SÍNTESIS DEL GRAFENO Y SUS IMPLICACIONES EN LAS PROPIEDADES ELÉCTRICAS: UN ESTUDIO COMPARATIVO

Autores/as

  • Marinaldo Ribeiro da Cunha Autor/a
  • Nayra Reis do Nascimento Autor/a
  • Renato Moreira Teixeira Junior Autor/a
  • Suelem Cabral Valadão Autor/a
  • Flávio Augusto Gomes da Silva Autor/a

DOI:

https://doi.org/10.56238/arev7n9-279

Palabras clave:

Grafeno, Óxido de Grafeno, Película de Grafeno, Conductividad Eléctrica

Resumen

Este estudio investiga el impacto de las técnicas de síntesis de grafeno, como la exfoliación química, la deposición química en fase vapor (CVD) y la exfoliación en fase líquida (LPE), sobre la conductividad eléctrica. El objetivo es comprender cómo las variaciones en los métodos de síntesis influyen en la morfología del grafeno y, en consecuencia, en sus características eléctricas. Se exploran en detalle las técnicas de síntesis para identificar cómo cada proceso afecta a la estructura y al rendimiento eléctrico del grafeno. Los resultados indican que la exfoliación química introduce más defectos en la estructura del grafeno, lo que puede reducir su conductividad eléctrica, mientras que el método CVD tiende a producir grafeno con mayor uniformidad y conductividad superior. Por otro lado, la LPE ofrece un equilibrio entre calidad y eficiencia de producción, lo que la hace especialmente prometedora para aplicaciones a gran escala. El estudio proporciona información valiosa para seleccionar métodos de síntesis basados en los requisitos específicos de aplicación del grafeno. Los resultados podrían facilitar el desarrollo de materiales más eficientes para la electrónica avanzada, contribuyendo a la optimización de los procesos industriales de producción de grafeno y promoviendo avances significativos en la tecnología de los materiales.

Descargas

Los datos de descarga aún no están disponibles.

Referencias

ACIK, Muge; CHABAL, Yves. A review on thermal exfoliation of graphene oxide. J Mater Sci Res, v. 2, p. 101-112, jan. 2013. DOI: https://doi.org/10.5539/jmsr.v2n1p101

ADETAYO, Adeniji; RUNSEWE, Damilola et al. Synthesis and fabrication of graphene and graphene oxide: A review. Open Journal of Composite Materials, v. 9, n. 02, p. 207, 2019. DOI: https://doi.org/10.4236/ojcm.2019.92012

ALAFERDOV, A. V. et al. Size-controlled synthesis of graphite nanoflakes and multi-layer graphene by liquid phase exfoliation of natural graphite. Carbon, v. 69, p. 525-535, 2014. DOI: https://doi.org/10.1016/j.carbon.2013.12.062. DOI: https://doi.org/10.1016/j.carbon.2013.12.062

ALEMOUR, Belal; YAACOB, M. H.; LIM, H. N.; HASSAN, Mohd Roshdi. Review of electrical properties of graphene conductive composites. International Journal of Nanoelectronics and Materials, v. 11, n. 4, p. 371-398, 2018.

ALSHAMKHANI, Maher T.; LEE, Keat Teong; PUTRI, Lutfi Kurnianditia; MOHAMED, Abdul Rahman; LAHIJANI, Pooya; MOHAMMADI, Maedeh. Effect of graphite exfoliation routes on the properties of exfoliated graphene and its photocatalytic applications. Journal of Environmental Chemical Engineering, v. 9, n. 6, p. 106506, 2021. DOI: 10.1016/j.jece.2021.106506. DOI: https://doi.org/10.1016/j.jece.2021.106506

ANDREI, Eva Y; LI, Guohong; DU, Xu. Propriedades eletrônicas do grafeno: uma perspectiva da microscopia de tunelamento de varredura e magnetotransporte. Relatórios sobre o progresso da física, v. 75, n. 5, p. 056501, 2012. IOP Publishing.

BACHMATIUK, Alicja; ZHAO, Jiong; GORANTLA, Sandeep Madhukar; MARTINEZ, Ignacio Guillermo Gonzalez; WIEDERMANN, Jerzy; LEE, Changgu; ECKERT, Juergen; RUMMELI, Mark Hermann. Low voltage transmission electron microscopy of graphene. Small, v. 11, n. 5, p. 515-542, 2015. DOI: 10.1002/smll.201401804. DOI: https://doi.org/10.1002/smll.201401804

BHATT, Mahesh Datt; KIM, Heeju; KIM, Gunn. Various defects in graphene: a review. RSC Advances, v. 12, n. 33, p. 21520-21547, 2022. DOI: https://doi.org/10.1039/D2RA01436J

BIRÓ, László P.; LAMBIN, Philippe. Grain boundaries in graphene grown by chemical vapor deposition. New Journal of Physics, v. 15, n. 3, p. 035024, 2013. DOI: https://doi.org/10.1088/1367-2630/15/3/035024

BOYCHUK, V. M.; KOTSYUBYNSKY, V. O.; BANDURA, Kh. V.; YAREMIY, I. P.; FEDORCHENKO, S. V. Reduced graphene oxide obtained by Hummers and Marcano-Tour methods: comparison of electrical properties. Journal of Nanoscience and Nanotechnology, v. 19, n. 11, p. 7320-7329, 2019. DOI: 10.1166/jnn.2019.16712. DOI: https://doi.org/10.1166/jnn.2019.16712

CAMARGOS, Juliana Sofia Fonseca; DE OLIVEIRA SEMMER, Adriana; DA SILVA, Sidney Nicodemos. Characteristics and applications of graphene and graphene oxide and the main routes for synthesis. The Journal of Engineering and Exact Sciences , v. 3, no. 8, p. 1118-1130, 2017. DOI: https://doi.org/10.18540/jcecvl3iss8pp1118-1130. DOI: https://doi.org/10.18540/jcecvl3iss8pp1118-1130

CAO, Mu; XIONG, Ding-Bang; YANG, Li; LI, Shuaishuai; XIE, Yiqun; GUO, Qiang; LI, Zhiqiang; ADAMS, Horst; GU, Jiajun; FAN, Tongxiang. Ultrahigh electrical conductivity of graphene embedded in metals. Advanced Functional Materials, v. 29, n. 17, p. 1806792, 2019. Wiley Online Library. DOI: https://doi.org/10.1002/adfm.201806792

CASALLAS-CAICEDO, Francy; VERA, Enrique; AGARWAL, Arvind; DROZD, Vadym; DURYGIN, Andriy; WANG, C. Effect of exfoliation method on graphite oxide: a comparison between exfoliation by ball milling and sonication in different media. Journal of Physics: Conference Series, v. 1386, p. 012016, nov. 2019. DOI: 10.1088/1742-6596/1386/1/012016. DOI: https://doi.org/10.1088/1742-6596/1386/1/012016

CASTRO NETO, A. H.; GUINEA, F.; PERES, N. M. R.; NOVOSELOV, K. S.; GEIM, A. K. The electronic properties of graphene. Rev. Mod. Phys., v. 81, n. 1, p. 109-162, jan. 2009. DOI: 10.1103/RevModPhys.81.109. DOI: https://doi.org/10.1103/RevModPhys.81.109

CHERNOVA, Ekaterina A.; GURIANOV, Konstantin E.; BROTSMAN, Victor A.; VALEEV, Rishat G.; KAPITANOVA, Olesya O.; BEREKCHIIN, Mikhail V.;

CHO, Joon Hyong et al. Controlling the number of layers in graphene using the growth pressure. Nanotechnology, v. 30, n. 23, p. 235602, 2019. DOI: https://doi.org/10.1088/1361-6528/ab0847

CLIFFORD, Keiran; OGILVIE, Sean P.; GRAF, Aline Amorim; WOOD, Hannah J.; SEHNAL, Anne C.; SALVAGE, Jonathan P.; LYNCH, Peter J.; LARGE, Matthew J.; DALTON, Alan B. Emergent high conductivity in size-selected graphene networks. Carbon, v. 218, p. 118642, 2024. DOI: 10.1016/j.carbon.2023.118642. DOI: https://doi.org/10.1016/j.carbon.2023.118642

DEEMER, Eva M.; PAUL, Pabitra Kumar; MANCIU, Felicia S.; BOTEZ, Cristian E.; HODGES, Deidra R.; LANDIS, Zachary; AKTER, Tahmina; CASTRO, Edison; CHIANELLI, Russell R. Consequence of oxidation method on graphene oxide produced with different size graphite precursors. Materials Science and Engineering: B, v. 224, p. 150-157, May 2017. DOI: 10.1016/j.mseb.2017.07.018. DOI: https://doi.org/10.1016/j.mseb.2017.07.018

GEIM, Andre K.; NOVOSELOV, Konstantin S. The rise of graphene. Nature Materials, v. 6, n. 3, p. 183-191, mar. 2007. DOI: 10.1038/nmat1849. DOI: https://doi.org/10.1038/nmat1849

GUAN, Yifei; DUTREIX, Clement; GONZÁLEZ-HERRERO, Héctor; UGEDA, Miguel M.; BRIHUEGA, Ivan; KATSNELSON, Mikhail I.; YAZYEV, Oleg V.; RENARD, Vincent T. Observation of Kekulé vortices around hydrogen adatoms in graphene. Nature Communications, v. 15, p. 1-6, 2024. DOI: 10.1038/s41467-024-47267-8. DOI: https://doi.org/10.1038/s41467-024-47267-8

HACK, Renata; HACK GUMZ CORREIA, Cláudia; DE SIMONE ZANON, Ricardo Antônio; PEZZIN, Sérgio Henrique. Characterization of graphene nanosheets obtained by a modified Hummer’s method. Revista Materia, v. 23, n. 1, 2018. DOI: 10.1590/s1517-707620170001.0324. DOI: https://doi.org/10.1590/s1517-707620170001.0324

HAN, Tae-Hee; KIM, Hobeom; KWON, Sung-Joo; LEE, Tae-Woo. Graphene-based flexible electronic devices. Materials Science and Engineering: R: Reports, v. 118, p. 1-43, 2017. Elsevier HASHIMOTO, Ayako; SUENAGA, Kazu; GLOTER, Alexandre; URITA, Koki; IIJIMA, Sumio. Direct evidence for atomic defects in graphene layers. Nature, v. 430, n. 7002, p. 870-873, 2004. DOI: 10.1038/nature02817. DOI: https://doi.org/10.1038/nature02817

HERNANDEZ, Yenny et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nature nanotechnology, v. 3, n. 9, p. 563-568, 2008. DOI: https://doi.org/10.1038/nnano.2008.215 DOI: https://doi.org/10.1038/nnano.2008.215

IKRAM, Rabia; JAN, Badrul Mohamed; AHMAD, Waqas. An overview of industrial scalable production of graphene oxide and analytical approaches for synthesis and characterization. Journal of Materials Research and Technology, v. 9, n. 5, p. 11587-11610, 2020. DOI: https://doi.org/10.1016/j.jmrt.2020.08.050

INKSON, B. J. 2 - Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) for materials characterization. In: HÜBSCHEN, Gerhard; ALTPETER, Iris; TSCHUNCKY, Ralf; HERRMANN, Hans-Georg (Eds.). Materials Characterization Using Nondestructive Evaluation (NDE) Methods. Woodhead Publishing, 2016. p. 17-43. DOI: 10.1016/B978-0-08-100040-3.00002-X. DOI: https://doi.org/10.1016/B978-0-08-100040-3.00002-X

JIANG, Tao; LIU, Hengrui; HUANG, Di; ZHANG, Shuai; LI, Yingguo; GONG, Xingao; SHEN, Yuen Ron; LIU, Wei Tao; WU, Shiwei. Valley and band structure engineering of folded MoS₂ bilayers. Nature Nanotechnology, v. 9, n. 10, p. 825-829, 2014. DOI: 10.1038/nnano.2014.176. ISSN: 1748-3395. DOI: https://doi.org/10.1038/nnano.2014.176

JOHRA, Fatima Tuz; LEE, Jee-Wook; JUNG, Woo-Gwang. Facile and safe graphene preparation on solution-based platform. Journal of Industrial and Engineering Chemistry, v. 20, n. 5, p. 2883-2887, 2014. DOI: 10.1016/j.jiec.2013.11.022. ISSN: 1226-086X. DOI: https://doi.org/10.1016/j.jiec.2013.11.022

KAVYASHREE, K.; MADHURI, D. R.; LAMANI, Ashok R.; JAYANNA, H. S.; HEMANTHA, M. Effect of graphite particle size on oxidation of graphene oxide prepared by modified Hummer's method. AIP Conference Proceedings, v. 2265, 2020. DOI: 10.1063/5.0017325. ISSN: 1551-7616. DOI: https://doi.org/10.1063/5.0017325

LALIRE, Thibaut; LONGUET, Claire; TAGUET, Aurélie. Electrical properties of graphene/multiphase polymer nanocomposites: A review. Carbon, v. 225, p. 119055, 2024. DOI: 10.1016/j.carbon.2024.119055. DOI: https://doi.org/10.1016/j.carbon.2024.119055

LI, Xuesong et al. Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Letters, v. 9, n. 12, p. 4359-4363, 2009. DOI: 10.1021/nl902623y. DOI: https://doi.org/10.1021/nl902623y

LI, Zheling et al. Mechanisms of liquid-phase exfoliation for the production of graphene. ACS Nano, v. 14, n. 9, p. 10976-10985, 2020. DOI: https://pubs.acs.org/doi/10.1021/acsnano.0c03916. DOI: https://doi.org/10.1021/acsnano.0c03916

LIM, Soomook; PARK, Hyunsoo; YAMAMOTO, Go; LEE, Changgu; SUK, Ji. Measurements of the electrical conductivity of monolayer graphene flakes using conductive atomic force microscopy. Nanomaterials, v. 11, p. 2575, 2021. DOI: 10.3390/nano11102575. DOI: https://doi.org/10.3390/nano11102575

LIU, Liting; LIU, Yuan; DUAN, Xiangfeng. Graphene-based vertical thin film transistors. Science China Information Sciences, v. 63, p. 1–12, 2020. DOI: https://doi.org/10.1007/s11432-020-2806-8. DOI: https://doi.org/10.1007/s11432-020-2806-8

LIU, Naixu; TANG, Qingguo; HUANG, Bin; WANG, Yaping. Large-Scale Production. [Journal Name], 2022, p. 1-11.

LIU, Wei et al. Synthesis of high-quality monolayer and bilayer graphene on copper using chemical vapor deposition. Carbon, v. 49, n. 13, p. 4122-4130, 2011. DOI: https://doi.org/10.1016/j.carbon.2011.05.047

LIU, Xuefeng; BIE, Zhiwu; WANG, Jinbao; SUN, Ligang; TIAN, Meiling; OTERKUS, Erkan; HE, Xiaoqiao. Investigation on fracture of pre-cracked single-layer graphene sheets. Computational Materials Science, v. 159, p. 365-375, 2019. DOI: 10.1016/j.commatsci.2018.12.014. DOI: https://doi.org/10.1016/j.commatsci.2018.12.014

LOBO, A.; MARTIN, Airton; ANTUNES, Erica; TRAVA-AIROLDI, Vladimir; CORAT, Evaldo. Caracterização de materiais carbonosos por espectroscopia Raman. Revista Brasileira de Aplicações de Vácuo, v. 24, 2005.

MA, Xiaoguang; WANG, Yimeng; HAO, Xiaojian; GU, Min; ZHANG, Qiming. Giant nonlinear optical response of graphene oxide thin films under the photochemical and photothermal reduction. Advanced Materials Interfaces, v. 9, n. 21, p. 2200890, 2022. DOI: 10.1002/admi.202200890. DOI: https://doi.org/10.1002/admi.202200890

MARASCHIN, Thuany Garcia; CORREA, Roberto da Silva; RODRIGUES, Luiz Frederico; BALZARETTI, Naira Maria; GALLAND, Griselda Barrera; REGINA, Nara; BASSO, De Souza. Chitosan nanocomposites with graphene-based filler: experimental section. Revista de Engenharia e Pesquisa Aplicada, v. 22, p. 1-10, 2018. DOI: https://doi.org/10.1590/1980-5373-mr-2018-0829

MBAYACHI, Vestince B.; NDAYIRAGIJE, Euphrem; SAMMANI, Thirasara; TAJ, Sunaina; MBUTA, Elice R.; KHAN, Atta Ullah. Graphene synthesis, characterization and its applications: A review. Results in Chemistry, v. 3, p. 100163, 2021. DOI: 10.1016/j.rechem.2021.100163. DOI: https://doi.org/10.1016/j.rechem.2021.100163

NANDA, Sitansu Sekhar; KIM, Min Jik; YEOM, Kwi Seok; AN, Seong Soo A.; JU, Heongkyu; YI, Dong Kee. Raman spectrum of graphene with its versatile future perspectives. TrAC Trends in Analytical Chemistry, v. 80, p. 125-131, 2016. DOI: 10.1016/j.trac.2016.02.024. ISSN: 0165-9936. DOI: https://doi.org/10.1016/j.trac.2016.02.024

NOVOSELOV, K. S.; GEIM, A. K.; MOROZOV, S. V.; JIANG, D.; ZHANG, Y.; DUBONOS, S. V.; GRIGORIEVA, I. V.; FIRSOF, A. A. Electric field effect in atomically thin carbon films. Science, v. 306, n. 5696, p. 666-669, 2004. DOI: 10.1126/science.1102896. DOI: https://doi.org/10.1126/science.1102896

PARK, Won-Hwa; JO, Insu; HONG, Byung Hee; CHEONG, Hyeonsik. Controlling the ripple density and heights: a new way to improve the electrical performance of CVD-grown graphene. Nanoscale, v. 8, n. 18, p. 9822-9827, 2016. DOI: https://doi.org/10.1039/C6NR00706F

PEDRAZZETTI, Lorenzo et al. Growth and characterization of ultrathin carbon films on electrodeposited Cu and Ni. Surface and interface Analysis, v. 49, n. 11, p. 1088-1094, 2017. DOI: https://doi.org/10.1002/sia.6281. DOI: https://doi.org/10.1002/sia.6281

QI, Zenan; CAO, Penghui; PARK, Harold. Density functional theory calculation of edge stresses in monolayer MoS2. Journal of Applied Physics, v. 114, p. 163508, out. 2013. DOI: 10.1063/1.4826905. DOI: https://doi.org/10.1063/1.4826905

RAMÍREZ, Cristina; SAFFAR SHAMSHIRGAR, Ali; PÉREZ-COLL, Domingo; OSENDI, María Isabel; MIRANZO, Pilar; TEWARI, Girish C.; KARPPINEN, Maarit; HUSSAINOVA, Irina; BELMONTE, Manuel. CVD nanocrystalline multilayer graphene coated 3D-printed alumina lattices. Carbon, v. 202, p. 36-46, 2023. DOI: 10.1016/j.carbon.2022.10.085. DOI: https://doi.org/10.1016/j.carbon.2022.10.085

REZAEI, Asma; KAMALI, Bita; KAMALI, Ali Reza. Correlation between morphological, structural and electrical properties of graphite and exfoliated graphene nanostructures. Measurement, v. 150, p. 107087, 2020. DOI: 10.1016/j.measurement.2019.107087. DOI: https://doi.org/10.1016/j.measurement.2019.107087

REZENDE, Sergio M. Materiais e dispositivos eletrônicos. 4. ed. São Paulo: Editora Livraria da Física, 2014.

RIDZUAN, Auni Rauhah; IBRAHIM, Suriani; KARMAN, Salmah; AB KARIM, Mohd Sayuti; WAN KAMARUL ZAMAN, Wan Safwani Wan; CHAN, Chow Khuen. Study on electrical conductivity of graphene oxide decorated with silver nanoparticle for electrochemical sensor development. International Journal of Electrochemical Science, v. 16, n. 5, p. 1-11, 2021. DOI: 10.20964/2021.05.03. Disponível em: 10.20964/2021.05.03. DOI: https://doi.org/10.20964/2021.05.03

SHEN, C.; OYADIJI, S. Olutunde. The processing and analysis of graphene and the strength enhancement effect of graphene-based filler materials: A review. Materials Today Physics, v. 15, p. 100257, 2020. DOI: 10.1016/j.mtphys.2020.100257. DOI: https://doi.org/10.1016/j.mtphys.2020.100257

SHESHMANI, Shabnam; ARAB FASHAPOYEH, Marzieh. Suitable chemical methods for preparation of graphene oxide, graphene and surface functionalized graphene nanosheets. Acta Chimica Slovenica, v. 60, n. 4, p. 813-825, 2013. DOI: 10.17344/acsi.2013.991.

SILVA, Renato. A Difração de Raios X: uma técnica de investigação da estrutura cristalina de materiais. Revista Processos Químicos, v. 14, p. 73-82, set. 2020. DOI: 10.19142/rpq.v14i27.577. DOI: https://doi.org/10.19142/rpq.v14i27.577

SIMÃO, D.; NEVES, A. Laboratórios Abertos 2018. [S.l.]: Departamento de Química, Instituto Superior Técnico, Universidade de Lisboa, 2018.

SIRAT, Mohamad Shukri et al. Growth conditions of graphene grown in chemical vapour deposition (CVD). Sains Malays., v. 46, n. 7, p. 1033-1038, 2017. DOI: https://doi.org/10.17576/jsm-2017-4607-04

STANKOVICH, Sasha; PINER, Richard D.; NGUYEN, SonBinh T.; RUOFF, Rodney S. Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon, v. 44, n. 15, p. 3342-3347, 2006. DOI: 10.1016/j.carbon.2006.06.004. DOI: https://doi.org/10.1016/j.carbon.2006.06.004

TIWARI, Santosh K.; SAHOO, Sumanta; WANG, Nannan; HUCZKO, Andrzej. Graphene research and their outputs: Status and prospect. Journal of Science: Advanced Materials and Devices, v. 5, n. 1, p. 10-29, 2020. DOI: 10.1016/j.jsamd.2020.01.006. DOI: https://doi.org/10.1016/j.jsamd.2020.01.006

VIANELLI, A.; CANDINI, A.; TREOSSI, E.; PALERMO, V.; AFFRONTE, M. Observation of different charge transport regimes and large magnetoresistance in graphene oxide layers. Carbon, v. 89, p. 188-196, 2015. DOI: 10.1016/j.carbon.2015.03.019. DOI: https://doi.org/10.1016/j.carbon.2015.03.019

VLASSIOUK, Ivan; SMIRNOV, Sergei; IVANOV, Ilia; FULVIO, Pasquale; DAI, Sheng; MEYER III, Harry; CHI, Miaofang; HENSLEY, Dale; DATSKOS, Panos; LAVRIK, Nickolay. Electrical and thermal conductivity of low temperature CVD graphene: the effect of disorder. Nanotechnology, v. 22, p. 275716, mai. 2011. DOI: 10.1088/0957-4484/22/27/275716. DOI: https://doi.org/10.1088/0957-4484/22/27/275716

XIONG, Xiaotong; HUANG, Beiqing; WEI, Xianfu. Discussing the preparation conditions of graphene. Lecture Notes in Electrical Engineering, v. 417, p. 1155-1161, 2017. DOI: 10.1007/978-981-10-3530-2_141. DOI: https://doi.org/10.1007/978-981-10-3530-2_141

XU, Ke; CAO, Peigen; HEATH, James R. Scanning tunneling microscopy characterization of the electrical properties of wrinkles in exfoliated graphene monolayers. Nano Letters, v. 9, n. 12, p. 4446-4451, 2009. DOI: https://doi.org/10.1021/nl902729p

XU, Yanyan; CAO, Huizhe; XUE, Yanqin; LI, Biao; CAI, Weihua. Liquid-phase exfoliation of graphene: an overview on exfoliation media, techniques, and challenges. Nanomaterials, v. 8, n. 11, p. 942, 2018. DOI: https://doi.org/10.3390/nano8110942. DOI: https://doi.org/10.3390/nano8110942

YANG, Gao and Li, Lihua and Lee, Wing Bun and Ng, Man Cheung. Structure of graphene and its disorders: a review. Science and technology of advanced materials, v. 19, n. 1, p. 613-648, 2018. DOI: https://doi.org/10.1080/14686996.2018.1494493

YAO, Wenqian; LIU, Hongtao; SUN, Jianzhe; WU, Bin; LIU, Yunqi. Engineering of Chemical Vapor Deposition Graphene Layers: growth, characterization, and properties. Advanced Functional Materials, v. 32, n. 42, p. 2202584, 2022. DOI: 10.1002/adfm.202202584. DOI: https://doi.org/10.1002/adfm.202202584

YASIN, Ghulam; ARIF, Muhammad; SHAKEEL, Muhammad; DUN, Yuchao; ZUO, Yu; KHAN, Waheed Qamar; TANG, Yuming; KHAN, Ajmal; NADEEM, Muhammad. Exploring the Nickel–Graphene Nanocomposite Coatings for Superior Corrosion Resistance: manipulando o efeito da densidade de corrente de deposição em sua morfologia, propriedades mecânicas e desempenho de erosão-corrosão. Advanced Engineering Materials, v. 20, n. 7, p. 1701166, 2018. DOI: 10.1002/adem.201701166. DOI: https://doi.org/10.1002/adem.201701166

YONG-ZHEN, Wang et al. The effect of heat treatment on the electrical conductivity of highly conducting graphene films. 新型炭材料, v. 27, n. 04, p. 266-270, 2012.

ZAFAR, Zainab; NI, Zhen Hua; WU, Xing; SHI, Zhi Xiang; NAN, Hai Yan; BAI, Jing; SUN, Li Tao. Evolution of Raman spectra in nitrogen doped graphene. Carbon, v. 61, p. 57-62, 2013. DOI: 10.1016/j.carbon.2013.04.065. DOI: https://doi.org/10.1016/j.carbon.2013.04.065

ZAPATA-HERNANDEZ, Camilo; DURANGO-GIRALDO, Geraldine; CACUA, Karen; BUITRAGO-SIERRA, Robison. Influence of graphene oxide synthesis methods on the electrical conductivity of cotton/graphene oxide composites. Journal of the Textile Institute, v. 113, n. 1, p. 131-140, 2022. DOI: 10.1080/00405000.2020.1865507. DOI: https://doi.org/10.1080/00405000.2020.1865507

ZHANG, Long; LI, Xuan; HUANG, Yi; MA, Yanfeng; WAN, Xiangjian; CHEN, Yongsheng. Controlled synthesis of few-layered graphene sheets on a large scale using chemical exfoliation. Carbon, v. 48, n. 8, p. 2367-2371, 2010. DOI: https://doi.org/10.1016/j.carbon.2010.02.035

ZHANG, Xiuyun; XIN, John; DING, Feng. The edges of graphene. Nanoscale, v. 5, p. 1-. fev. 2013. DOI: 10.1039/c3nr34009k. DOI: https://doi.org/10.1039/c3nr34009k

ZHU, Yanwu; MURALI, Shanthi; CAI, Weiwei; LI, Xuesong; SUK, Ji Won; POTTS, Jeffrey R.; RUOFF, Rodney S. Graphene and graphene oxide: síntese, propriedades e aplicações. Advanced Materials, v. 22, n. 35, p. 3906-3924, 2010. DOI: 10.1002/adma.201001068. DOI: https://doi.org/10.1002/adma.201001068

Descargas

Publicado

2025-09-26

Número

Sección

Artigos

Cómo citar

DA CUNHA, Marinaldo Ribeiro; DO NASCIMENTO, Nayra Reis; TEIXEIRA JUNIOR, Renato Moreira; VALADÃO, Suelem Cabral; DA SILVA, Flávio Augusto Gomes. SÍNTESIS DEL GRAFENO Y SUS IMPLICACIONES EN LAS PROPIEDADES ELÉCTRICAS: UN ESTUDIO COMPARATIVO. ARACÊ , [S. l.], v. 7, n. 9, p. e8447 , 2025. DOI: 10.56238/arev7n9-279. Disponível em: https://periodicos.newsciencepubl.com/arace/article/view/8447. Acesso em: 5 dec. 2025.