FIRE RISK ALERT SYSTEM IN THE PANTANAL WITH FORECASTS UP TO 3 DAYS IN THE FUTURE
DOI:
https://doi.org/10.56238/arev7n9-142Keywords:
Fire, Information System, Risk Prediction, PantanalAbstract
In the Pantanal, located in the states of Mato Grosso do Sul and Mato Grosso, several fires occur every year. Prolonged drought, dry organic matter, and sparks or fire can cause fires of varying magnitude. To aid in firefighting in the Pantanal, a web-based fire prediction system called Saripan was developed. This system previously predicted the fire risk for each municipality in the Pantanal region up to the present day. However, in its new version, the system can now predict fire risk up to three days in the future with a high probability of accuracy. This is thanks to a system that predicts climate data using a machine learning algorithm based on at least 20 years of daily historical climate data. With this data, the system learned how climate data varies over time for the municipalities in the Pantanal region. Thus, using predicted climate data and used to calculate fire risk, the Saripan system can predict fire risk for up to three days in the future in any municipality in the Pantanal. This paper describes this system, Saripan, which predicts fire risk for up to three days from the current day, with a good accuracy rate of around 90%.
Downloads
References
AGRI. Agritempo. Disponível em https://www.agritempo.gov.br/. Acessado em: Ago, 2025.
DUARTE, Adriana. MySQL: guia prático. São Paulo: Novatec, 2019.
DUCKETT, Jon. HTML e CSS: projete e construa websites. Rio de Janeiro: Alta Books, 2014.
INMET. Instituto Nacional de Meteorologia. Disponível em https://portal.inmet.gov.br/. Acessado em: Ago, 2025.
FLANAGAN, David. JavaScript: o guia definitivo. 6. ed. Porto Alegre: Bookman, 2013.
GOOGLE. Google Maps. Disponível em: https://maps.google.com. Acessado em: Ago, 2025.
HERE TECHNOLOGIES. HERE WeGo Maps. Disponível em: https://wego.here.com. Acessado em: Ago, 2025.
HILLER, Fábio. Python para desenvolvedores. São Paulo: Casa do Código, 2018.
LEAFLET. An open-source JavaScript library for mobile-friendly interactive maps. Disponível em https://leafletjs.com/examples/quick-start/. Acessado em: Ago, 2025.
LOURIÉ, David Sklar. Aprendendo PHP. 5. ed. São Paulo: Novatec, 2017.
NASA. NASA Prediction Of Worldwide Energy Resources (POWER). Disponível em https://power.larc.nasa.gov. Acessado em: Ago, 2025.
SANTOS, B. Z.; SORIANO, B. M. A.; NARCISO, M. G.; SILVA, D. F.; CERRI, R. A new time series framework for forest fire risk forecasting and classification. In: INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2023, Queensland, Australia. Proceedings. Illinois: International Neural Network Society, 2023. DOI: https://doi.org/10.1109/IJCNN54540.2023.10191502
URL: https://ieeexplore.ieee.org/document/10191502
SORIANO, B. M. A.; Daniel, O.; SANTOS, S. A. Eficiência de Índices de Risco de Incêndios para o Pantanal Sul-Mato-Grossense. Revista Ciência Floresta, v. 25, n 4, 2016. DOI: https://doi.org/10.5902/1980509820231. DOI: https://doi.org/10.5902/1980509820231
URL: https://periodicos.ufsm.br/cienciaflorestal/issue/view/791
UNESCO. Organização das Nações Unidas para a Educação, a Ciência e a Cultura. Disponível em: https://www.unesco.org/. Acessado em: Ago, 2025.
