FLORACIÓN DE PITAYA EN EL CERRADO CON LA APLICACIÓN DE REGULADORES DE CRECIMIENTO AL FINAL DE LA TEMPORADA BAJA
DOI:
https://doi.org/10.56238/arev7n8-231Palabras clave:
Hylocereus sp, Inducción Floral, FructificaciónResumen
El cultivo de pitaya se ha expandido en Brasil, principalmente debido al valor nutricional de sus frutos y a la expansión prevista de las áreas cultivadas. Sin embargo, la estacionalidad de la fructificación del cultivo limita la disponibilidad de fruta entre mayo y noviembre en el Medio Oeste brasileño. Para superar esta estacionalidad, se evaluaron los efectos de la aplicación de ácido giberélico (GA₃) y paclobutrazol al final de la temporada baja, con el objetivo de acelerar la inducción floral y la fructificación de la pitaya, así como comprender el papel de la giberelina en la fructificación. El experimento se realizó en un huerto comercial, con plantas de 19 meses de edad después de la siembra. El diseño fue un diseño de bloques completamente al azar, con seis tratamientos, cuatro réplicas y cinco plantas por parcela. Los tratamientos consistieron en aplicaciones de 0, 75, 150, 300 y 600 mg L⁻¹ de GA₃, además de un tratamiento con 100 mg L⁻¹ de paclobutrazol, el 7 de septiembre de 2023. La pitaya mostró sensibilidad a la aplicación de las sustancias. El paclobutrazol inhibió completamente el cuajado de frutos, incluso en condiciones ambientales inductivas, lo que destaca el papel crucial de la giberelina en el cuajado de frutos de pitaya. Las diferentes dosis de GA₃ proporcionaron diferentes respuestas en los picos de floración y cuajado de frutos. Independientemente de las dosis de GA₃ aplicadas, se observó una floración más temprana en comparación con las plantas del huerto que no recibió el tratamiento con GA₃ y en los productores vecinos. No se observaron diferencias estadísticas en la floración temprana entre las dosis de GA₃. El período de fructificación más temprano proporcionado por la aplicación de GA3 al final de la temporada baja resalta el potencial de la aplicación de GA₃ como una herramienta para expandir la ventana de producción. Sin embargo, es necesario ajustar la dosis, el momento y el método de aplicación para maximizar la eficacia del tratamiento.
Descargas
Referencias
ACHARD, P.; GONG, F.; CHEMINANT, S.; ALIOUA, M.; HEDDEN, P.; GENSCHIK, P. The Cold-Inducible CBF1 Factor–Dependent Signaling Pathway Modulates the Accumulation of the Growth-Repressing DELLA Proteins via Its Effect on Gibberellin Metabolism. The Plant Cell, v. 20, 2117–2129. 2008. DOI: https://doi.org/10.1105/tpc.108.058941
AKSENOVA, N. P.; MILYAEVA, E. L.; ROMANOV, G. A. Florigen Goes Molecular: Seventy Years of the Hormonal Theory of Flowering Regulation. Russian Journal of Plant Physiology, v. 53, n. 3, pp. 401–406. 2006. DOI: https://doi.org/10.1134/S1021443706030174
AL-QTHANIN, R. N.; ALSHAHARNI, M. O. Effect of lighting system on the growth rate of two cultivars of dragon fruit (Hylocereus undatus and Hylocereus costaricensis) in Abha region Saudi Arabia. Applied Ecology and Environmental Research. v. 22, n. 3, 2541-2554. 2024. DOI: https://doi.org/10.15666/aeer/2203_25412554
ANDRÉS, F. & COUPLAND, G. The genetic basis of flowering responses to seasonal cues. Nature Reviews / Genetics. v. 13, 627- 639. 2012. DOI: https://doi.org/10.1038/nrg3291
ATIF, M. J.; AMIN, B.; GHANI, M. I.; ALI, M.; ZHANG, S.; CHENG, Z. Effect of photoperiod and temperature on garlic (Allium sativum L.) bulbing and selected endogenous chemical factors. Environmental and Experimental Botany. v. 180, 104250. 2020. DOI: https://doi.org/10.1016/j.envexpbot.2020.104250
BAUERLE, W. L. Gibberellin A3 induced flowering intensification in Humulus lupulus L.: Synchronizing vegetative phase change and photoperiod induction. Scientia Horticulturae, v.302, 111183. 2022. DOI: https://doi.org/10.1016/j.scienta.2022.111183
CARDOSO, M. R. D.; MARCUZZO, F. F. N.; BARROS, J. R. Classificação Climática de Köppen-Geiger para o Estado de Goiás e o Distrito Federal. ACTA Geográfica, Boa Vista, v.8, n.16, 40-55. 2014. DOI: https://doi.org/10.18227/2177-4307.acta.v8i16.1384
CASTROVERDE, C. D. M.; DINA, D. Temperature regulation of plant hormone signaling during stress and development. Journal of Experimental Botany, v. 72, n. 21. 7436–7458. 2021.
CHU, Y.C.; CHANG, J.C. Codification and description of the phenological growth stages of red-fleshed pitaya (Hylocereus polyrhizus) using the extended BBCH scale- with special reference to spines, areole, and flesh color development under field conditions. Scientia Horticulturae. v. 293, 110752. 2022. DOI: https://doi.org/10.1016/j.scienta.2021.110752
CHU, Y.C.; CHANG, J.C. Regulation of floral bud development and emergence by ambient T temperature under a long-day photoperiod in white-fleshed pitaya (Hylocereus undatus). Scientia Horticulturae. v. 271, 109479. 2020. DOI: https://doi.org/10.1016/j.scienta.2020.109479
COELHO, L. L.; FKIARA, A.; MACKENZIE, K. K.; MULLER, R.; LUTKEN, H. Exogenous Application of Gibberellic Acid Improves Flowering in Kalanchoe. Hortscience 53(3):342–346. 2018. DOI: https://doi.org/10.21273/HORTSCI12720-17
COSTA, A. C.; RAMOS, J. D.; REIS SILVA, F. O. R.; DUARTE, M. H. Floração e frutificação em diferentes tipos de cladódios de pitaia-vermelha em Lavras-MG. Rev. Bras. Frutic., Jaboticabal - SP, v. 36, n. 1, 279-284, 2014. DOI: https://doi.org/10.1590/0100-2945-304/13
DING, Y.; YANG, S. Surviving and thriving: How plants perceive and respond to temperature stress. Developmental Cell. v. 57, 947-958. 2022. DOI: https://doi.org/10.1016/j.devcel.2022.03.010
FALEIRO, F. G. Pitaia - A Fruta Que Está Conquistando O Brasil. Campo & Negócios – Anuário HF. 97-99. 2022.
GARCÍA-MARTINEZ, J. L.; GIL, J. Light Regulation of Gibberellin Biosynthesis and Mode of Action. J Plant Growth Regul, v. 20, 354-368. 2002. DOI: https://doi.org/10.1007/s003440010033
GRAY, W. M.; OSTIN, A.; SANDBERG, G.; ROMANO, C. P.; ESTELLE, M. High temperature promotes auxin-mediated hypocotyl elongation in Arabidopsis. Plant Biology - Proc. Natl. Acad. Sci. v 95, pp. 7197–7202. 1998. DOI: https://doi.org/10.1073/pnas.95.12.7197
JIANG, Y. L.; LIAO, Y.Y.; LIN, M.T.; YANG, W.J. Bud Development in Response to Night-breaking Treatment in the Noninductive Period in Red Pitaya (Hylocereus sp.). Hortscience. v.51, n. 6, 690–696. 2016. DOI: https://doi.org/10.21273/HORTSCI.51.6.690
JIANG, Y. L.; LIAO, Y.Y.; LIN, T.S.; LEE, C. L.; YEN, C. R.; YANG, W.J. The Photoperiod-regulated Bud Formation of Red Pitaya (Hylocereus sp.). Hortscience. v. 47, n.8, 1063–1067. 2012. DOI: https://doi.org/10.21273/HORTSCI.47.8.1063
JIANG, Y.L. Seasonal response of night-breaking on floral bud formation in red pitaya T (Hylocereus sp.) in a noninductive period. Scientia Horticulturae. v. 270, 109420. 2020. DOI: https://doi.org/10.1016/j.scienta.2020.109420
KHAIMOV, A.; MIZRAHI, Y. Effects of day-length, radiation, flower thinning and growth regulators on flowering of the vine cacti Hylocereus undatus and Selenicereus megalanthus. Journal of Horticultural Science & Biotechnology. v. 81, n. 3, 465–470. 2006. DOI: https://doi.org/10.1080/14620316.2006.11512089
KISHORE, K. Phenological growth stages of dragon fruit (Hylocereus undatus) according to the extended BBCH-scale. Scientia Horticulturae. v. 213, 294–302. 2016. DOI: https://doi.org/10.1016/j.scienta.2016.10.047
MUTASA-GOTTGENS, E.; HEDDEN, P. Gibberellin as a factor in floral regulatory networks. Journal of Experimental Botany, v. 60, n. 7, 1979–1989. 2009. DOI: https://doi.org/10.1093/jxb/erp040
NERD, A.; SITRIT, Y.; KAUSHIK, R. A.; MIZRAHI, Y. High summer temperatures inhibit flowering in vine pitaya crops (Hylocereus spp.). Scientia Horticulturae, v. 96, 343–350. 2002. DOI: https://doi.org/10.1016/S0304-4238(02)00093-6
NGUYEN, Q. T.; NGO, M. D.; TRUONG, T. H.; NGUYEN, D. C.; NGUYEN, M.C. Modified compact fluorescent lamps improve light-induced off-season floral stimulation in dragon fruit farming. Food Sci Nutr. v.9, 2390–2401. 2021. DOI: https://doi.org/10.1002/fsn3.2088
OSNATO, M. The floral transition and adaptation to a changing environment: from model species to cereal crops. The Plant Cell - Teaching Tools in Plant Biology. 1- 18. 2022.
PHENGPHACHANH, B.; NAPHROM, D.; BUNDITHYA, W.; POTAPOHN, N. Effects of Day-length and Gibberellic Acid (GA3) on Flowering and Endogenous Hormone Levels in Rhynchostylis gigantea (Lindl.) Ridl. Journal of Agricultural Science, v. 4, n. 4; 217-222. 2012. DOI: https://doi.org/10.5539/jas.v4n4p217
SAMACH, A.; WIGGE, P. A. Ambient temperature perception in plants. Current Opinion in Plant Biology 8:483–486. 2005. DOI: https://doi.org/10.1016/j.pbi.2005.07.011
SANTOS, D. N.; PIO, L. A. S.; FALEIRO, F. G. Pitaya: Uma Alternativa Frutífera. Brasília: ProImpress, 68 p. 2022.
SANTOSA, E.; MINE, Y.; LONTOH, A. P.; SUGIYAMA, N.; SARI, M.; KURNIAWATI, A. Gibberellic Acid Application Causes Erratic Flowering on Young Corms of Amorphophallus muelleri Blume (Araceae). The Horticulture Journal. v 88, n. 1, 92–99. 2019. DOI: https://doi.org/10.2503/hortj.UTD-016
SILVA, L. G. M.; COSTA, C. A. R.; BATISTA, G. A.; AMORIM, K. A.; ABREU, D. J. M.; RODRIGUES, L. J.; PIO, L. A. S.; VILAS BOAS, E. V. B.; CARVALHO, E. E. N. Effect of light supplementation on pitaya productivity and quality during the off-season. Technology in Horticulture. 1-7. 2025.
TAKATA, W. H. S.; MIYAKE.; R. T. M.; NARITA, N.; ONO, E. O. Effects of Season and GA3 Concentrations on Hylocereus undatus Flowering and Production. Agron., v. 15, n. 4, 179-183. 2016. DOI: https://doi.org/10.3923/ja.2016.179.183
TRAN, D, H.; YEN, C.R.; CHEN, Y.K.H. Flowering Response of a Red Pitaya Germplasm Collection to Lighting Addition. International Journal of Agricultural and Biosystems Engineering. v. 9, n. 2, 175-179. 2015.
VERHAGE, L.; ANGENENT, G.C.; IMMINK, R. G. H. Research on floral timing by ambient temperature comes into blossom. Trends in Plant Science, v. 19, n. 9. 583-591. 2014. DOI: https://doi.org/10.1016/j.tplants.2014.03.009
WU, Z.; HUANG, L.; HUANG, F.; LU, G.; WEI, S.; LIU, C.; DENG, H.; LIANG, G. TEMPORAL transcriptome analysis provides molecular insights into flower development in red-flesh pitaya. Electronic Journal of Biotechnology. v. 58, 55–69. 2022. DOI: https://doi.org/10.1016/j.ejbt.2022.05.005
YANG, Z.; CAI, X.; SHANG, C.; HOU, Q.; XIAO, L.; WEN, X. Heat-induced HpbHLH43 involves in promoting floral bud induction via activating HpSOC1 in pitaya. Scientia Horticulturae. v. 338, 113773, 2024. DOI: https://doi.org/10.1016/j.scienta.2024.113773
XIONG, R., LIU, C., XU, M. et al. Transcriptomic analysis of flower induction for long-day pitaya by supplementary lighting in short-day winter season. BMC Genomics 21, 329 (2020). https://doi.org/10.1186/s12864-020-6726-6 DOI: https://doi.org/10.1186/s12864-020-6726-6
SHAH K, ZHU X, ZHANG T, CHEN J, CHEN J, QIN Y. Gibberellin-3 induced dormancy and suppression of flower bud formation in pitaya (Hylocereus polyrhizus). BMC Plant Biol. 2025 Jan 13;25(1):47. doi: 10.1186/s12870-024-05880-1 DOI: https://doi.org/10.1186/s12870-024-05880-1
ZHANG S, DAI J, GE Q. Responses of Autumn Phenology to Climate Change and the Correlations of Plant Hormone Regulation. Sci Rep. 2020 Jun 3;10(1):9039. doi: 10.1038/s41598-020-65704-8 DOI: https://doi.org/10.1038/s41598-020-65704-8
CASTROVERDE CDM, DINA D. Temperature regulation of plant hormone signaling during stress and development. J Exp Bot. 2021 Jun 3:erab257. doi: 10.1093/jxb/erab257 DOI: https://doi.org/10.1093/jxb/erab257
