LACTOFERRINA EN LA LECHE HUMANA: ESTRUCTURA, FUNCIONES BIOLÓGICAS E IMPLICACIONES EN EL EJE MICROBIOTA-INTESTINO-CEREBRO

Autores/as

  • Maria Fernanda Miriani Vignoto Autor/a
  • Patricia Daniele Silva dos Santos Autor/a
  • Marcela de Souza Zangirolami Autor/a
  • Luana Cruz Muxfeldt Autor/a
  • Flavia Naomi Campoi Nishimuta Autor/a
  • Cristiane Renata da Silva Autor/a
  • Deborah Heloise Fernandes Machado Autor/a
  • Oscar de Oliveira Santos Junior Autor/a

DOI:

https://doi.org/10.56238/arev7n10-086

Palabras clave:

Lactoferrina, Leche Humana, Microbiota, Eje Cerebro-Intestino, Neonato

Resumen

La leche materna (LM) es la principal fuente nutricional para los recién nacidos, siendo clave para el desarrollo de la microbiota intestinal, el sistema inmunológico y la maduración fisiológica. Entre sus componentes bioactivos, destaca la lactoferrina (LF), glicoproteína multifuncional de la familia de las transferrinas, con alta afinidad por el hierro y diversas funciones biológicas. Este artículo revisa su estructura molecular, isoformas, modificaciones postraduccionales, estabilidad estructural y su comparación con la LF de otras especies. Se aborda la variación de su concentración en la LM según la etapa de lactancia, los factores maternos que la influyen, su resistencia a la digestión gastrointestinal infantil y la liberación de péptidos bioactivos. Estos aspectos refuerzan su papel como agente inmunológico, antimicrobiano y modulador de la comunicación entre microbiota intestinal y sistema nervioso central, con impacto en la salud y desarrollo neurológico del lactante. Comprender su solubilidad, biodisponibilidad y bioactividad es esencial para guiar estrategias nutricionales e intervenciones terapéuticas, especialmente en la formulación de suplementos y fórmulas infantiles con perfil funcional semejante al de la leche materna.

Descargas

Los datos de descarga aún no están disponibles.

Referencias

ABAD, I. et al. Protective effect of bovine lactoferrin against Cronobacter sakazakii in human intestinal Caco-2/TC7 cells. International Dairy Journal, v. 133, p. 105428, out. 2022. DOI: https://doi.org/10.1016/j.idairyj.2022.105428

AGIRMAN, G.; HSIAO, E. Y. SnapShot: The microbiota-gut-brain axis. Cell, v. 184, n. 9, p. 2524- 2524.e1, abr. 2021. DOI: https://doi.org/10.1016/j.cell.2021.03.022

AL-ALAIYAN, S. et al. Effects of Probiotics and Lactoferrin on Necrotizing Enterocolitis in Preterm Infants. Cureus, set. 2021. DOI: https://doi.org/10.7759/cureus.18256

ALKHULAIFI, M. M. et al. Involvement of host iron-withholding strategy on Streptococcus pyogenes strain KSU-1 growth and pathogenicity. Egyptian Pharmaceutical Journal, v. 22, n. 2, p. 229–236, abr. 2023. DOI: https://doi.org/10.4103/epj.epj_165_22

ALMEIDA, C. C. et al. Bioactive Compounds in Infant Formula and Their Effects on Infant Nutrition and Health: A Systematic Literature Review. International Journal of Food Science, v. 2021, p. 1–31, maio 2021. DOI: https://doi.org/10.1155/2021/8850080

ALMEIDA, G. G. DE; MACEDO, K. R. M. DE; FREITAS, F. M. N. DE O. The protective effects of the microbiota on early childhood colonization through parturition, breastfeeding and feeding. Research, Society and Development, v. 11, n. 14, p. e516111436523, nov. 2022. DOI: https://doi.org/10.33448/rsd-v11i14.36523

ALY, E. et al. In vitro prebiotic activity of rhLf and galactooligosaccharides on infant intestinal microbiota. Nutrición Hospitalaria, 2023.

ANDERSON, B. F. et al. Structure of human lactoferrin: Crystallographic structure analysis and refinement at 2·8 Å resolution. Journal of Molecular Biology, v. 209, n. 4, p. 711–734, out. 1989. DOI: https://doi.org/10.1016/0022-2836(89)90602-5

ANDREINI, C. et al. Metal ions in biological catalysis: from enzyme databases to general principles. JBIC Journal of Biological Inorganic Chemistry, v. 13, n. 8, p. 1205–1218, nov. 2008. DOI: https://doi.org/10.1007/s00775-008-0404-5

BAKER, E. N.; BAKER, H. M.; KIDD, R. D. Lactoferrin and transferrin: Functional variations on a common structural framework. Biochemistry and Cell Biology, v. 80, n. 1, p. 27–34, fev. 2002. DOI: https://doi.org/10.1139/o01-153

BAKER, E. N.; LINDLEY, P. F. New perspectives on the structure and function of transferrins. Journal of Inorganic Biochemistry, v. 47, n. 1, p. 147–160, ago. 1992. DOI: https://doi.org/10.1016/0162-0134(92)84061-Q

BEVERLY, R. L. et al. Milk Peptides Survive In Vivo Gastrointestinal Digestion and Are Excreted in the Stool of Infants. The Journal of Nutrition, v. 150, n. 4, p. 712–721, abr. 2020. DOI: https://doi.org/10.1093/jn/nxz326

BUKOWSKA-OŚKO, I. et al. Lactoferrin as a Human Genome “Guardian”—An Overall Point of View. International Journal of Molecular Sciences, v. 23, n. 9, p. 5248, maio 2022. DOI: https://doi.org/10.3390/ijms23095248

CÂNDIDO, F. G. et al. Breastfeeding versus free distribution of infant formulas by the Public Health System. Einstein (São Paulo), v. 19, 3 nov. 2021. DOI: https://doi.org/10.31744/einstein_journal/2021AO6451

CAO, X. et al. Lactoferrin: A glycoprotein that plays an active role in human health. Frontiers in Nutrition, v. 9, jan. 2023. DOI: https://doi.org/10.3389/fnut.2022.1018336

CHAKRABARTI, A. et al. The microbiota–gut–brain axis: pathways to better brain health. Perspectives on what we know, what we need to investigate and how to put knowledge into practice. Cellular and Molecular Life Sciences, v. 79, n. 2, p. 80, fev. 2022. DOI: https://doi.org/10.1007/s00018-021-04060-w

CHEN, K. et al. Dose Effect of Bovine Lactoferrin Fortification on Iron Metabolism of Anemic Infants. Journal of Nutritional Science and Vitaminology, v. 66, n. 1, p. 24–31, fev. 2020. DOI: https://doi.org/10.3177/jnsv.66.24

CUTONE, A. et al. Lactoferrin in the Prevention and Treatment of Intestinal Inflammatory Pathologies Associated with Colorectal Cancer Development. Cancers, v. 12, n. 12, p. 3806, dez. 2020. DOI: https://doi.org/10.3390/cancers12123806

DE HAAN, P. et al. A microfluidic model for infantile in vitro digestions: Characterization of lactoferrin digestion. SLAS Technology, v. 29, n. 5, p. 100175, out. 2024. DOI: https://doi.org/10.1016/j.slast.2024.100175

DIERICK, M. et al. Lactoferrin, a versatile natural antimicrobial glycoprotein that modulates the host’s innate immunity. Biochemistry and Cell Biology, v. 99, n. 1, p. 61–65, fev. 2021. DOI: https://doi.org/10.1139/bcb-2020-0080

EL AMROUSY, D. et al. Lactoferrin for iron-deficiency anemia in children with inflammatory bowel disease: a clinical trial. Pediatric Research, v. 92, n. 3, p. 762–766, set. 2022. DOI: https://doi.org/10.1038/s41390-022-02136-2

ELISHA, C.; BHAGWAT, P.; PILLAI, S. In silico and in vitro analysis of dipeptidyl peptidase-IV and angiotensin-converting enzyme inhibitory peptides derived from milk lactoferrin. International Dairy Journal, v. 160, p. 106092, jan. 2025. DOI: https://doi.org/10.1016/j.idairyj.2024.106092

ELZOGHBY, A. O. et al. Lactoferrin, a multi-functional glycoprotein: Active therapeutic, drug nanocarrier & targeting ligand. Biomaterials, v. 263, p. 120355, dez. 2020. DOI: https://doi.org/10.1016/j.biomaterials.2020.120355

FERREIRA, G.; MICHELS, V. E.; MATIUSSO, C. O EIXO MICROBIOTA-INTESTINO-CÉREBRO E SUA INFLUÊNCIA NAS DOENÇAS NEURODEGENERATIVAS: UMA REVISÃO INTEGRATIVA. Revista ft, v. 28, n. 138, p. 56–57, set. 2024. DOI: https://doi.org/10.69849/revistaft/ma10202409231056

FUNG, T. C. The microbiota-immune axis as a central mediator of gut-brain communication. Neurobiology of Disease, v. 136, p. 104714, mar. 2020. DOI: https://doi.org/10.1016/j.nbd.2019.104714

FURMANSKI, P. et al. Multiple molecular forms of human lactoferrin. Identification of a class of lactoferrins that possess ribonuclease activity and lack iron-binding capacity. The Journal of experimental medicine, v. 170, n. 2, p. 415–429, ago. 1989. DOI: https://doi.org/10.1084/jem.170.2.415

HARIDAS, M.; ANDERSON, B. F.; BAKER, E. N. Structure of human diferric lactoferrin refined at 2.2 Å resolution. Acta Crystallographica Section D Biological Crystallography, v. 51, n. 5, p. 629–646, set. 1995. DOI: https://doi.org/10.1107/S0907444994013521

JAHANI, S.; SHAKIBA, A.; JAHANI, L. The Antimicrobial Effect of Lactoferrin on Gram-Negative and Gram-Positive Bacteria. International Journal of Infection, v. 2, n. 3, jul. 2015. DOI: https://doi.org/10.17795/iji27594

JI, Z. et al. Insight into differences in whey proteome from human and eight dairy animal species for formula humanization. Food Chemistry, v. 430, p. 137076, jan. 2024. DOI: https://doi.org/10.1016/j.foodchem.2023.137076

KARASKOVA, E. et al. Changes in serum hepcidin levels in children with inflammatory bowel disease during anti‐inflammatory treatment. Journal of Paediatrics and Child Health, v. 56, n. 2, p. 276–282, fev. 2020. DOI: https://doi.org/10.1111/jpc.14593

KELL, D. B.; HEYDEN, E. L.; PRETORIUS, E. The Biology of Lactoferrin, an Iron-Binding Protein That Can Help Defend Against Viruses and Bacteria. Frontiers in Immunology, v. 11, maio 2020. DOI: https://doi.org/10.3389/fimmu.2020.01221

KEOGH, C. E. et al. Myelin as a regulator of development of the microbiota-gut-brain axis. Brain, Behavior, and Immunity, v. 91, p. 437–450, jan. 2021. DOI: https://doi.org/10.1016/j.bbi.2020.11.001

LI, L.; LIU, T.; SHI, Y. Treatment of preterm brain injury via gut‐microbiota–metabolite–brain axis. CNS Neuroscience & Therapeutics, v. 30, n. 1, jan. 2024. DOI: https://doi.org/10.1111/cns.14556

LIU, G. et al. Gut dysbiosis impairs hippocampal plasticity and behaviors by remodeling serum metabolome. Gut Microbes, v. 14, n. 1, dez. 2022a. DOI: https://doi.org/10.1080/19490976.2022.2104089

LIU, L. et al. Impact of maternal nutrition during early pregnancy and diet during lactation on lactoferrin in mature breast milk. Nutrition, v. 93, p. 111500, jan. 2022b. DOI: https://doi.org/10.1016/j.nut.2021.111500

LIU, N. et al. The Functional Role of Lactoferrin in Intestine Mucosal Immune System and Inflammatory Bowel Disease. Frontiers in Nutrition, v. 8, nov. 2021. DOI: https://doi.org/10.3389/fnut.2021.759507

LU, J.; MARTIN, C. R.; CLAUD, E. C. Neurodevelopmental outcome of infants who develop necrotizing enterocolitis: The gut-brain axis. Seminars in Perinatology, v. 47, n. 1, p. 151694, fev. 2023. DOI: https://doi.org/10.1016/j.semperi.2022.151694

MA, Y. et al. Digestive differences in immunoglobulin G and lactoferrin among human, bovine, and caprine milk following in vitro digestion. International Dairy Journal, v. 120, p. 105081, set. 2021. DOI: https://doi.org/10.1016/j.idairyj.2021.105081

NIELSEN, S. D. et al. Differences and Similarities in the Peptide Profile of Preterm and Term Mother’s Milk, and Preterm and Term Infant Gastric Samples. Nutrients, v. 12, n. 9, p. 2825, set. 2020. DOI: https://doi.org/10.3390/nu12092825

NOGUEIRA-DE-ALMEIDA, C. A. et al. Consensus of the Brazilian Association of Nutrology and the Brazilian Society for Food and Nutrition on the consumption of cow’s milk by humans. International Journal of Nutrology, v. 17, n. 3, jun. 2024. DOI: https://doi.org/10.54448/ijn24302

OBERČKAL, J. et al. Quantification of lactoferrin in human milk using monolithic cation exchange HPLC. Journal of Chromatography B, v. 1214, p. 123548, jan. 2023. DOI: https://doi.org/10.1016/j.jchromb.2022.123548

OLIVEIRA, E. G. DE; ABRAMOVECHT, G. Colostroterapia em recém-nascidos prematuros : uma revisão da literatura. Revista Fluminense de Extenão Universitária, p. 8–13, 2024.

OSTERTAG, F.; GRIMM, V. J.; HINRICHS, J. Iron saturation and binding capacity of lactoferrin - development and validation of a colorimetric protocol for quality control. Food Chemistry, v. 463, p. 141365, jan. 2025. DOI: https://doi.org/10.1016/j.foodchem.2024.141365

PITINO, M. A. et al. Digestion of human milk processed by high pressure processing and Holder pasteurization using a dynamic in vitro model of the preterm infant. Food Chemistry, v. 411, p. 135477, jun. 2023. DOI: https://doi.org/10.1016/j.foodchem.2023.135477

RASCÓN-CRUZ, Q. et al. Antioxidant Potential of Lactoferrin and Its Protective Effect on Health: An Overview. International Journal of Molecular Sciences, v. 26, n. 1, p. 125, dez. 2024. DOI: https://doi.org/10.3390/ijms26010125

SCHIRMBECK, G. H.; SIZONENKO, S.; SANCHES, E. F. Neuroprotective Role of Lactoferrin during Early Brain Development and Injury through Lifespan. NutrientsMDPI, , jul. 2022. DOI: https://doi.org/10.3390/nu14142923

SEKI, D. et al. Aberrant gut-microbiota-immune-brain axis development in premature neonates with brain damage. Cell Host & Microbe, v. 29, n. 10, p. 1558- 1572.e6, out. 2021. DOI: https://doi.org/10.1016/j.chom.2021.08.004

SERGIUS-RONOT, M. et al. Development of a human milk protein concentrate from donor milk: Impact of the pasteurization method on static in vitro digestion in a preterm newborn model. Food Research International, v. 164, p. 112385, fev. 2023. DOI: https://doi.org/10.1016/j.foodres.2022.112385

SINDI, A. S. et al. Human milk lactoferrin and lysozyme concentrations vary in response to a dietary intervention. The Journal of Nutritional Biochemistry, v. 135, p. 109760, jan. 2025. DOI: https://doi.org/10.1016/j.jnutbio.2024.109760

SOKOLOV, A. V. et al. Lactoferrin Induces Erythropoietin Synthesis and Rescues Cognitive Functions in the Offspring of Rats Subjected to Prenatal Hypoxia. Nutrients, v. 14, n. 7, p. 1399, mar. 2022. DOI: https://doi.org/10.3390/nu14071399

TANAKA, H. et al. Effects of oral bovine lactoferrin on a mouse model of inflammation associated colon cancer. Biochemistry and Cell Biology, v. 99, n. 1, p. 159–165, fev. 2021. DOI: https://doi.org/10.1139/bcb-2020-0087

TANAKA, M. et al. Protein and Immune Component Content of Donor Human Milk in Japan: Variation with Gestational and Postpartum Age. Nutrients, v. 15, n. 10, p. 2278, maio 2023. DOI: https://doi.org/10.3390/nu15102278

VAN VEEN, H. A. et al. The role of N‐linked glycosylation in the protection of human and bovine lactoferrin against tryptic proteolysis. European Journal of Biochemistry, v. 271, n. 4, p. 678–684, fev. 2004. DOI: https://doi.org/10.1111/j.1432-1033.2003.03965.x

WANG, Q.; YANG, Q.; LIU, X. The microbiota–gut–brain axis and neurodevelopmental disorders. Protein & Cell, v. 14, n. 10, p. 762–775, out. 2023. DOI: https://doi.org/10.1093/procel/pwad026

WOTRING, J. W. et al. Evaluating the in vitro efficacy of bovine lactoferrin products against SARS-CoV-2 variants of concern. Journal of Dairy Science, v. 105, n. 4, p. 2791–2802, abr. 2022. DOI: https://doi.org/10.3168/jds.2021-21247

XIAO, T. et al. Comparative Analysis of Protein Digestion Characteristics in Human, Cow, Goat, Sheep, Mare, and Camel Milk under Simulated Infant Condition. Journal of Agricultural and Food Chemistry, v. 71, n. 41, p. 15035–15047, out. 2023. DOI: https://doi.org/10.1021/acs.jafc.3c03123

ZARZOSA-MORENO, D. et al. Lactoferrin and Its Derived Peptides: An Alternative for Combating Virulence Mechanisms Developed by Pathogens. Molecules, v. 25, n. 24, p. 5763, dez. 2020. DOI: https://doi.org/10.3390/molecules25245763

ZHANG, J. et al. Longitudinal Changes in the Concentration of Major Human Milk Proteins in the First Six Months of Lactation and Their Effects on Infant Growth. Nutrients, v. 13, n. 5, p. 1476, abr. 2021. DOI: https://doi.org/10.3390/nu13051476

ZHAO, C.; CHEN, N.; ASHAOLU, T. J. Prebiotic and modulatory evidence of lactoferrin on gut health and function. Journal of Functional Foods, v. 108, p. 105741, set. 2023. DOI: https://doi.org/10.1016/j.jff.2023.105741

ZHAO, X. et al. Comparative Effects between Oral Lactoferrin and Ferrous Sulfate Supplementation on Iron-Deficiency Anemia: A Comprehensive Review and Meta-Analysis of Clinical Trials. Nutrients, v. 14, n. 3, p. 543, jan. 2022. DOI: https://doi.org/10.3390/nu14030543

Publicado

2025-10-13

Número

Sección

Artigos

Cómo citar

VIGNOTO, Maria Fernanda Miriani; DOS SANTOS, Patricia Daniele Silva; ZANGIROLAMI, Marcela de Souza; MUXFELDT, Luana Cruz; NISHIMUTA, Flavia Naomi Campoi; DA SILVA, Cristiane Renata; MACHADO, Deborah Heloise Fernandes; SANTOS JUNIOR, Oscar de Oliveira. LACTOFERRINA EN LA LECHE HUMANA: ESTRUCTURA, FUNCIONES BIOLÓGICAS E IMPLICACIONES EN EL EJE MICROBIOTA-INTESTINO-CEREBRO. ARACÊ , [S. l.], v. 7, n. 10, p. e8872, 2025. DOI: 10.56238/arev7n10-086. Disponível em: https://periodicos.newsciencepubl.com/arace/article/view/8872. Acesso em: 5 dec. 2025.