PHOSPHORUS BIOAVAILABILITY IN AMAZONIAN AGROFORESTRY SYSTEMS: A STUDY OF LABILE AND MODERATELY LABILE FRACTIONS
DOI:
https://doi.org/10.56238/arev7n9-187Keywords:
Soil Management, Amazonian Agriculture, Agroecology, Oil Palm DiversificationAbstract
Phosphorus (P) is one of the most restrictive nutrients for agricultural production in the tropics. In the Amazon, the low availability of this element significantly limits family farming. Agroforestry Systems (AFS) have emerged as a sustainable and lower-cost alternative for supplying and maintaining P reserves in Amazonian soils. However, there is still a lack of information on how AFS influence P distribution and lability in this environment. This study sought to evaluate the labile and moderately labile P fractions (organic and inorganic) in soils cultivated with oil palm (Elaeis guineensis) within two organic AFSs with distinct plant compositions. P fractions were determined by sequential extraction. The results revealed that, although AFS did not differ from conventional cultivation in terms of labile P supply, they promoted a 20% increase in moderately labile P compared to monoculture. The adoption of organic AFS in oil palm cultivation in the Amazon represents a promising strategy for both immediate P input and soil reserve maintenance.
Downloads
References
AKINNIFESI, F. K.; MAKUMBA, W.; SILESHI, G.; AJAYI, O. C.; MWETA, D. Synergistic effect of inorganic N and P fertilizers and organic inputs from Gliricidia sepium on productivity of intercropped maize in Southern Malawi. Plant and Soil, v. 294, n. 1–2, p. 203–217, 2007. DOI: https://doi.org/10.1007/s11104-007-9247-z
BACKHOUSE, M., GREEN GRABBING — the case of palm oil expansion in so-called degraded areas in the eastern Brazilian Amazon. In: Dietz, K., Engels, B., Pye, O., Brunnengraber, A. (Eds.), The Political Ecology of Agrofuels. Routledge, Abingdon, p. 167–185. 2015. DOI: https://doi.org/10.4324/9781315795409-10
BAENA, A. R. C.; FALESI, I. C. Avaliação do potencial químico e físico dos solos sob diversos sistemas de uso da terra na Colônia Agrícola de Tomé-Açu, Estado do Pará. Belém: Embrapa Amazônia Oriental, 1999. 23 p.BÜNEMANN, E.; OBERSON, A.; FROSSARD, E. (org.). Phosphorus in Action: Biological Processes in Soil Phosphorus Cycling. Heidelberg: Springer, 2011.
CONDRON, L.M.; GOH, K.M.; NEWMAN, R.H. Nature and distribution of soil phosphorus as revealed by a sequential extraction method followed by 31P-NMR analysis. Journal of Soil Science,v.36, p.199-207, 1985. DOI: https://doi.org/10.1111/j.1365-2389.1985.tb00324.x
CÓRDOBA, D., et al. Understanding Local Perceptions of the Impacts of Large-Scale Oil Palm Plantations on Ecosystem Services in the Brazilian Amazon. Forest Policy and Economics, v. 109. dez. 2019. Doi:10.1016/j.forpol.2019.102007. DOI: https://doi.org/10.1016/j.forpol.2019.102007
EMPRESA BRASILEIRA DE PESQUISA AGROPECUÁRIA - EMBRAPA. Manual de análises químicas de solos, plantas e fertilizantes. 3 ed. Brasília: Informação Tecnológica, 2017. 628 p.
FONTES, A. G.; GAMA-RODRIGUES, A. C.; GAMA-RODRIGUES, E. F.; et al. Nutrient stocks in litterfall and litter in cocoa agroforests in Brazil. Plant and Soil, v. 383, n. 1–2, p. 313–335, 2014. DOI: https://doi.org/10.1007/s11104-014-2175-9
HEDLEY, M. J.; STEWART, J. W. B.; CHAUHAN, B. S. Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations. Soil Science Society of American Journal, Madison, v 46, p. 970-976, 1982. DOI: https://doi.org/10.2136/sssaj1982.03615995004600050017x
MCGRATH, D. A.; COMERFORD, N. B.; DURYEA, M. L. Litter dynamics and monthly fluctuations in soil phosphorus availability in an Amazonian agroforest. Forest Ecology and Management, v. 131, n. 1–3, p. 167–181, 2000. DOI: https://doi.org/10.1016/S0378-1127(99)00207-8
MCGRATH, D. A.; SMITH, C. K.; GHOLZ, H. L.; OLIVEIRA, F. DE A. Effects of Land-Use Change on Soil Nutrient Dynamics in Amazônia. Ecosystems, v. 4, n. 7, p. 625–645, 2001. DOI: https://doi.org/10.1007/s10021-001-0033-0
NZIGUHEBA, G.; et al. Phosphorus in smallholder frming systems ofsub-Saharan Africa: implications for agricultural intensification. Nutr. Cycl.Agroecosyst. v. 104, p. 321–340, 2016. DOI: https://doi.org/10.1007/s10705-015-9729-y
PACHECO N.A; BASTOS T.X. Frequência diária de chuva em Tomé-Açú, PA. São Paulo, 2008.
PHOSRI, C.; RODRIGUEZ, A.; SANDERS, I. R.; JEFFRIES, P. The role of mycorrhizas in more sustainable oil palm cultivation. Agriculture, Ecosystems & Environment. v. 135. n.3. p. 187-193. 2010. Doi: 10.1016/j.agee.2009.09.006. DOI: https://doi.org/10.1016/j.agee.2009.09.006
ROY, E. Phosphorus recovery and recycling with ecological engineering: a review. Ecological engineering, v. 98, p. 213-227, 2016. DOI: https://doi.org/10.1016/j.ecoleng.2016.10.076
SCHOLZ, R. W.; ROY, A. H.; BRAND, F. S.; HELLUMS, D. T.; ULRICH, A. E. (ORGS.). Sustainable Phosphorus Management. Dordrecht: Springer Netherlands, 2014. DOI: https://doi.org/10.1007/978-94-007-7250-2
WITHERS, P. et al. Transitions to sustainable management of phosphorus in brazilian agriculture. Scientific reports, v. 8, p. 1, 2018. DOI: https://doi.org/10.1038/s41598-018-20887-z
VIJAY, V., PIMM, S., JENKINS, C., SMITH, S., The impacts of oil palm on recent deforestation and biodiversity loss. PLoS One 11 v. 7. 2016. DOI: https://doi.org/10.1371/journal.pone.0159668
