HIV, FOR AN ETHICS OF CURE: AN ANALYSIS OF THE BIOETHICAL ASPECTS OF CURRENT RESEARCH WITH HIV AND CRISPR-CAS9
DOI:
https://doi.org/10.56238/arev7n9-061Keywords:
Bioethics, Integrative Review, Access to Health, CRISPR-Cas9Abstract
The search for a cure for HIV infection remains ongoing. Although conventional methods do not eradicate the virus, they allow people living with HIV to have a better quality of life, provided they correctly follow their medication treatment. With the advancement of biotechnology and genetic engineering, especially through the CRISPR-Cas9 technique, new therapeutic possibilities have been explored. This study conducted an integrative review and bioethical analysis of current research aimed at a functional cure for HIV through genetic manipulation of the human genome. Using the PubMed database, 115,538 articles with the descriptor "HIV" were identified; including "CRISPR" yielded 444 results, and adding "cure" yielded 83, of which 80 were analyzed after exclusions due to thematic irrelevance. The research highlighted the development of HIV control methods and associated bioethical violations, such as lack of representation, failures in informed consent, and unequal access to treatments. The conclusion is that, despite the potential of CRISPR-Cas9 technology, significant ethical concerns persist. Interventional bioethics, based on the principles of prudence, protection, precaution, and prevention, should guide this research. Equitable access and the involvement of the pharmaceutical industry are essential to ensuring ethical and inclusive advances, fostering an ongoing dialogue between science and bioethics.
Downloads
References
AGBOSU, E. et al. Targeted nanocarrier delivery of RNA therapeutics to control HIV infection. Pharmaceutics, [S.l.], v. 14, n. 7, p. 1352, 2022. DOI: 10.3390/pharmaceutics14071352.
AHLENSTIEL, C. L. et al. Block and lock HIV cure strategies to control the latent reservoir. Frontiers in Cellular and Infection Microbiology, [S.l.], v. 10, p. 424, 2020. DOI: 10.3389/fcimb.2020.00424.
AKKINA, R. New generation humanized mice for virus research: comparative aspects and future prospects. Virology, [S.l.], v. 479-480, p. 46-53, 2016. DOI: 10.1016/j.virol.2015.12.006.
ALBANESE, M. et al. Rapid, efficient and activation-neutral gene editing of polyclonal primary human resting CD4+ T cells allows complex functional analyses. Nature Methods, [S.l.], v. 19, n. 1, p. 81-89, 2022. DOI: 10.1038/s41592-021-01328-8.
ALLEN, A. et al. Gene editing of HIV-1 co-receptors to prevent and/or cure virus infection. Frontiers in Microbiology, [S.l.], v. 9, p. 2940, 2018. DOI: 10.3389/fmicb.2018.02940.
ANANWORANICH, J.; ROBB, M. L. The transient HIV remission in the Mississippi baby: why is this good news? Journal of the International AIDS Society, [S.l.], v. 17, 2014. DOI: 10.7448/IAS.17.1.19859.
ANLIKER, B. et al. Regulatory considerations for clinical trial applications with CRISPR-based medicinal products. The CRISPR Journal, [S.l.], v. 5, n. 3, p. 364-376, 2022. DOI: 10.1089/crispr.2022.0012.
ARTESI, M. et al. PCIP-seq: simultaneous sequencing of integrated viral genomes and their insertion sites with long reads. Genome Biology, [S.l.], v. 22, n. 1, p. 97, 2021. DOI: 10.1186/s13059-021-02307-0.
ATKINS, A. J. et al. HIV-1 cure strategies: why CRISPR? Expert Opinion on Biological Therapy, [S.l.], v. 21, n. 6, p. 781-793, 2021. DOI: 10.1080/14712598.2021.1865302.
BAKER, B. K. The TRIPS Agreement, access to HIV/AIDS pharmaceuticals, and the roles of the World Trade Organization, UNAIDS and WHO. AIDS and Intellectual Property Law, [S.l.], 2008.
BARDIN, L. Análise de conteúdo. Lisboa: Edições 70, 1977.
BAROUCH, D. H. et al. Vaccine protection against acquisition of neutralization-resistant SIV challenges in rhesus monkeys. Nature, [S.l.], v. 482, p. 89-93, 2012. DOI: 10.1038/nature10766.
BBC NEWS. China condena a três anos de cárcel ao polêmico cientista que realizou a primeira modificação genética de bebês. 2019. Disponível em: https://www.bbc.com/mundo/noticias-50948086. Acesso em: 4 set. 2025.
BEAUCHAMP, T. L.; CHILDRESS, J. F. Princípios de ética biomédica. São Paulo: Loyola, 2002.
BENATAR, S. R. Global health ethics: the rationale for mutual caring. International Affairs, [S.l.], v. 79, n. 1, p. 107-138, 2003. DOI: 10.1111/1468-2346.00298.
BUSMAN-SAHAY, K. et al. Eliminating HIV reservoirs for a cure: the issue is in the tissue. Current Opinion in HIV and AIDS, [S.l.], v. 16, n. 4, p. 200-208, 2021. DOI: 10.1097/COH.0000000000000688.
CARVALHO, P. et al. Fatores associados à adesão à terapia antirretroviral em adultos: revisão integrativa de literatura. Ciência & Saúde Coletiva, Rio de Janeiro, v. 24, n. 7, p. 2543-2555, 2019. DOI: 10.1590/1413-81232018247.25332017.
CHAO, T.-C. et al. The long noncoding RNA HEAL regulates HIV-1 replication through epigenetic regulation of the HIV-1 promoter. mBio, [S.l.], v. 10, n. 5, e02016-19, 2019. DOI: 10.1128/mBio.02016-19.
CHARLESWORTH, C. T. et al. Identification of preexisting adaptive immunity to Cas9 proteins in humans. Nature Medicine, [S.l.], v. 25, n. 2, p. 249-254, 2019. DOI: 10.1038/s41591-018-0326-x.
CHNEEGANS, S.; LEWIS, J.; STRAZA, T. (Eds.). Relatório de ciências da UNESCO: a corrida contra o tempo por um desenvolvimento mais inteligente - resumo executivo. Paris: UNESCO Publishing, 2021.
CHOMONT, N. Silence, escape and survival drive the persistence of HIV. Nature, [S.l.], v. 614, n. 7947, p. 236-237, 2023. DOI: 10.1038/d41586-023-00247-8.
CHRISTENSEN, K. D. et al. Assessing the costs and cost-effectiveness of genomic sequencing. Journal of Personalized Medicine, [S.l.], v. 5, n. 4, p. 470-486, 2015. DOI: 10.3390/jpm5040470.
CHUN, T.-W. et al. Quantification of latent tissue reservoirs and total body viral load in HIV-1 infection. Nature, [S.l.], v. 387, n. 6629, p. 183-188, 1997. DOI: 10.1038/387183a0.
CHUNG, C. H. et al. Safe CRISPR-Cas9 inhibition of HIV-1 with high specificity and broad-spectrum activity by targeting LTR NF-κB binding sites. Molecular Therapy - Nucleic Acids, [S.l.], v. 21, p. 965-982, 2020. DOI: 10.1016/j.omtn.2020.07.033.
CHUPRADIT, K. et al. Validation of promoters and codon optimization on CRISPR/Cas9-engineered jurkat cells stably expressing αRep4E3 for interfering with HIV-1 replication. International Journal of Molecular Sciences, [S.l.], v. 23, n. 23, p. 15049, 2022. DOI: 10.3390/ijms232315049.
COHEN, M. S. et al. Prevention of HIV-1 infection with early antiretroviral therapy. New England Journal of Medicine, [S.l.], v. 365, p. 493-505, 2011. DOI: 10.1056/NEJMoa1105243.
CONG, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science, [S.l.], v. 339, p. 819-823, 2013. DOI: 10.1126/science.1231143.
COSTA, R. B.; LIMA, E. F. Ética e segurança na edição genética: implicações da tecnologia CRISPR-Cas9. Revista de Bioética e Direito, [S.l.], n. 46, p. 77-98, 2024. DOI: [inserir DOI, se disponível].
DA COSTA, L. C. et al. Repression of HIV-1 reactivation mediated by CRISPR/dCas9-KRAB in lymphoid and myeloid cell models. Retrovirology, [S.l.], v. 19, n. 1, p. 12, 2022. DOI: 10.1186/s12977-022-00597-4.
DAI, W. et al. Genome-wide CRISPR screens identify combinations of candidate latency reversing agents for targeting the latent HIV-1 reservoir. Science Translational Medicine, [S.l.], v. 14, n. 667, eabh3351, 2022. DOI: 10.1126/scitranslmed.abh3351.
DAMPIER, W. et al. HIV excision utilizing CRISPR/Cas9 technology: attacking the proviral quasispecies in reservoirs to achieve a cure. MOJ Immunology, [S.l.], v. 1, n. 4, p. 00022, 2014. DOI: 10.15406/moji.2014.01.00022.
DARCI, G. et al. The impact of HIV-1 genetic diversity on CRISPR-Cas9 antiviral activity and viral escape. Viruses, [S.l.], v. 11, n. 3, p. 255, 2019. DOI: 10.3390/v11030255.
DASH, P. K. et al. CRISPR editing of CCR5 and HIV-1 facilitates viral elimination in antiretroviral drug-suppressed virus-infected humanized mice. Proceedings of the National Academy of Sciences, [S.l.], v. 120, n. 19, e2217887120, 2023. DOI: 10.1073/pnas.2217887120.
DASH, P. K. et al. Sequential LASER ART and CRISPR treatments eliminate HIV-1 in a subset of infected humanized mice. Nature Communications, [S.l.], v. 10, 2753, 2019. DOI: 10.1038/s41467-019-10366-y.
DOUDNA, J. A.; CHARPENTIER, E. The new frontier of genome engineering with CRISPR-Cas9. Science, [S.l.], v. 346, n. 6213, 2014. DOI: 10.1126/science.1258096.
DRACHLER, M. L. et al. The scale of self-efficacy expectations of adherence to antiretroviral treatment: a tool for identifying risk for non-adherence to treatment for HIV. PLoS ONE, [S.l.], v. 11, n. 2, e0147443, 2016. DOI: 10.1371/journal.pone.0147443.
DRAKE, M. J.; BATES, P. Application of gene-editing technologies to HIV-1. Current Opinion in HIV and AIDS, [S.l.], v. 10, n. 2, p. 123-127, 2015. DOI: 10.1097/COH.0000000000000134.
DUBÉ, K. et al. Ethical and practical considerations for cell and gene therapy toward an HIV cure: findings from a qualitative in-depth interview study in the United States. BMC Medical Ethics, [S.l.], v. 23, n. 39, 2022. DOI: 10.1186/s12910-022-00780-8.
EPSTEIN, S. Impure science: AIDS, activism, and the politics of knowledge. Berkeley: University of California Press, 1996.
FALCINELLI, S. D. et al. Combined noncanonical NF-κB agonism and targeted BET bromodomain inhibition reverse HIV latency ex vivo. Journal of Clinical Investigation, [S.l.], v. 132, n. 8, e157281, 2022. DOI: 10.1172/JCI157281.
FAN, M.; BERKHOUT, B.; HERRERA-CARRILLO, E. A combinatorial CRISPR-Cas12a attack on HIV DNA. Molecular Therapy - Methods & Clinical Development, [S.l.], v. 25, p. 43-51, 2022. DOI: 10.1016/j.omtm.2022.02.006.
FISCHER, M. L.; ROSANELI, C. F.; LUMMERTZ, T. B.; SGANZERLA, A. Brumadinho: o que eu tenho a ver com isso?: a bioética ambiental como instrumento de cidadania. InterEspaço: Revista de Geografia e Interdisciplinaridade, [S.l.], p. e202221, 2022. DOI: 10.18766/2446-6549/interespaco.v8n1p1-19.
FLEXNER, C. et al. HIV drug development: the next 25 years. Nature Reviews Drug Discovery, [S.l.], v. 17, p. 705-726, 2007. DOI: 10.1038/nrd2336.
GARRAFA, V. Da bioética de princípios a uma bioética interventiva. Revista Bioética, [S.l.], v. 13, n. 1, p. 125-134, 2005.
GUPTA, P. K.; SAXENA, A. HIV/AIDS: current updates on the disease, treatment and prevention. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, [S.l.], v. 91, n. 3, p. 495-510, 2021. DOI: 10.1007/s40011-021-01237-7.
GUPTA, R. M.; MUSUNURU, K. Expanding the genetic editing tool kit: ZFNs, TALENs, and CRISPR-Cas9. Journal of Clinical Investigation, [S.l.], v. 124, n. 10, p. 4154-4161, 2014. DOI: 10.1172/JCI72992.
HENDERSON, L. J. et al. Advances toward curing HIV-1 infection in tissue reservoirs. Journal of Virology, [S.l.], v. 94, n. 3, e00375-19, 2020. DOI: 10.1128/JVI.00375-19.
HENDRIKS, S. et al. Reasons for being in favour of or against genome modification: a survey of the Dutch general public. Human Reproduction Open, [S.l.], v. 3, n. 1, p. 1-12, 2018. DOI: 10.1093/hropen/hoy008.
HENRICH, T. J. et al. Antiretroviral-free HIV-1 remission and viral rebound after allogeneic stem cell transplantation: report of 2 cases. Annals of Internal Medicine, [S.l.], v. 161, p. 319-327, 2014. DOI: 10.7326/M14-1027.
HERRERA-CARRILLO, E.; GAO, Z.; BERKHOUT, B. CRISPR therapy towards an HIV cure. Briefings in Functional Genomics, [S.l.], v. 19, n. 3, p. 201-208, 2020. DOI: 10.1093/bfgp/elz039.
HERSKOVITZ, J. et al. CRISPR-Cas9 mediated exonic disruption for HIV-1 elimination. EBioMedicine, [S.l.], v. 73, 103678, 2021. DOI: 10.1016/j.ebiom.2021.103678.
HOEN, E. 't; BERGER, J.; CALMY, A.; MOON, S. Driving a decade of change: HIV/AIDS, patents and access to medicines for all. Journal of the International AIDS Society, [S.l.], v. 14, n. 1, p. 15, 2011. DOI: 10.1186/1758-2652-14-15.
HORVATH, P.; BARRANGOU, R. CRISPR/Cas, the immune system of bacteria and archaea. Science, [S.l.], v. 327, n. 5962, p. 167-170, 2010. DOI: 10.1126/science.1179555.
HOU, P. Editing of CXCR4 by CRISPR/Cas9 confers cells resistant to HIV-1 infection. Scientific Reports, [S.l.], v. 5, 15577, 2015. DOI: 10.1038/srep15577.
HUANG, Z.; NAIR, M. A CRISPR/Cas9 guidance RNA screen platform for HIV provirus disruption and HIV/AIDS gene therapy in astrocytes. Scientific Reports, [S.l.], v. 7, 5955, 2017. DOI: 10.1038/s41598-017-06269-x.
HULTQUIST, J. F. et al. A Cas9 ribonucleoprotein platform for functional genetic studies of HIV-host interactions in primary human T cells. Cell Reports, [S.l.], v. 17, n. 5, p. 1438-1452, 2016. DOI: 10.1016/j.celrep.2016.09.087.
HUSSEIN, M. et al. A CRISPR-Cas cure for HIV/AIDS. International Journal of Molecular Sciences, [S.l.], v. 24, n. 2, p. 1563, 2023. DOI: 10.3390/ijms24021563.
HUTTER, G. et al. Long-term control of HIV by CCR5 Δ32/Δ32 stem-cell transplantation. New England Journal of Medicine, [S.l.], v. 360, n. 7, p. 692-698, 2009. DOI: 10.1056/NEJMoa0802905.
IHRY, R. J. et al. p53 inhibits CRISPR-Cas9 engineering in human pluripotent stem cells. Nature Medicine, [S.l.], v. 24, n. 7, p. 939-946, 2018. DOI: 10.1038/s41591-018-0050-6.
IMRAN, M. et al. Modern biotechnology-based therapeutic approaches against HIV infection. Biomedical Reports, [S.l.], v. 7, n. 6, p. 504-507, 2017. DOI: 10.3892/br.2017.1006.
INNOVATIVE GENOMICS INSTITUTE. Paying for CRISPR cures: the economics of genetic therapies. 2022. Disponível em: https://innovativegenomics.org/news/paying-for-crispr-cures/. Acesso em: 4 set. 2025.
JANSSENS, J. et al. CRISPR/Cas9-induced mutagenesis corroborates the role of Transportin-SR2 in HIV-1 nuclear import. Microbiology Spectrum, [S.l.], v. 9, n. 2, e01336-21, 2021. DOI: 10.1128/Spectrum.01336-21.
JEROME, K. R. Disruption or excision of provirus as an approach to HIV cure. AIDS Patient Care and STDs, [S.l.], v. 30, n. 12, p. 551-555, 2016. DOI: 10.1089/apc.2016.0172.
JIANKUI, H. et al. Draft ethical principles for therapeutic assisted reproductive technologies. The CRISPR Journal, [S.l.], v. 1, n. 6, p. 4-6, 2018. DOI: 10.1089/crispr.2018.0051.
JINEK, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, [S.l.], v. 337, n. 6096, p. 816-821, 2012. DOI: 10.1126/science.1225829.
JONAS, H. O princípio responsabilidade: ensaio de uma ética para a tecnologia civilizacional. Tradução de Marijane Lisboa e Luiz Barros Montez. Rio de Janeiro: Contraponto; Ed. PUC-Rio, 2006.
JOUNG, J. K.; SANDER, J. D. TALENs: a widely applicable technology for targeted genome editing. Nature Reviews Molecular Cell Biology, [S.l.], v. 14, n. 1, p. 49-55, 2013. DOI: 10.1038/nrm3486.
KALIDASAN, V.; THEVA, D. K. Lessons learned from failures and success stories of HIV breakthroughs: are we getting closer to an HIV cure? Frontiers in Microbiology, [S.l.], v. 11, p. 46, 2020. DOI: 10.3389/fmicb.2020.00046.
KANDULA, U. R.; WAKE, A. D. Promising stem cell therapy in the management of HIV and AIDS: a narrative review. Biologics, [S.l.], v. 16, p. 89-105, 2022. DOI: 10.2147/BTT.S349131.
KHALILI, K. et al. CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein & Cell, [S.l.], v. 6, n. 5, p. 363-372, 2015a. DOI: 10.1007/s13238-015-0153-5.
KHALILI, K. et al. Genome editing strategies: potential tools for eradicating HIV-1/AIDS. Journal of Neurovirology, [S.l.], v. 21, n. 3, p. 310-321, 2015b. DOI: 10.1007/s13365-015-0341-y.
KHALILI, K.; WHITE, M. K.; JACOBSON, J. M. Novel AIDS therapies based on gene editing. Cellular and Molecular Life Sciences, [S.l.], v. 74, n. 13, p. 2439-2450, 2017. DOI: 10.1007/s00018-017-2479-5.
KLATZMANN, D. et al. T-lymphocyte T4 molecule behaves as the receptor for human retrovirus LAV. Nature, [S.l.], v. 312, p. 767-768, 1984. DOI: 10.1038/312767a0.
KLITZMAN, R.; BAYER, R. Mortal secrets: truth and lies in the age of AIDS. Baltimore: Johns Hopkins University Press, 2003.
KORDELAS, L.; VERHEYEN, J.; ESSER, S. Shift of HIV tropism in stem-cell transplantation with CCR5 Delta32 mutation. New England Journal of Medicine, [S.l.], v. 371, p. 880-882, 2014. DOI: 10.1056/NEJMc1405805.
LEBBINK, R. J. et al. Combinational CRISPR/Cas9 gene-editing approach can halt HIV replication and prevent viral escape. Scientific Reports, [S.l.], v. 7, 41968, 2017. DOI: 10.1038/srep41968.
LIMA, K. L.; MORAES, L. M. Transparência e responsabilidade no desenvolvimento de medicamentos: o caso do HIV. Políticas Públicas em Saúde, [S.l.], v. 14, n. 4, p. 610-629, 2023.
LIU, Z. et al. Genome editing of the HIV co-receptors CCR5 and CXCR4 by CRISPR-Cas9 protects CD4+ T cells from HIV-1 infection. Cell & Bioscience, [S.l.], v. 7, p. 47, 2017. DOI: 10.1186/s13578-017-0174-5.
LUNDGREN, J. D. et al. Initiation of antiretroviral therapy in early asymptomatic HIV infection. New England Journal of Medicine, [S.l.], v. 373, n. 9, p. 795-807, 2015. DOI: 10.1056/NEJMoa1506816.
MAGRO, G.; CALISTRI, A.; PAROLIN, C. Targeting and understanding HIV latency: the CRISPR system against the provirus. Pathogens, [S.l.], v. 10, n. 10, p. 1257, 2021. DOI: 10.3390/pathogens10101257.
MAINA, E. K. et al. A review of current strategies towards the elimination of latent HIV-1 and subsequent HIV-1 cure. Current HIV Research, [S.l.], v. 19, n. 1, p. 14-26, 2021. DOI: 10.2174/1570162X18666200810104524.
MARTINS, C. D.; FERREIRA, D. E. Comparação da eficiência no desenvolvimento de fármacos entre empresas de biotecnologia e instituições públicas. Journal of Health Economics, [S.l.], v. 22, n. 4, p. 567-586, 2022.
MEHMETOGLU-GURBUZ, T. et al. Combination gene therapy for HIV using a conditional suicidal gene with CCR5 knockout. Virology Journal, [S.l.], v. 18, n. 1, p. 31, 2021. DOI: 10.1186/s12985-021-01500-3.
METZL, J. F. Hackeando Darwin: engenharia genética e o futuro da humanidade. Tradução de Renato Cardozo. São Paulo: Faro Editorial, 2020.
MEYER-RATH, G.; OVER, M. HIV treatment as prevention: modelling the cost of antiretroviral treatment—state of the art and future directions. PLoS Medicine, [S.l.], v. 9, n. 7, e1001247, 2012. DOI: 10.1371/journal.pmed.1001247.
MINISTÉRIO DA SAÚDE (BRASIL). Conselho Nacional de Saúde. Resolução nº 466, de 12 de dezembro de 2012. Dispõe sobre diretrizes e normas regulamentadoras de pesquisas envolvendo seres humanos. Diário Oficial da União, Brasília, 13 jun. 2013.
MORANGUINHO, I.; VALENTE, S. T. Block-and-lock: new horizons for a cure for HIV-1. Viruses, [S.l.], v. 12, n. 12, p. 1443, 2020. DOI: 10.3390/v12121443.
MUSUNURU, K. The CRISPR generation: the story of the world’s first gene-edited babies. New Jersey: BookBaby, 2019.
NERYS-JUNIOR, A. et al. Comparison of the editing patterns and editing efficiencies of TALEN and CRISPR-Cas9 when targeting the human CCR5 gene. Genetics and Molecular Biology, [S.l.], v. 41, n. 1, p. 167-179, 2018. DOI: 10.1590/1678-4685-GMB-2017-0065.
NGUYEN, K. et al. Multiple histone lysine methyltransferases are required for the establishment and maintenance of HIV-1 latency. mBio, [S.l.], v. 8, n. 1, e00133-17, 2017. DOI: 10.1128/mBio.00133-17.
NOHAMA, N. et al. CRISPR e edição genômica: técnica, bioética e controvérsias. Ponta Grossa: Atena, 2023.
OPHINNI, Y. et al. Multiplexed tat-targeting CRISPR-Cas9 protects T cells from acute HIV-1 infection with inhibition of viral escape. Viruses, [S.l.], v. 12, n. 11, p. 1223, 2020. DOI: 10.3390/v12111223.
ORGANIZAÇÃO PARA COOPERAÇÃO ECONÔMICA E DESENVOLVIMENTO (OCDE). Key biotechnology indicators. Paris, 2012. Disponível em: https://www.oecd.org/sti/inno/keybiotechnologyindicators.htm. Acesso em: 4 set. 2025.
PACKARD, T. A. et al. CCL2: a chemokine potentially promoting early seeding of the latent HIV reservoir. mBio, [S.l.], v. 13, n. 5, e01891-22, 2022. DOI: 10.1128/mbio.01891-22.
PATEL, S. et al. T-cell therapies for HIV: preclinical successes and current clinical strategies. Cytotherapy, [S.l.], v. 18, n. 8, p. 931-942, 2016. DOI: 10.1016/j.jcyt.2016.04.007.
PEDERSEN, S. F. et al. Inhibition of a chromatin and transcription modulator, SLTM, increases HIV-1 reactivation identified by a CRISPR inhibition screen. Journal of Virology, [S.l.], v. 96, n. 13, e00577-22, 2022. DOI: 10.1128/jvi.00577-22.
PERNET, O.; YADAV, S. S. Stem cell-based therapies for HIV/AIDS. Advanced Drug Delivery Reviews, [S.l.], v. 103, p. 187-201, 2016. DOI: 10.1016/j.addr.2016.04.027.
PETER, L.; WOLFE, S. M. Unethical trials of interventions to reduce perinatal transmission of the human immunodeficiency virus in developing countries. New England Journal of Medicine, [S.l.], v. 337, n. 12, p. 853-856, 1997. DOI: 10.1056/NEJM199709183371212.
PETERSON, T. A.; MACLEAN, A. G. Current and future therapeutic strategies for lentiviral eradication from macrophage reservoirs. Journal of Neuroimmune Pharmacology, [S.l.], v. 14, n. 1, p. 68-93, 2019. DOI: 10.1007/s11481-018-9814-4.
PHAM, H. T.; MESPLÈDE, T. The latest evidence for possible HIV-1 curative strategies. Drugs in Context, [S.l.], v. 7, 212522, 2018. DOI: 10.7573/dic.212522.
PLUTA, A.; JAWORSKI, J.; CORTÉS-RUBIO, C. Balance between retroviral latency and transcription: based on HIV model. Pathogens, [S.l.], v. 10, n. 1, p. 16, 2020. DOI: 10.3390/pathogens10010016.
POTTER, V. R. Bioethics: bridge to the future. Englewood Cliffs: Prentice-Hall, 1971.
QU, D. et al. The variances of Sp1 and NF-κB elements correlate with the greater capacity of Chinese HIV-1 B’-LTR for driving gene expression. Scientific Reports, [S.l.], v. 6, 34532, 2016. DOI: 10.1038/srep34532.
RACITI, C. G. et al. Ethical considerations for research involving pregnant women living with HIV and their young children: a systematic review of the empiric literature and discussion. BMC Medical Ethics, [S.l.], v. 22, n. 1, p. 38, 2021. DOI: 10.1186/s12910-021-00601-2.
RATHORE, A. et al. CRISPR-based gene knockout screens reveal deubiquitinases involved in HIV latency in two Jurkat cell models. Scientific Reports, [S.l.], v. 10, n. 1, p. 5350, 2020. DOI: 10.1038/s41598-020-62335-9.
REUST, C. Common adverse effects of antiretroviral therapy for HIV disease. American Family Physician, [S.l.], v. 83, n. 12, p. 1443-1451, 2011.
ROSANELI, C. F. et al. O legado ético no enfrentamento da pandemia COVID-19: a sinergia entre a perspectiva global e a identidade regional. HOLOS, [S.l.], v. 4, p. 1-19, 2021. DOI: 10.15628/holos.2021.11146.
ROYCHOUDHURY, P. et al. Viral diversity is an obligate consideration in CRISPR/Cas9 designs for targeting the HIV reservoir. BMC Biology, [S.l.], v. 16, n. 1, p. 75, 2018. DOI: 10.1186/s12915-018-0544-1.
RUTISHAUSER, R. L. et al. TCF-1 regulates HIV-specific CD8+ T cell expansion capacity. JCI Insight, [S.l.], v. 6, n. 3, e136648, 2021. DOI: 10.1172/jci.insight.136648.
RYDER, S. P. CRISPRbabies: notes on a scandal. The CRISPR Journal, [S.l.], v. 1, n. 1, p. 355-357, 2018. DOI: 10.1089/crispr.2018.29010.spr.
SAAYMAN, S. M. et al. Potent and targeted activation of latent HIV-1 using the CRISPR/dCas9 activator complex. Molecular Therapy, [S.l.], v. 24, n. 3, p. 488-489, 2016. DOI: 10.1038/mt.2016.12.
SCHELLER, S. H. et al. Biallelic, selectable, knock-in targeting of CCR5 via CRISPR-Cas9 mediated homology directed repair inhibits HIV-1 replication. Frontiers in Immunology, [S.l.], v. 13, 821190, 2022. DOI: 10.3389/fimmu.2022.821190.
SAMJI, H. et al. Closing the gap: increases in life expectancy among treated HIV-positive individuals in the United States and Canada. PLoS ONE, [S.l.], v. 8, n. 12, e81355, 2013. DOI: 10.1371/journal.pone.0081355.
SANTOS, G. H.; ALMEIDA, H. I. Conflitos de interesse em pesquisas financiadas por empresas de biotecnologia: desafios éticos e soluções. Ética em Pesquisa, [S.l.], v. 10, n. 3, p. 300-318, 2023.
SCHRAMM, F. R. Bioética da proteção: ferramenta válida para enfrentar problemas morais na era da globalização. Revista Bioética, [S.l.], v. 16, n. 1, p. 11-23, 2008.
SILVA, A. M.; ROCHA, B. L. Impacto do financiamento privado na inovação biotecnológica: um estudo de caso da pesquisa sobre o HIV. Revista Brasileira de Inovação em Saúde, [S.l.], v. 15, n. 2, p. 234-250, 2023.
SLAYMAKER, I. M. et al. Rationally engineered Cas9 nucleases with improved specificity. Science, [S.l.], v. 351, n. 6268, p. 84-88, 2016. DOI: 10.1126/science.aad5227.
SMITH, L. et al. Silencing integrated SIV proviral DNA with TAR-specific CRISPR tools. Journal of Medical Primatology, [S.l.], v. 49, n. 5, p. 269-279, 2020. DOI: 10.1111/jmp.12480.
SMITH, L. M. et al. Multiplexed simian immunodeficiency virus-specific paired RNA-guided Cas9 nickases inactivate proviral DNA. Journal of Virology, [S.l.], v. 95, n. 23, e00882-21, 2021. DOI: 10.1128/JVI.00882-21.
SOROKINA, A. et al. Detection of CCR5Δ32 mutant alleles in heterogeneous cell mixtures using droplet digital PCR. Frontiers in Molecular Biosciences, [S.l.], v. 9, 805931, 2022. DOI: 10.3389/fmolb.2022.805931.
SULLIVAN, N. et al. Designing safer CRISPR/Cas9 therapeutics for HIV: defining factors that regulate and technologies used to detect off-target editing. Frontiers in Microbiology, [S.l.], v. 11, p. 1872, 2020. DOI: 10.3389/fmicb.2020.01872.
SULLIVAN, N. T. et al. Novel gRNA design pipeline to develop broad-spectrum CRISPR/Cas9 gRNAs for safe targeting of the HIV-1 quasispecies in patients. Scientific Reports, [S.l.], v. 9, n. 1, p. 17088, 2019. DOI: 10.1038/s41598-019-52353-9.
'T HOEN, E. F. The global politics of pharmaceutical monopoly power: drug patents, access, innovation and the application of the WTO Doha Declaration on TRIPS and public health. Netherlands: AMB Publishers, 2009.
URNOV, F. D. et al. Genome editing with engineered zinc finger nucleases. Nature Reviews Genetics, [S.l.], v. 11, n. 9, p. 636-646, 2010. DOI: 10.1038/nrg2842.
WANG, G. et al. A combinatorial CRISPR-Cas9 attack on HIV-1 DNA extinguishes all infectious provirus in infected T cell cultures. Cell Reports, [S.l.], v. 17, n. 11, p. 2819-2826, 2016. DOI: 10.1016/j.celrep.2016.11.057.
WEATHERLEY, D. A. V.; BOSWELL, M. T.; ROWLAND-JONES, S. L. Targeting TRIM5α in HIV cure strategies for the CRISPR-Cas9 era. Frontiers in Immunology, [S.l.], v. 8, p. 1616, 2017. DOI: 10.3389/fimmu.2017.01616.
WOLLEBO, H. S. et al. CRISPR/Cas9 system as an agent for eliminating polyomavirus JC infection. PLoS ONE, [S.l.], v. 10, n. 9, e0136046, 2015. DOI: 10.1371/journal.pone.0136046.
XIAO, Q.; GUO, D.; CHEN, S. Application of CRISPR/Cas9-based gene editing in HIV-1/AIDS therapy. Frontiers in Cellular and Infection Microbiology, [S.l.], v. 9, p. 69, 2019. DOI: 10.3389/fcimb.2019.00069.
XU, L. et al. CRISPR/Cas9-mediated CCR5 ablation in human hematopoietic stem/progenitor cells confers HIV-1 resistance in vivo. Molecular Therapy, [S.l.], v. 25, n. 8, p. 1782-1789, 2017. DOI: 10.1016/j.ymthe.2017.04.027.
YANG, X. et al. PEBP1 suppresses HIV transcription and induces latency by inactivating MAPK/NF-κB signaling. EMBO Reports, [S.l.], v. 21, n. 11, e49305, 2020. DOI: 10.15252/embr.201949305.
YANG, X. et al. MAT2A-mediated S-adenosylmethionine level in CD4+ T cells regulates HIV-1 latent infection. Frontiers in Immunology, [S.l.], v. 12, p. 745784, 2021. DOI: 10.3389/fimmu.2021.745784.
YE, L. et al. Seamless modification of wild-type induced pluripotent stem cells to the natural CCR5Δ32 mutation confers resistance to HIV infection. Proceedings of the National Academy of Sciences, [S.l.], v. 111, n. 26, p. 9591-9596, 2014. DOI: 10.1073/pnas.1407473111.
YEH, Y.-H. J. et al. The clonal expansion dynamics of the HIV-1 reservoir: mechanisms of integration site-dependent proliferation and HIV-1 persistence. Viruses, [S.l.], v. 13, n. 9, p. 1858, 2021. DOI: 10.3390/v13091858.
YIN, C. et al. Functional screening of guide RNAs targeting the regulatory and structural HIV-1 viral genome for a cure of AIDS. AIDS, [S.l.], v. 30, n. 8, p. 1163-1174, 2016. DOI: 10.1097/QAD.0000000000001077.
YIN, C. et al. In vivo excision of HIV-1 provirus by saCas9 and multiplex single-guide RNAs in animal models. Molecular Therapy, [S.l.], v. 25, n. 5, p. 1168-1186, 2017. DOI: 10.1016/j.ymthe.2017.03.017.
YODER, K. E. A CRISPR/Cas9 library to map the HIV-1 provirus genetic fitness. Acta Virologica, [S.l.], v. 63, n. 2, p. 129-138, 2019. DOI: 10.4149/av_2019_202.
YU, S. et al. Experimental treatment of SIV-infected macaques via autograft of CCR5-disrupted hematopoietic stem and progenitor cells. Molecular Therapy - Methods & Clinical Development, [S.l.], v. 17, p. 520-531, 2020. DOI: 10.1016/j.omtm.2020.02.001.
ZHANG, Q. et al. Genome-wide CRISPR/Cas9 transcriptional activation screen identifies a histone acetyltransferase inhibitor complex as a regulator of HIV-1 integration. Nucleic Acids Research, [S.l.], v. 50, n. 12, p. 6687-6701, 2022. DOI: 10.1093/nar/gkac476.
ZHANG, Y. et al. CRISPR/gRNA-directed synergistic activation mediator (SAM) induces specific, persistent and robust reactivation of the HIV-1 latent reservoirs. Scientific Reports, [S.l.], v. 5, 16277, 2015. DOI: 10.1038/srep16277.
ZHU, W. et al. The CRISPR/Cas9 system inactivates latent HIV-1 proviral DNA. Retrovirology, [S.l.], v. 12, n. 1, p. 22, 2015. DOI: 10.1186/s12977-015-0150-2.
