DETECTION AND CLASSIFICATION OF BREAST LESIONS IN BIOMEDICAL IMAGES IN AN EXPLAINABLE WAY

Authors

  • Gabriel Luiz Limeira Barreto Author
  • Sidney Marlon Lopes de Lima Author

DOI:

https://doi.org/10.56238/arev7n9-289

Keywords:

Breast Lesions, Breast Cancer, Biomedical Imaging, Machine Learning

Abstract

Purpose: Breast cancer is a major public health issue and the leading cause of cancer death among adult women in Brazil. Late diagnosis contributes to high mortality rates and invasive surgeries. Limited access to imaging tests results in diagnoses at advanced stages, underscoring the need for early detection to improve cure rates and avoid aggressive procedures. The objective of this study is to enhance breast cancer diagnosis, particularly in countries with prevalent late diagnoses, by applying advanced artificial intelligence and extreme learning techniques to thermographic images.

Methods: The study utilizes advanced artificial intelligence (AI) and extreme learning techniques to analyze thermographic images. The goal is to develop a computer system that not only accurately diagnoses breast cancer but also provides explanations for its decisions in a way that healthcare professionals can understand.

Results: The proposed AI approach demonstrated efficiency in detecting and classifying breast lesions in thermographic images. The system achieved an accuracy of 89.70% in distinguishing malignant lesions from other diagnoses in its best-case scenario.

Conclusion: The developed system represents a significant advancement in breast cancer diagnosis, particularly in regions where late-stage diagnoses are common. It holds potential to improve diagnostic accuracy, contribute to better patient outcomes, and enhance recovery prospects for breast cancer patients.

Downloads

Download data is not yet available.

References

[1] “Dados e Números sobre Câncer de Mama - Relatório Anual 2023.” 2023. Accessed: Apr. 09, 2025. [Online]. Available: https://www.inca.gov.br/publicacoes/relatorios/dados-e-numeros-sobre-cancer-de-mama-relatorio-anual-2023

[2] “INCA: Controle do Câncer de Mama - Documento de Consenso,” Rev Brasil Cancerologia, v. 50, n. 2, p. 77-90, 2004, doi: DOI: 10.32635/2176-9745.RBC.2004v50n2.2039. DOI: https://doi.org/10.32635/2176-9745.RBC.2004v50n2.2039

[3] “Global Cancer Observatory. World Health Organization. Globocan, 2022.” 2022. Accessed: Apr. 09, 2025. [Online]. Available: https://gco.iarc.who.int/today/en/fact-sheets-populations#regions

[4] “INCA: Instituto Nacional do Câncer; Orientações fisioterápicas: mastologia.” 2011.

[5] J. H. Juhl, A. B. Crummy, and J. E. Kuhlman, Interpretação Radiológica., 7th ed. Guanabara, 2014.

[6] W. Leucht and D. Leucht, Teaching Atlas of Breast Ultrasound., 2nd ed. Georg Thieme Verlag, Thieme Medical Publishers, 1996.

[7] K. J. W. Taylor et al., “Ultrasound as a complement to mammography and breast examination to characterize breast masses,” Ultrasound Med Biol, vol. 28, no. 1, pp. 19–26, Jan. 2002. DOI: https://doi.org/10.1016/S0301-5629(01)00491-4

[8] S. Gefen et al., ROC analysis of ultrasound tissue characterization classifiers for breast cancer diagnosis, vol. 22. 2003. doi: 10.1109/TMI.2002.808361. DOI: https://doi.org/10.1109/TMI.2002.808361

[9] et al. D’Orsi CJ Sickles EA, Mendelson EB, Morris EA, ACR BI-RADS® Atlas, Breast Imaging Reporting and Data System. Reston, VA. American College of Radiology. 2013. Accessed: Apr. 09, 2025. [Online]. Available: https://www.acr.org/Clinical-Resources/Reporting-and-Data-Systems/Bi-Rads

[10] M. D. Heath and K. W. Bowyer, “Mass Detection by Relative Image Intensity.,” 5th International Conference on Digital Mammography. Toronto, Canada, June. Medical Physics Publishing (Madison, WI), ISBN 1-930524-00-5, 2000.

[11] S. M. L. Lima, A. G. Silva-Filho, and W. P. Dos Santos, A methodology for classification of lesions in mammographies using Zernike Moments, ELM and SVM Neural Networks in a multi-kernel approach. doi: https://doi.org/10.1109/SMC.2014.6974041, 2014. DOI: https://doi.org/10.1109/SMC.2014.6974041

[12] W. W. Azevedo et al., Fuzzy Morphological Extreme Learning Machines to detect and classify masses in mammograms. 2015. doi: 10.1109/FUZZ-IEEE.2015.7337975. DOI: https://doi.org/10.1109/FUZZ-IEEE.2015.7337975

[13] W. W. Azevedo et al., Morphological extreme learning machines applied to detect and classify masses in mammograms. 2015. doi: 10.1109/IJCNN.2015.7280774. DOI: https://doi.org/10.1109/IJCNN.2015.7280774

[14] W. W. A. da Silva, M. A. de Santana, A. G. da S. Filho, S. M. L. de Lima, and W. P. dos Santos, Chapter 3 - Morphological extreme learning machines applied to the detection and classification of mammary lesions. in Hybrid Computational Intelligence for Pattern Analysis and Understanding. Academic Press, 2021. doi: 10.1016/B978-0-12-819295-5.00003-2. DOI: https://doi.org/10.1016/B978-0-12-819295-5.00003-2

[15] S. M. L. de Lima, A. G. da Silva-Filho, and W. P. dos Santos, Detection and classification of masses in mammographic images in a multi-kernel approach, vol. 134. 2016. doi: 10.1016/j.cmpb.2016.04.029. DOI: https://doi.org/10.1016/j.cmpb.2016.04.029

[16] J. M. S. et al. Pereira, Method for Classification of Breast Lesions in Thermographic Images Using ELM Classifiers. In: SANTOS, W.P.; SANTANA, M.A.; SILVA, W.W.A. Understanding a Cancer Diagnosis. Disponível em: https://novapublishers.com/shop/understanding-a-cancer-diagnosis/, 2020.

[17] J. M. S. Pereira et al., “Feature selection based on dialectics to support breast cancer diagnosis using thermographic images.,” Res. Biomed. Eng. 37, pp. 485–506, 2021. DOI: https://doi.org/10.1007/s42600-021-00158-z

[18] M. C. Araújo, R. C. F. Lima, and R. M. C. R. de Souza, “Interval symbolic feature extraction for thermography breast cancer detection,” Expert Systems with Applications, vol. 41, no. 15, pp. 6728–6737, 2014, doi: https://doi.org/10.1016/j.eswa.2014.04.027. DOI: https://doi.org/10.1016/j.eswa.2014.04.027

[19] T. B. Borchartt, A. Conci, R. C. F. Lima, R. Resmini, and A. Sanchez, “-,” Signal Processing, vol. 93, no. 10, pp. 2785–2803, 2013, doi: https://doi.org/10.1016/j.sigpro.2012.08.012. DOI: https://doi.org/10.1016/j.sigpro.2012.08.012

[20] S. Ekici and H. Jawzal, “Breast cancer diagnosis using thermography and convolutional neural networks,” Medical Hypotheses, vol. 137, p. 109542, 2020, doi: https://doi.org/10.1016/j.mehy.2019.109542. DOI: https://doi.org/10.1016/j.mehy.2019.109542

[21] C. N. Karim, O. Mohamed, and T. Ryad, “A new approach for breast abnormality detection based on thermography,” Medical Technologies Journal, 2018, Accessed: Apr. 09, 2025. [Online]. Available: https://api.semanticscholar.org/CorpusID:69778691

[22] A. Morales-Cervantes et al., “An automated method for the evaluation of breast cancer using infrared thermography,” EXCLI J, vol. 17, pp. 989–998, Oct. 2018.

[23] A. M. Turing, “Computing Machinery and Intelligence, Mind.,” Issue 236, October 1950, Pages 433–460, vol. LIX, 1950, doi: https://doi.org/10.1093/mind/LIX.236.433. DOI: https://doi.org/10.1093/mind/LIX.236.433

[24] M. Macedo, M. Santana, W. P. dos Santos, R. Menezes, and C. Bastos-Filho, “Breast cancer diagnosis using thermal image analysis: A data-driven approach based on swarm intelligence and supervised learning for optimized feature selection,” Applied Soft Computing, vol. 109, Sep. 2021, Accessed: Apr. 09, 2025. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1568494621004567 DOI: https://doi.org/10.1016/j.asoc.2021.107533

[25] de F. Barbosa and de C. F. de Lima, “Combining deep-wavelet neural networks and support-vector machines to classify breast lesions in thermography images.,” Health Technol. 12, 2022, doi: https://doi.org/10.1007/s12553-022-00705-3. DOI: https://doi.org/10.1007/s12553-022-00705-3

[26] dos Santos, “A deep-wavelet neural network to detect and classify lesions in mammographic images.,” Res. Biomed. Eng.38, 2022, doi: https://doi.org/10.1007/s42600-022-00238-8. DOI: https://doi.org/10.1007/s42600-022-00238-8

[27] S. M. L. Lima and W. P. Santos, Morphological Decomposition to Detect and Classify Lesions in Mammograms.In: Wellington Pinheiro dos Santos; Maíra Araújo de Santana; Washington Wagner Azevedo da Silva. (Org.). Understanding a Cancer Diagnosis. Disponível em: https://novapublishers.com/shop/understanding-a-cancer-diagnosis/, 2020.

[28] K. Niu and C. Tian, “Zernike polynomials and their applications,” Journal of Optics, vol. 24, no. 12, p. 123001, Nov. 2022, doi: 10.1088/2040-8986/ac9e08. DOI: https://doi.org/10.1088/2040-8986/ac9e08

[29] A. Tahmasbi, F. Saki, and S. B. Shokouhi, “Classification of benign and malignant masses based on Zernike moments,” Computers in Biology and Medicine, vol. 41, no. 8, pp. 726–735, 2011, doi: https://doi.org/10.1016/j.compbiomed.2011.06.009. DOI: https://doi.org/10.1016/j.compbiomed.2011.06.009

[30] D. Papalia, S. Olds, and R. Feldman, Human Development. The McGraw-Hill Companies, 11a edição, pág. 162, 2008.

[31] S. Shalev-Shwartz and J. Shai Ben-David, Understanding Machine Learning: From Theory To Algorithms. Cambridge University Press., 2014. DOI: https://doi.org/10.1017/CBO9781107298019

[32] J. Ba and R. Caruana, “Do Deep Nets Really Need to be Deep?,” in Advances in Neural Information Processing Systems, Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K. Q. Weinberger, Eds., Curran Associates, Inc., 2014. Accessed: Apr. 09, 2025. [Online]. Available: https://proceedings.neurips.cc/paper_files/paper/2014/file/ea8fcd92d59581717e06eb187f10666d-Paper.pdf

[33] S. M. L. Lima et al., “Next-generation antivirus endowed with web-server Sandbox applied to audit fileless attack,” Soft Computing, vol. 27, no. 3, pp. 1471–1491, Feb. 2023, doi: 10.1007/s00500-022-07447-4. DOI: https://doi.org/10.1007/s00500-022-07447-4

[34] M. M. Mijwil, “Smart architectures: computerized classification of brain tumors from MRI images utilizing deep learning approaches,” Multimed Tools Appl, vol. 84, no. 5, pp. 2261–2292, Feb. 2025, doi: 10.1007/s11042-024-20349-x. DOI: https://doi.org/10.1007/s11042-024-20349-x

[35] F. Chollet, “Xception: Deep Learning with Depthwise Separable Convolutions,” 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, doi: 10.1109/CVPR.2017.195. DOI: https://doi.org/10.1109/CVPR.2017.195

[36] J. L. Patterson D. A. ,. Hennessy, Computer Organization and Design., 5th ed. Morgan Kaufmann, 2013.

[37] R. P. Pinheiro et al., “Antivirus applied to JAR malware detection based on runtime behaviors,” Scientific Reports, vol. 12, no. 1, p. 1945, Feb. 2022, doi: 10.1038/s41598-022-05921-5. DOI: https://doi.org/10.1038/s41598-022-05921-5

[38] M. M. dos Santos, A. G. da S. Filho, and W. P. dos Santos, Deep convolutional extreme learning machines: Filters combination and error model validation, vol. 329. 2019. doi: 10.1016/j.neucom.2018.10.063. DOI: https://doi.org/10.1016/j.neucom.2018.10.063

[39] C. Xiang, S. Q. Ding, and T. H. Lee, “Geometrical interpretation and architecture selection of MLP,” IEEE Transactions on Neural Networks, vol. 16, no. 1, pp. 84–96, 2005, doi: 10.1109/TNN.2004.836197. DOI: https://doi.org/10.1109/TNN.2004.836197

[40] G.-B. Huang, Y.-Q. Chen, and H. A. Babri, “Classification ability of single hidden layer feedforward neural networks,” IEEE Transactions on Neural Networks, vol. 11, no. 3, pp. 799–801, 2000, doi: 10.1109/72.846750. DOI: https://doi.org/10.1109/72.846750

[41] G.-B. Huang, H. Zhou, X. Ding, and R. Zhang, “Extreme Learning Machine for Regression and Multiclass Classification,” IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 42, no. 2, pp. 513–529, 2012, doi: 10.1109/TSMCB.2011.2168604. DOI: https://doi.org/10.1109/TSMCB.2011.2168604

[42] M. A. de Santana et al., “Breast cancer diagnosis based on mammary thermography and extreme learning machines,” Research on Biomedical Engineering, vol. 34, no. 1, pp. 45–53, Jan. 2018, doi: 10.1590/2446-4740.05217. DOI: https://doi.org/10.1590/2446-4740.05217

[43] M. Z. do Nascimento, A. S. Martins, L. A. Neves, R. P. Ramos, E. L. Flores, and G. A. Carrijo, “Classification of masses in mammographic image using wavelet domain features and polynomial classifier,” Expert Systems with Applications, vol. 40, no. 15, pp. 6213–6221, 2013, doi: https://doi.org/10.1016/j.eswa.2013.04.036. DOI: https://doi.org/10.1016/j.eswa.2013.04.036

[44] S. M. L. de Lima et al., Artificial intelligence-based antivirus in order to detect malware preventively, vol. 10. 2021. doi: 10.1007/s13748-020-00220-4. DOI: https://doi.org/10.1007/s13748-020-00220-4

[45] “XAI-Thermography.” 2023. Accessed: Apr. 10, 2025. [Online]. Available: https://github.com/Gabriel09BR/XAI-Thermography

[46] M. Kremer and R. Glennerster, “Chapter Four - Improving Health in Developing Countries: Evidence from Randomized Evaluations.,” in Handbook of Health Economics, vol. 2, M. V. Pauly, T. G. Mcguire, and P. P. Barros, Eds., in Handbook of Health Economics, vol. 2. , Elsevier, 2011, pp. 201–315. doi: 10.1016/B978-0-444-53592-4.00004-9. DOI: https://doi.org/10.1016/B978-0-444-53592-4.00004-9

[47] F. Alvaredo and L. Gasparini, “Chapter 9 - Recent Trends in Inequality and Poverty in Developing Countries,” in Handbook of Income Distribution, vol. 2, A. B. Atkinson and F. Bourguignon, Eds., in Handbook of Income Distribution, vol. 2. , Elsevier, 2015, pp. 697–805. doi: 10.1016/B978-0-444-59428-0.00010-2. DOI: https://doi.org/10.1016/B978-0-444-59428-0.00010-2

[48] “Instituto Brasileiro de Geografia e Estatística: Domicílios particulares ocupados em aglomerados subnormais e Média de moradores em domicílios particulares ocupados em aglomerados subnormais.” 2023. Accessed: Apr. 09, 2025. [Online]. Available: https://sidra.ibge.gov.br/tabela/3380

[49] E. T. Paulino, “The agricultural, environmental and socio-political repercussions of Brazil’s land governance system,” Land Use Policy, vol. 36, pp. 134–144, 2014, doi: https://doi.org/10.1016/j.landusepol.2013.07.009. DOI: https://doi.org/10.1016/j.landusepol.2013.07.009

[50] B. P. Reydon, V. B. Fernandes, and T. S. Telles, “Land tenure in Brazil: The question of regulation and governance,” Land Use Policy, vol. 42, pp. 509–516, 2015, doi: https://doi.org/10.1016/j.landusepol.2014.09.007. DOI: https://doi.org/10.1016/j.landusepol.2014.09.007

[51] “Organização Mundial da Saúde: Improving the quality and use of birth, death and cause-of-death information: guidance for a standards-based review of country practices,” ISBN: 9789241547970, 2010.

[52] “Food and Agriculture Organization of the United Nations - Organização das Nações Unidas para Alimentação e Agricultura)Developing Country Regions,” hspace0.10cm, 3AD.

[53] E. B. França et al., “Investigation of ill-defined causes of death: assessment of a program’s performance in a state from the Northeastern region of Brazil,” Rev Bras Epidemiol, vol. 17, no. 1, pp. 119–134, Jan. 2014. DOI: https://doi.org/10.1590/1415-790X201400010010ENG

[54] W. Zong, G.-B. Huang, and Y. Chen, “Weighted extreme learning machine for imbalance learning,” Neurocomputing, vol. 101, pp. 229–242, 2013, doi: https://doi.org/10.1016/j.neucom.2012.08.010. DOI: https://doi.org/10.1016/j.neucom.2012.08.010

Downloads

Published

2025-09-26

Issue

Section

Articles

How to Cite

BARRETO, Gabriel Luiz Limeira; DE LIMA, Sidney Marlon Lopes. DETECTION AND CLASSIFICATION OF BREAST LESIONS IN BIOMEDICAL IMAGES IN AN EXPLAINABLE WAY. ARACÊ , [S. l.], v. 7, n. 9, p. e8436, 2025. DOI: 10.56238/arev7n9-289. Disponível em: https://periodicos.newsciencepubl.com/arace/article/view/8436. Acesso em: 5 dec. 2025.