AUTOCRINE OXYTOCIN ACTION IN CARDIOMYOCYTES: DUAL STIMULATION OF ANP SECRETION AND NITRIC OXIDE-DEPENDENT INHIBITION
DOI:
https://doi.org/10.56238/arev7n8-304Keywords:
Oxytocin, Atrial Natriuretic Peptide, Nitric Oxide, CardiomyocytesAbstract
Historically known for its effects on the reproductive system, oxytocin (OT) is now known to contribute to the regulation of cardiovascular and electrolyte homeostasis. OT is produced in the supraoptic and paraventricular nuclei of the hypothalamus and released into the plasma from neural terminals in the posterior pituitary. However, many studies have identified extracerebral sites of OT production, including the heart and vascular endothelium. Activation of its receptors on endothelial cells, as well as in the hypothalamic/pituitary and cardiac systems, can result in the production of nitric oxide (NO). The present study aimed to investigate the role of NO in the regulation of OT-stimulated atrial natriuretic peptide (ANP) secretion in primary cultures of mouse embryo cardiomyocytes. For this purpose, hearts from Balb C mouse embryos, 19 to 21 days of intrauterine life, were isolated and cultured for assays with OT and other substances that interfere with the synthesis of NO and its second messenger cGMP. The addition of increasing concentrations of OT (0.1, 1, 10, and 100 µM) induced a proportional increase in the secretion of ANP and nitrate into the medium, confirming the stimulatory action of OT in cardiomyocytes. The blockade of ANP release stimulated by OT (10 µM) was observed after the addition of Ornithine Vasotocin (CVI-OVT) (100 µM), a specific OT antagonist. This antagonist inhibited basal ANP secretion when added individually, suggesting that OT may act via an autocrine, tonic stimulatory mechanism on ANP secretion. Amplification of OT-stimulated ANP secretion (10 µM) was observed after its combination with L-NAME, a nitric oxide synthase (NOS) inhibitor (600 µM), and ODQ (100 µM), a soluble guanylate cyclase inhibitor, suggesting the occurrence of nitrergic negative feedback on OT-stimulated ANP release in cardiomyocytes. The results obtained demonstrated nitrergic inhibitory modulation of OT-stimulated ANP secretion.
Downloads
References
ANTUNES-RODRIGUES, J., CASTRO, M., ELIAS, L.L.K., VALENÇA, M.M., McCANN, S. M. Neuroendocrine control of body fluid metabolism. Physiological Reviews, v.84, p.169-208, 2004. DOI: https://doi.org/10.1152/physrev.00017.2003
BALLIGAND, J. L., CANNON, P. J. Nitric oxide synthases and cardiac muscle autocrine and paracrine influences. Arterioscler Thromb Vasc Biol., v. 7, p. 1846-58, 1997. DOI: https://doi.org/10.1161/01.ATV.17.10.1846
BALLIGAND, J.L., KOBZIK, L., HAN, X., KAYE, D.M., BELHASSEN, L., O’HARA, D.S., KELLY, R.A., SMITH, T.W., MICHEL, T. Nitric oxide-dependent parasympathetic signaling is due to activation of constitutive endothelial (type III) nitric oxide synthase in cardiac myocytes. J. Biol. Chem., v. 270, n. 24, p. 14582-14586, 1995.
BALLIGAND, J.L., KOBZIK, L., HAN, X., KAYE, D.M., BELHASSEN, L., O’HARA, D.S. , et al. Nitric oxide-dependent parasympathetic signaling is due to activation of constitutive endothelial (type III) nitric oxide synthase in cardiac myocytes. J Biol Chem; v. 270, p. 14582-6, 1995. DOI: https://doi.org/10.1074/jbc.270.24.14582
BALLIGAND, J.L. Regulation of cardiac myocyte contractile function by inducible nitric oxide synthase (iNOS): mechanisms of contractile depression by nitric oxide. J. Mol. Cell Cardiol., v. 30, n. 2, p. 303-315, 1998. DOI: https://doi.org/10.1006/jmcc.1997.0593
BAROUCH, L.A., HARRISON, R.W., SKAF, M.W., ROSAS, G.O., CAPPOLA, T.P., KOBEISSI, Z. A., HOBAI, I.A., LEMMON, C.A., BURNETT, A.L., O’ROURKE, B., RODRIGUEZ, E.R., HUANG, P.L., LIMA, J.A., BERKOWITZ, D.E., HARE, J.M. Nitric oxide regulates the heart by spatial confinement of nitric oxide synthase isoforms. Nature., v. 416, p. 337–339, 2002. DOI: https://doi.org/10.1038/416337a
BUSSE, R., FLEMING, I. Nitric Oxide and Regulation of Vascular Tone. In: MAYER, B., (Ed.). Nitric Oxide. Berlin: Springer, p. 179-206, 2000. DOI: https://doi.org/10.1007/978-3-642-57077-3_9
CAMPBELL, D. L.; STAMLER, J. S.; STRAUSS, H. C. Redox modulation of L-type calcium channels in ferret ventricular myocytes. Dual mechanism regulation by nitric oxide and S-nitrosothiols. J. Gen. Physiol, v. 108, n. 4, p. 277-293, 1996. DOI: https://doi.org/10.1085/jgp.108.4.277
CLEMENTI, E., VECCHIO, I., SCIORATI, C., NISTICÒ, G. Nitric oxide modulation of agonist-evoked intracellular Ca2+ release in neurosecretory PC-12 cells: inhibition of phospholipase C activity via cyclic GMP-dependent protein kinase I. Mol. Pharmacol., v. 47, n. 3, p. 517-524, 1995. DOI: https://doi.org/10.1016/S0026-895X(25)08558-X
FAVARETTO, A.L.V., BALLEJO, G.O., ALBUQUERQUE-ARAÚJO, W.I.C., GUTKOWSKA, J., ANTUNES-RODRIGUES, J., MCCANN, S.M. Oxytocin releases atrial natriuretic peptide from rat atria in vitro that exerts negative inotropic and chronotropic action. Peptides, v.18, n.9, .1377-1381, 1997. DOI: https://doi.org/10.1016/S0196-9781(97)00209-X
GIMPL, G., FAHRENHOLZ, F. The oxytocin receptor system: structure, function and regulation. Physiological Reviews, v.81, n.2, p.629-683, 2001. DOI: https://doi.org/10.1152/physrev.2001.81.2.629
GUTKOWSKA J, JANKOWSKI M. Oxytocin revisited: Its role in cardiovascular regulation. Journal of Neuroendocrinology., v. 24, p.559-608, 2012. DOI: https://doi.org/10.1111/j.1365-2826.2011.02235.x
GUTKOWSKA, J., JANKOWSKI, M., MUKADDAM-DAHER, S., MCCAN, S.M. Oxytocin is a cardiovascular hormone. Brazilian Journal of Medical and Biological Research, v.33, p.625-633, 2000. DOI: https://doi.org/10.1590/S0100-879X2000000600003
JIN, J.Y., WEN, J.F., LI, D., CHO, K.W. Osmoregulation of atrial myocytic ANP release: osmotransduction via cross-talk between L-type Ca2+ channel and SR Ca2+ release. Am J. Physiol Regul. Integr. Comp. Physiol., v. 287, p. R1101- R1109, 2004. DOI: https://doi.org/10.1152/ajpregu.00063.2004
HAANWINCKEL, M.A., ELIAS, L.K., FAVARETTO, A.L.V., GUTKOWSKA, J., McCANN, S.M., ANTUNES-RODRIGUES, J. Oxytocin mediates atrial natriuretic peptide release and natriuresis after volume expansion in the rat. Proceedings of the National Academy of Science, v.92, p.7902-7906, 1995. DOI: https://doi.org/10.1073/pnas.92.17.7902
HAMPL, V., WALTERS, C. L., ARCHER, S. L. Determination of nitric oxide by the chemiluminescence reaction with ozone. In: Feelisch, M. Stamler, J. S. (Eds). Methods in Nitric Oxide Research. Wiley, New York, p.309-318, 1996.
HAN, X., KUBOTA, I., FERON, O., OPEL, D. J., ARSTALL, M.A., ZHAO, Y.Y., HUANG, P., FISHMAN, M.C., MICHEL, T., KELLY, R. A. Muscarinic cholinergic regulation of cardiac myocyte ICa-L is absent in mice with targeted disruption of endothelial nitric oxide synthase. Proc Natl Acad Sci USA., v. 95, p. 6510-6515, 1998. DOI: https://doi.org/10.1073/pnas.95.11.6510
HARTZELL, H. C., FISCHMEISTER, R. Opposite effects of cyclic GMP and cyclic AMP on Ca2+ current in single heart cells. Nature, v. 323, n. 6085, p. 273-275, 1986. DOI: https://doi.org/10.1038/323273a0
HIRATA, M. KOHSE, K. P., CHANG, C.H., IKEBE, T., MURAD, F. Mechanism of cyclic GMP inhibition of inositol phosphate formation in rat aorta segments and cultured bovine aortic smooth muscle cells. J. Biol. Chem., v. 265, n. 3, p. 1268-1273, 1990. DOI: https://doi.org/10.1016/S0021-9258(19)40008-2
JANKOWSKI, M., HAJJAR, F., KAWAS, S.A., MUKADDAM-DAHER, S., HOFFMAN, G., MCCANN, S.M., GUTKOWSKA, J. Rat heart: a site of oxytocin production and action. Proceedings of the National Academy of Science, v.95, p.14558-14563, 1998. DOI: https://doi.org/10.1073/pnas.95.24.14558
KADEKARO, M., SUMMY-LONG, J.Y., HARRIS, J.S., TERRELL, M.L., FREEMAN, S., EISENBERG; H. M. Cerebral metabolic responses and vasopressin and oxytocin secretion during progressive deprivation in rats. Am. J. Physiol., v.262, p. 310-317, 1992. DOI: https://doi.org/10.1152/ajpregu.1992.262.2.R310
KARCZEWSKI, P., HENDRISCHKE, T., WOLF, W.P., MORANO, I., BARTEL, S., SCHRADER, J. Phosphorylation of phospholamban correlates with relaxation of coronary artery induced by nitric oxide, adenosine, and prostacyclin in the pig. J. Cell Biochem., v. 70, n. 1, p. 49-59, 1998. DOI: https://doi.org/10.1002/(SICI)1097-4644(19980701)70:1<49::AID-JCB6>3.0.CO;2-3
KOMALAVILAS, P., LINCOLN, T. M. Phosphorylation of the inositol 1,4,5-trisphosphate receptor. Cyclic GMP-dependent protein kinase mediates cAMP and cGMP dependent phosphorylation in the intact rat aorta. J. Biol. Chem., v. 271, n. 36, p. 21933-21938, 1996. DOI: https://doi.org/10.1074/jbc.271.36.21933
LESKINEN, H., VUOLTEENAHO, O., LEPPALUOTO, J. AND RUSKOAHO, H. Role of nitric oxide on cardiac hormone secretion: Effect of NG-nitro-L-arginine methyl ester on atrial natriuretic peptide and brain natriuretic peptide release. Endocrinology., v.136, n. 3, p.1241-1249, 1995. DOI: https://doi.org/10.1210/endo.136.3.7867578
MACHADO, F.S., MARTINS, G.A., ALIBERTI, J.C., MESTRINER, F.L., CUNHA, F.Q., SILVA, J. S. Trypanosoma cruzi-infected cardiomyocytes produce chemokines and cytokines that trigger potent nitric oxide-dependent trypanocidal activity. Circulation., v. 102, p. 3003-3008, 2000. DOI: https://doi.org/10.1161/01.CIR.102.24.3003
MASSION, P.B., FERON, O., DESSY, C., BALLIGAND, J.L. Nitric oxide and cardiac function: ten years after, and continuing. Circ Res., v. 93, n. 5, p. 388-398, 2003. DOI: https://doi.org/10.1161/01.RES.0000088351.58510.21
MERY, P. F., LOHMANN, S.M., WALTER, U., FISCHMEISTER, R. Ca2+ current is regulated by cyclic GMP-dependent protein kinase in mammalian cardiac myocytes. Proc. Natl. Acad. Sci. U. S. A., v. 88, n. 4, p. 1197- 1201, 1991. DOI: https://doi.org/10.1073/pnas.88.4.1197
MUKADDAM-DAHER, S., YIN, Y.L., ROY, J., GUTKOWSKA, J., CARDINAL, R. Negative inotropic and chronotropic effects of oxytocin. Hypertension., v.38, p.292-296, 2001. DOI: https://doi.org/10.1161/01.HYP.38.2.292
PATON, J.F., KASPAROV, S., PATERSON, D. J. Nitric oxide and autonomic control of heart rate: a question of specificity. Trends Neurosci., v. 25, p. 626–631, 2002. DOI: https://doi.org/10.1016/S0166-2236(02)02261-0
PETERSSON, M. Cardiovascular effects of oxytocin. Prog Brain Res.,v.139, p. 281-288, 2002. DOI: https://doi.org/10.1016/S0079-6123(02)39024-1
REBSAMEN, M.C., CHURCH, D.J., MORABITO, D., VALLOTTON, M.B., LANG, U. Role of cAMP and calcium influx in endothelin-1-induced ANP release in rat cardiomyocytes. Am J Physiol., v. 273, p. E922-E931, 1997 DOI: https://doi.org/10.1152/ajpendo.1997.273.5.E922
SANDER, M., CHAVOSHAN, B., VICTOR, R.G. A large blood pressure raising effect of nitric oxide synthase inhibition in humans. Hypertension., v. 33, p. 937-942. 1999. DOI: https://doi.org/10.1161/01.HYP.33.4.937
SEARS, C. E.; ASHLEY, E. A.; CASADEI, B. Nitric oxide control of cardiac function: is neuronal nitric oxide synthase a key component? Philosophical Transactions Royal Society of London, London, v.359: p.1021-1044, 2004. DOI: https://doi.org/10.1098/rstb.2004.1477
SHAH, A. M. et al. 8-bromo-cGMP reduces the myofilament response to Ca2+ in intact cardiac myocytes. Circ. Res., v. 74, n. 5, p. 970-978, 1994. DOI: https://doi.org/10.1161/01.RES.74.5.970
SOARES, T.J., COIMBRA, T.M., MARTINS, A.R., PEREIRA, A.G.F., CARNIO, E.C., BRANCO, L.G.S., ALBUQUERQUE-ARAUJO, W.I.C., NUCCI, G., FAVARETTO, A.L.V., GUTKOWSKA, J., McCAN, S.M., ANTUNES-RODRIGUES, J. Atrial natriuretic peptide and oxytocin induce natriuresis by release of cGMP. Proceedings of the National Academy of Science, v.96, p.278-283, 1999. DOI: https://doi.org/10.1073/pnas.96.1.278
SOUALMIA, H., BARTHELEMY, C., EURIN, J., MASSON, F., CARAYON, A. Role of nitric oxide on atrial natriuretic peptide release induced by angiotensin II in superfused rat atrial tissue. Regul Pept., v. 98, p. 105-110. 2001. DOI: https://doi.org/10.1016/S0167-0115(00)00237-8
TOHSE, N., NAKAYA H, TAKEDA Y, KANNO, M. Cyclic GMP-mediated inhibition of L-type Ca2+ channel activity by human natriuretic peptide in rabbit heart cells. Br J. Pharmacol, v. 114, p. 1076-1082, 1995. DOI: https://doi.org/10.1111/j.1476-5381.1995.tb13316.x
YASUDA, S. LEW, W. Y. Lipopolysaccharide depresses cardiac contractility and beta-adrenergic contractile response by decreasing myofilament response to Ca2+ in cardiac myocytes. Circ. Res., v. 81, n. 6, p. 1011-1020, 1997. DOI: https://doi.org/10.1161/01.RES.81.6.1011
WAHLER, G. M., DOLLINGER, S. J. Nitric oxide donor SIN-1 inhibits mammalian cardiac calcium current through cGMP-dependent protein kinase. Am. J. Physiol., v. 268, n. 1 Pt 1, p. C45-C54, 1995 DOI: https://doi.org/10.1152/ajpcell.1995.268.1.C45
ZIOLO, M.T., KATOH, H., BERS, D. M. Expression of inducible nitric oxide synthase depresses ß- adrenergic–stimulated calcium release from the sarcoplasmic reticulum in intact ventricular myocytes. Circulation., v. 104, p. 2961–2966, 2001. DOI: https://doi.org/10.1161/hc4901.100379
