso em: 10 out. 2025.
HUNT, B.; SILVA, M. J.; ANDRADE, M. C.; OLIVEIRA, A. F.; GARCIA, M. A. Cervical lesion assessment using real-time microendoscopy image analysis in Brazil: The CLARA Study. PLOS ONE, v. 16, n. 5, p. e0251375, 2021. Disponível em: https://doi.org/10.1371/journal.pone.0251375. Acesso em: 10 out. 2025.
INSTITUTO NACIONAL DO CÂNCER (INCA). Inteligência Artificial para a Identificação de Biomarcadores na Oncologia. Revista Brasileira de Cancerologia, v. 69, n. 4, p. 215–230, 2023a. Disponível em: https://rbc.inca.gov.br/index.php/revista/article/view/4692. Acesso em: 10 out. 2025. a.
INSTITUTO NACIONAL DO CÂNCER (INCA). Relatório de atividades 2022: avanços no combate ao câncer no Brasil. Rio de Janeiro: INCA, 2022b. Disponível em: https://www.inca.gov.br. Acesso em: 10 out. 2025
INSTITUTO NACIONAL DO CÂNCER (INCA). Estimativa 2020: incidência de câncer no Brasil. Rio de Janeiro: INCA, 2020c. Disponível em: https://www.inca.gov.br/estimativa/2020. Acesso em: 10 out. 2025.
JIMÉNEZ GAONA, Y.; ROMERO, R.; GARCÍA, L.; SÁNCHEZ, D.; FERNÁNDEZ, J. Radiomics diagnostic tool based on deep learning for colposcopy image classification. BMC Medical Imaging, v. 22, n. 1, p. 177, 2022. Disponível em: https://doi.org/10.1186/s12880-022-00953-4. Acesso em: 10 out. 2025.
JONNALAGEDDA-CATTIN, M.; TADJOUTI, D.; MBOUANA, F.; FONKOUA, M.; KOUAM, L.; TCHIATCHOUA, C.; NDZANA, A. Barriers and facilitators to the preadoption of a computer-aided diagnosis tool for cervical cancer: qualitative study on health care providers’ perspectives in Western Cameroon. Journal of Medical Internet Research, v. 27, n. 2, p. e65273, 2025. Disponível em: https://doi.org/10.2196/65273. Acesso em: 10 out. 2025.
JUNG, C.; PARK, M.; KIM, H.; SHIN, Y. Artificial intelligence in cervical cytology screening: performance analysis. Computational Cytopathology Review, v. 15, p. 321–337, 2022. Acesso em: 10 out. 2025.
KAUR, H.; SINGH, A.; SHARMA, S.; KUMAR, N.; ARORA, S.; GARG, R. Comparison of deep transfer learning models for classification of cervical cancer from Pap smear images. Diagnostics, v. 15, n. 1, p. 25, 2025. Disponível em: https://doi.org/10.3390/diagnostics15010025. Acesso em: 10 out. 2025.
KALBHOR, M.; GUPTA, S.; DUBEY, R.; KUMAR, P.; SINGH, S. Hybridization of deep learning pre-trained models with machine learning classifiers and fuzzy min–max neural network for cervical cancer diagnosis. Computers in Biology and Medicine, v. 156, p. 106724, 2023. Disponível em: https://doi.org/10.1016/j.compbiomed.2023.106724. Acesso em: 10 out. 2025.
KHAN, N.; RIZVI, S.; SHAH, S.; ALI, S.; KHALID, A.; KHAN, A. Deep learning prediction of pathologic complete response in breast cancer using MRI and other clinical data: a systematic review. Cancers, v. 14, n. 18, p. 4372, 2022. Disponível em: https://doi.org/10.3390/cancers14184372. Acesso em: 10 out. 2025.
KHIRUDDIN, K.; NASIR, M. S.; AZIZ, F.; IBRAHIM, R.; HASSAN, Z.; LATIF, M. A. Comparative analysis of cervical cancer classification of DPAGCHE-enhanced Pap smear images using convolutional neural network models. Diagnostics, v. 15, n. 5, p. 1298, 2025. Disponível em: https://doi.org/10.3390/diagnostics15051298. Acesso em: 10 out. 2025.
KRASNIQI, E.; KOLA, I.; SHABANI, A.; SHALA, A.; REXHEPI, A.; HAXHIU, V. Multimodal deep learning for predicting neoadjuvant treatment outcomes in breast cancer: a systematic review. Frontiers in Oncology, v. 15, n. 3, p. 1305–1317, 2025. Disponível em: https://doi.org/10.3389/fonc.2025.1345876. Acesso em: 10 out. 2025.
LEE, H.; PARK, S.; LEE, S. Y.; CHO, J. Artificial intelligence in medical imaging: future perspectives. Radiology Journal, v. 296, n. 3, p. 445-459, 2020. Disponível em: https://www.radiologyjournal.com. Acesso em: 4 mar. 2025.
LI, B.; ZHAO, X.; HUANG, F.; WANG, Q.; ZHENG, Y.; ZHOU, Y. Visualized hysteroscopic artificial intelligence fertility assessment system for endometrial injury: an image-deep-learning study. Scientific Reports, v. 15, n. 4, p. 10009, 2025a. Disponível em: https://doi.org/10.1038/s41598-025-10009-7. Acesso em: 10 out. 2025.
LI, H.; ZHAO, Y.; DENG, Z.; WANG, Y.; GUO, Q. Large-scale cervical precancerous screening via AI-assisted cytology whole slide image analysis. Journal of Medical AI, v. 17, p. 215–230, 2021b. Acesso em: 10 out. 2025.
LIMA, C. R.; DE LIMA, T. F.; RODRIGUES, L. A.; VASCONCELOS, C. A.; LOPES, P. M.; CAVALCANTE, R. F. Mask region-based CNNs for cervical cancer progression diagnosis on Pap smear examinations. Computers in Biology and Medicine, v. 165, p. 107478, 2023a. Disponível em: https://doi.org/10.1016/j.compbiomed.2023.107478. Acesso em: 10 out. 2025.
LIMA, A.; SILVA, B.; SANTOS, C. Aplicações de Inteligência Artificial na Citologia Oncótica: avanços e desafios. Journal of Cytopathology, v. 29, p. 123-134, 2023b. Disponível em: https://www.exemplo.com.br. Acesso em: 24 abr. 2025.
LITJENS, G.; KOOS, H.; TIMOFEEVA, N.; SÁNCHEZ, C. I.; JANSEN, B. A survey on deep learning in medical image analysis. Medical Image Analysis, v. 42, p. 60–88, 2017. Acesso em: 10 out. 2025.
LIU, T.; ZHANG, Y.; HUANG, J.; ZHAO, P.; WANG, H. Deep learning-based superresolution in coherent imaging systems. Optics Letters, v. 44, n. 7, p. 1814–1817, 2019a. Disponível em: https://doi.org/10.1364/OL.44.001814. Acesso em: 10 out. 2025.
LIU, X.; FAN, H.; ZENG, Y.; YANG, Y. Deep learning in cervical cytology: application of AI-based models. Journal of Pathology Informatics, v. 11, p. 45-57, 2020b.
LOPES, P.; VASCONCELOS, J.; NASCIMENTO, M.; MEDEIROS, C. AI-based prioritization of cervical cytology slides. Computational Pathology Journal, v. 22, n. 3, p. 122–139, 2022. Acesso em: 10 out. 2025.
MARTÍNEZ-GARCÍA, R.; LÓPEZ-SERRANO, J.; RAMOS, A. Big data in AI training for cytopathology. International Journal of Medical AI, v. 14, n. 5, p. 311–329, 2023. Disponível em: https://www.intjmedai.com/article/bigdata-cytopathology. Acesso em: 10 out. 2025.
MATHIVANAN, S. K.; SUNDARAM, S.; VENKATARAMAN, P.; BALASUBRAMANIAN, V.; ARJUN, R. Enhancing cervical cancer detection and robust classification through a fusion of deep learning models. Computers in Biology and Medicine, v. 174, p. 108110, 2024. Disponível em: https://doi.org/10.1016/j.compbiomed.2024.108110. Acesso em: 10 out. 2025.
MCCANN, M.; SHAH, A.; EVANS, D.; CLARK, R. AI applications in lung cancer detection: a systematic review. Journal of Oncology Imaging, v. 31, p. 98–112, 2021. Disponível em: https://www.journalofoncologyimaging.com/ai-lungcancer. Acesso em: 10 out. 2025.
MENDES, L.; FREITAS, P.; LIMA, T.; OLIVEIRA, V. Efficiency improvement in cytology labs with AI integration. Diagnostic AI Journal, v. 29, p. 77–91, 2023. Disponível em: https://www.diagnosticaijournal.com/article/efficiency-labs-ai. Acesso em: 10 out. 2025.
MIGOWSKI, A.; FREITAS, R. R.; BARBOSA, B. C.; LIMA, M. C.; SANTOS, F. L.; SILVA, R. J.; MARTINS, L. P. Past, present, and future of screening for cervical cancer in Brazil: lessons learned. Cadernos de Saúde Pública, v. 41, n. 8, p. e00134625, 2025. Disponível em: https://www.scielosp.org/article/csp/2025.v41n8/e00134625/. Acesso em: 10 out. 2025.
MINISTÉRIO DA SAÚDE (BRASIL). Estratégias para a implementação da Inteligência Artificial na saúde pública. Brasília, 2023. Disponível em: https://www.gov.br/saude/pt-br/temas/ia. Acesso em: 10 out. 2025.
MOHAMMED, M. A.; ABDULKAREEM, K. H.; SALMAN, S. I.; AL-KHAFAJI, A. M.; AL-ZUBAIDI, S. M.; SADIQ, A. T. Single-cell conventional Pap smear image classification using pre-trained deep neural network architectures. Computers in Biology and Medicine, v. 132, p. 104318, 2021. Disponível em: https://doi.org/10.1016/j.compbiomed.2021.104318. Acesso em: 10 out. 2025.
MOHER, D.; LIBERATI, A.; TETZLAFF, J.; ALTMAN, D. G. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) Statement. PLoS Medicine, v. 6, n. 7, p. e1000097, 2009. Disponível em: https://doi.org/10.1371/journal.pmed.1000097. Acesso em: 10 out. 2025.
MORGAN, P.; DUARTE, R.; SILVA, A.; SANTOS, J. Future of AI in cancer screening: trends and predictions. Medical AI Review, v. 33, p. 145–161, 2023. Disponível em: https://www.medicalaireview.com. Acesso em: 10 out. 2025.
MUSTAFA, W. A.; RAHMAN, M. A.; LATIF, M. A.; HASSAN, Z.; NASIR, M. S. Cervical cancer detection techniques: a chronological review. Diagnostics, v. 13, n. 8, p. 1502, 2023. Disponível em: https://doi.org/10.3390/diagnostics13081502. Acesso em: 10 out. 2025.
NOGUEIRA, C.; LIMA, G.; FREIRE, M.; BATISTA, E. Telecytology and AI: Bridging the gap in global screening. Cytotechnology Review, v. 25, p. 67–82, 2022. Disponível em: https://www.cytotechnologyreview.com/article/Telecytology-and-AI. Acesso em: 10 out. 2025.
OLIVEIRA, R.; NASCIMENTO, J.; VIEIRA, D.; TEIXEIRA, C. Ethical considerations in AI-based cytology. Journal of Ethics in Healthcare, v. 9, n. 2, p. 33–47, 2023. Disponível em: https://www.journalofethicsinhealthcare.com/article/Ethical-considerations-AI-cytology. Acesso em: 10 out. 2025.
ORGANIZAÇÃO MUNDIAL DA SAÚDE (OMS). Cervical cancer. Geneva: World Health Organization, 2021. Disponível em: https://www.who.int/news-room/fact-sheets/detail/cervical-cancer. Acesso em: 10 out. 2025.
PARK, S.; JIN, Y.; KIM, J.; LEE, J. Regulatory challenges in AI-based cytopathology. Medical Informatics and Technology Journal, v. 15, p. 113–127, 2022. Disponível em: https://www.medicalinformaticsjournal.com/AI-cytopathology-regulation. Acesso em: 10 out. 2025.
PAVONE, M.; RAIMONDO, D.; GRECO, F.; SANTORO, G.; IANNONE, V.; MONDELLO, P. Critical view of safety assessment in sentinel node dissection for endometrial and cervical cancer: artificial intelligence to enhance surgical safety and lymph node detection (LYSE study). Diagnostics, v. 15, n. 4, p. 1107, 2025. Disponível em: https://doi.org/10.3390/diagnostics15041107. Acesso em: 10 out. 2025.
RAIMONDO, D.; GRECO, F.; IANNONE, V.; SANTORO, G.; MONDELLO, P.; PAVONE, M. Application of deep learning model in the sonographic diagnosis of uterine adenomyosis. Diagnostics, v. 13, n. 9, p. 1715, 2023. Disponível em: https://doi.org/10.3390/diagnostics13091715. Acesso em: 10 out. 2025.
RAO, P.; SHARMA, K.; GILL, R.; DAS, A. AI in cytopathology: improving efficiency and accuracy. Journal of Digital Diagnostics, v. 16, p. 201-218, 2023. Disponível em: https://www.digitaldiagnosticsjournal.com/AI-cytopathology. Acesso em: 4 abr. 2025.
RASHEED, A.; HUSSAIN, S.; IQBAL, S.; AHMAD, A.; SHAH, M.; NAEEM, M. Cervical cell’s nucleus segmentation through an improved UNet architecture. Biomedical Signal Processing and Control, v. 83, p. 104624, 2023. Disponível em: https://doi.org/10.1016/j.bspc.2023.104624. Acesso em: 10 out. 2025.
REN, C.; ZHAO, Y.; LI, Z.; YANG, X.; ZHANG, L.; ZHOU, Q. Multi-center clinical study using optical coherence tomography for evaluation of cervical lesions in vivo. Frontiers in Medicine, v. 8, p. 765132, 2021. Disponível em: https://doi.org/10.3389/fmed.2021.765132. Acesso em: 10 out. 2025.
RIVERA ROLON, M. M.; RAMIREZ, J. L.; DIAZ, A. M.; TORRES, J. F.; MUNOZ, R. C. Implementing 100% quality control in a cervical cytology workflow using whole slide images and artificial intelligence provided by the Techcyte SureView™ System. Cytopathology, v. 36, n. 4, p. 223–232, 2025. Disponível em: https://doi.org/10.1111/cyt.13310. Acesso em: 10 out. 2025.
RUTILI DE LIMA, C.; DE LIMA, T. F.; RODRIGUES, L. A.; VASCONCELOS, C. A.; LOPES, P. M.; CAVALCANTE, R. F. Mask region-based CNNs for cervical cancer progression diagnosis on Pap smear examinations. Computers in Biology and Medicine, v. 165, p. 107478, 2023. Disponível em: https://doi.org/10.1016/j.compbiomed.2023.107478. Acesso em: 10 out. 2025.
SACHDEVA, M.; CHEUMI, P.; MOUKOURI, C.; NKONDO, T.; BELL, L.; NDUM, S.; WAINBERG, M.; BATEMAN, C. Acceptability of artificial intelligence for cervical cancer screening in Dschang, Cameroon: a qualitative study on patient perspectives. BMJ Open, v. 14, n. 1, p. e079413, 2024. Disponível em: https://doi.org/10.1136/bmjopen-2023-079413. Acesso em: 10 out. 2025.
SCHUFFLER, P.; MEIER, A.; ROTH, J.; KLEIN, T. AI-assisted cytology diagnostics: automation and precision. Journal of Computational Pathology, v. 18, p. 112–128, 2021. Disponível em: https://www.jcomputpathol.com/article/AI-assisted-cytology-diagnostics. Acesso em: 10 out. 2025.
SHANTHI, P. B.; RAJASEKARAN, S.; NAGARAJAN, R.; SURESH, R. Deep convolution neural network for malignancy detection and classification in microscopic uterine cervix cell images. International Journal of Advanced Computer Science and Applications, v. 10, n. 9, p. 355–362, 2019. Disponível em: https://doi.org/10.14569/IJACSA.2019.0100947. Acesso em: 10 out. 2025.
SHINDE, S.; RAJESHWAR, S.; BHOSALE, A.; DONGRE, S.; WAGH, P.; PATIL, S. DeepCyto: a hybrid framework for cervical cancer classification by using deep feature fusion of cytology images. Asian Pacific Journal of Cancer Prevention, v. 23, n. 7, p. 2453–2460, 2022. Disponível em: https://doi.org/10.31557/APJCP.2022.23.7.2453. Acesso em: 10 out. 2025.
SILVA, A.; LIMA, M.; SOUSA, R.; OLIVEIRA, P. Aplicação da Inteligência Artificial na Citologia Oncótica para o Diagnóstico Precoce de Câncer Cervical. Revista Brasileira de Citopatologia, v. 33, n. 2, p. 45-58, 2022. Disponível em: https://www.exemplo.com.br. Acesso em: 4 mar. 2025.
SKERRETT, E.; BROWN, B.; ANKRAH, A.; ASIEDU, M. Multicontrast pocket colposcopy cervical cancer diagnostic algorithm for referral populations. PLOS ONE, v. 17, n. 6, p. e0276754, 2022. Disponível em: https://doi.org/10.1371/journal.pone.0276754. Acesso em: 10 out. 2025.
SOUZA, A. et al. Estudo sobre a aplicação de Inteligência Artificial na triagem de citologia oncótica no Brasil. Revista Brasileira de Patologia, v. 58, p. 1-10, 2022. Disponível em: https://www.revistapatologia.com.br/ia-triagem-citologia-oncotica. Acesso em: 24 abr. 2025.
STEGMÜLLER, J.; VILLALOBOS, C.; OKONKWO, T.; KOLSTAD, T.; SEIDLER, H.; KÜHN, M.; WENZEL, F. Self-supervised learning-based cervical cytology for the triage of HPV-positive women in resource-limited settings and low-data regime. Scientific Reports, v. 14, n. 2, p. 1–12, 2024. Disponível em: https://www.nature.com/articles/s41598-024-10009. Acesso em: 10 out. 2025.
SORNAPUDI, S.; KONDRAVEETI, H.; VELMURUGAN, S.; SUBRAMANIAN, M. Comparing deep learning models for multi-cell classification in liquid-based cervical cytology. IEEE Access, v. 7, p. 110475–110485, 2019. Disponível em: https://doi.org/10.1109/ACCESS.2019.2933592. Acesso em: 10 out. 2025.
TAN, S. L.; LIM, S. H.; WONG, C. Y.; NG, M. L.; LEE, J. H.; CHAN, W. K. Cervical cancer classification from Pap smear images using deep convolutional neural network models. Diagnostics, v. 14, n. 2, p. 215, 2024. Disponível em: https://doi.org/10.3390/diagnostics14020215. Acesso em: 10 out. 2025.
TANAKA, M.; SUZUKI, T.; WATANABE, K.; KIMURA, N. AI-enhanced classification of cervical lesions: A Bethesda system approach. International Journal of Cytology AI, v. 20, p. 267-284, 2021.
TAO, X.; ZHOU, M.; HUANG, L.; WANG, S.; CHEN, X.; LI, Q. Scrutinizing high-risk patients from ASC-US cytology via a deep learning model. Cancer Cytopathology, v. 130, n. 1, p. 46–55, 2022. Disponível em: https://doi.org/10.1002/cncy.22574. Acesso em: 10 out. 2025.
WANG, C. W.; LEE, M. Y.; CHENG, W. L.; TSAI, T. L.; CHEN, K. H.; HUANG, J. Y. Artificial intelligence-assisted fast screening cervical high grade squamous intraepithelial lesion and squamous cell carcinoma diagnosis and treatment planning. Biomedical Optics Express, v. 12, n. 8, p. 4985–5000, 2021. Disponível em: https://doi.org/10.1364/BOE.426051. Acesso em: 10 out. 2025 b.
WANG, K.; ZHANG, L.; LI, S.; CHEN, H.; LI, H.; SUN, Y. Auxiliary meta-learning strategy for cancer recognition: leveraging external data and optimized feature mapping. Computers in Biology and Medicine, v. 175, p. 108200, 2025. Disponível em: https://doi.org/10.1016/j.compbiomed.2025.108200. Acesso em: 10 out. 2025
WENTZENSEN, N.; LEE, J.; CARRICK, J.; RODRIGUEZ, A. C.; WACHOLDER, S.; STOLER, M. Accuracy and efficiency of deep-learning–based automation of dual stain cytology in cervical cancer screening. Journal of the National Cancer Institute, v. 113, n. 7, p. 915–922, 2021. Disponível em: https://doi.org/10.1093/jnci/djab017. Acesso em: 10 out. 2025.
WHO – WORLD HEALTH ORGANIZATION. Global strategy to accelerate the elimination of cervical cancer. Geneva: WHO, 2021. Disponível em: https://www.who.int/publications-detail-redirect/9789240014107. Acesso em: 10 out. 2025.
WHITING, P.; RUTJES, A. W. S.; WESTWOOD, M. E.; MELNIKOW, J.; D’AMICO, R.; REITSMA, J. B.; BOSSUYT, P. M. M. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Annals of Internal Medicine, v. 155, n. 8, p. 529-536, 2011. Disponível em: https://www.acpjournals.org/doi/full/10.7326/0003-4819-155-8-201111150-00004. Acesso em: 4 mar. 2025.
WRIGHT, T. C.; MASSAD, L. S.; DUNTON, C. J.; SPITZER, M.; KINNEY, W.; BOYCE, B. A. Challenges in cytological interpretation: role of AI assistance. Diagnostic Cytopathology, v. 49, p. 349–364, 2021. Disponível em: https://onlinelibrary.wiley.com/doi/full/10.1002/dc.24700. Acesso em: 10 out. 2025.
WU, J.; ZHANG, Y.; HUANG, X.; SHEN, L. AI-assisted classification of high-grade cervical lesions. Computational Medical Imaging Journal, v. 26, p. 79-94, 2023. Disponível em: https://www.journals.elsevier.com/computational-medical-imaging-journal. Acesso em: 4 mar. 2025.
WUBINEH, B. Z.; TESFAYE, A. M.; DEMISSE, A. G.; GEBREYES, Y. A.; HAILU, M. G. SPP-SegNet and SE-DenseNet201: a dual-model approach for cervical cell segmentation and classification. Computers in Biology and Medicine, v. 175, p. 108150, 2025. Disponível em: https://doi.org/10.1016/j.compbiomed.2025.108150. Acesso em: 10 out. 2025.
YANG, H.; LI, X.; ZHOU, M.; DONG, Y.; WANG, J.; ZHAO, F. Classification of cervical cancer using Dense CapsNet with Seg-UNet and denoising autoencoders. Bioengineering, v. 11, n. 2, p. 567, 2024. Disponível em: https://doi.org/10.3390/bioengineering11020567. Acesso em: 10 out. 2025.
XUE, P.; LIMA, M.; BRAGA, R.; CARVALHO, L. Aplicação da inteligência artificial no diagnóstico e monitoramento do câncer de mama. Brazilian Journal of Health Review, v. 6, n. 1, p. 112-130, 2023. Disponível em: https://ojs.brazilianjournals.com.br/ojs/index.php/BJHR/article/view/73198. Acesso em: 4 mar. 2025.
ZHU, L.; WEI, H.; FANG, T.; DENG, L. AI in cytology: Enhancing screening and reducing diagnostic errors. Journal of Digital Pathology & AI, v. 17, p. 45-61, 2022. Disponível em: https://www.digitalpathologyaijournal.com/AI-enhancing-screening. Acesso em: 4 abr. 2025.
ZHU, X.; LI, L.; ZHANG, W.; WANG, Y.; CHEN, X.; LIU, J. Cervical cancer screening aided by artificial intelligence, China. The Lancet Regional Health – Western Pacific, v. 38, p. 100745, 2023. Disponível em: https://doi.org/10.1016/j.lanwpc.2023.100745. Acesso em: 22 out. 2025.
ZUO, X.; LIU, Y.; TANG, J.; CHEN, R.; WU, Q.; ZHANG, L. A deep learning model for cervical optical coherence tomography image classification. Frontiers in Oncology, v. 14, p. 1141–1155, 2024. Disponível em: https://doi.org/10.3389/fonc.2024.1432935. Acesso em: 10 out. 2025.
