APPLICATIONS OF FUNCTIONAL MAGNETIC RESONANCE IMAGING IN THE EARLY DIAGNOSIS OF ALZHEIMER’S DISEASE: A SYSTEMATIC REVIEW

Authors

  • Leonardo Lucas Pereira Filho Author
  • Lara Fernanda de Sá Guimarães Author
  • Carlos Alberto de Mattos Author
  • Juliana Cristina Levada de Mattos Author
  • Breno de Amaral Gandini Author
  • Marcos Alexandre Lima Garcia Author
  • Lucas Guimarães Grassioli Author

DOI:

https://doi.org/10.56238/levv16n53-096

Keywords:

Alzheimer Disease, Magnetic Resonance Imaging, Functional, Early Diagnosis, Mild Cognitive Impairment

Abstract

Introduction: Alzheimer’s disease (AD) is the most common neurodegenerative disorder globally, characterized by progressive cognitive decline and substantial socioeconomic burden. Early diagnosis is crucial to enable therapeutic interventions before irreversible neuronal loss.

Objective: The primary objective was to systematically review the current evidence on the applications of functional magnetic resonance imaging (fMRI) in the early diagnosis of AD, focusing on diagnostic accuracy, methodological advances, and clinical potential. Secondary objectives included evaluating analytic approaches, such as connectivity metrics and machine learning models, and assessing heterogeneity and gaps in the literature.

Methods: A systematic search was conducted in PubMed, Scopus, Web of Science, Cochrane Library, LILACS, ClinicalTrials.gov, and ICTRP for studies published between 2019 and 2025. Inclusion criteria comprised human fMRI studies investigating early AD or mild cognitive impairment (MCI) with quantitative diagnostic metrics. Studies with small samples or non-standardized protocols were included but noted as limitations. Exclusion criteria involved reviews, editorials, and studies without quantitative diagnostic data. The review followed PRISMA guidelines.

Results and Discussion: Most used resting-state fMRI and advanced computational models to differentiate MCI or early AD from healthy controls. Reported diagnostic accuracies ranged from 83% to 96%, with consistent sensitivity and specificity above 0.85. Deep learning and graph-based models significantly improved classification performance. However, heterogeneity in acquisition parameters, preprocessing pipelines, and small sample sizes limited generalizability.

Conclusion: Functional MRI demonstrates high potential as a noninvasive biomarker for early AD diagnosis, especially when combined with structural and diffusion imaging or artificial intelligence-based analysis. Standardization of acquisition and preprocessing protocols and multicenter validation remain essential for clinical translation.

 

Downloads

Download data is not yet available.

References

1. Livingston G, Huntley J, Sommerlad A, Ames D, Ballard C, Banerjee S, et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet. 2020;396(10248):413–46. doi:10.1016/S0140-6736(20)30367-6.

2. Jack CR Jr, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB, et al. NIA–AA Research Framework: Toward a biological definition of Alzheimer’s disease. Alzheimers Dement. 2018;14(4):535–62. doi:10.1016/j.jalz.2018.02.018.

3. Dennis EL, Thompson PM. Functional connectivity in neurodegenerative disorders: Alzheimer’s disease and frontotemporal dementia. Cell Mol Life Sci. 2019;76(3):467–81. doi:10.1007/s00018-018-2941-0.

4. Biswal BB, Mennes M, Zuo XN, Gohel S, Kelly C, Smith SM, et al. Toward discovery science of human brain function. Proc Natl Acad Sci U S A. 2019;116(52):26155–62. doi:10.1073/pnas.1914630116.

5. Spetsieris PG, Ko JH, Tang CC, Nazem A, Dhawan V, Eidelberg D. Metabolic resting-state brain networks in health and disease. Proc Natl Acad Sci U S A. 2021;118(52):e2102886118. doi:10.1073/pnas.2102886118.

6. Zhang D, Shen D. Multi-modal multi-task learning for joint prediction of Alzheimer’s disease diagnosis and mild cognitive impairment conversion. Neuroimage. 2020;221:117090. doi:10.1016/j.neuroimage.2020.117090.

7. Li H, Habes M, Wolk DA, Fan Y. A deep learning model for early prediction of Alzheimer’s disease dementia based on hippocampal magnetic resonance imaging data. Alzheimers Dement. 2020;16(8):1236–47. doi:10.1002/alz.12110.

8. Chiesa PA, Cavedo E, Grothe MJ, Colliot O, Lista S, Potier MC, et al. Application of the European ADNI MR imaging harmonization protocol to the ADNI-3 dataset. Alzheimers Dement. 2020;16(7):1164–73. doi:10.1002/alz.12086.

9. Petersen RC, Lopez O, Armstrong MJ, Getchius T, Ganguli M, Gloss D, et al. Practice guideline update summary: Mild cognitive impairment. Neurology. 2018;90(3):126–35. doi:10.1212/WNL.0000000000004826.

10. Li Y, Yao Z, Zhang H, Hu B, for the Alzheimer’s Disease Neuroimaging Initiative. Prediction of conversion from mild cognitive impairment to Alzheimer’s disease using resting-state functional connectivity: A systematic review. Hum Brain Mapp. 2020;41(17):5003–23. doi:10.1002/hbm.25179.

11. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ. 2021;372:n71. doi:10.1136/bmj.n71.

12. Sutton A, Higgins JPT. Systematic reviews of diagnostic test accuracy: methods and challenges. Semin Nucl Med. 2021;51(2):102–14. doi:10.1053/j.semnuclmed.2020.10.004.

13. Chaimani A, Caldwell DM, Li T, Higgins JPT, Salanti G. Undertaking network meta-analyses. Cochrane Handbook. 2020;11:285–320.

14. Whiting PF, Rutjes AW, Westwood ME, Mallett S, Deeks JJ, Reitsma JB, et al. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med. 2011;155(8):529–36. doi:10.7326/0003-4819-155-8-201110180-00009.

15. McGrath S, Zhao X, Steele R, Thombs BD, Benedetti A. Estimating the sample mean and standard deviation from commonly reported quantiles in meta-analysis. Stat Methods Med Res. 2020;29(9):2520–37. doi:10.1177/0962280220930545.

16. Guyatt GH, Oxman AD, Vist GE, Kunz R, Falck-Ytter Y, Alonso-Coello P, Schünemann HJ. GRADE: An emerging consensus on rating quality of evidence and strength of recommendations. BMJ. 2008;336(7650):924–6. doi:10.1136/bmj.39489.470347.AD.

17. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. BMJ. 2009;339:b2535. doi:10.1136/bmj.b2535.

18. Zhang D, Shen D. Multi-modal graph convolutional networks for early detection of Alzheimer’s disease. Neuroimage. 2020;221:117090. doi:10.1016/j.neuroimage.2020.117090.

19. Battineni G, Sagaro GG, Chintalapudi N, Amenta F. Applications of machine learning in neuroimaging for early diagnosis of Alzheimer’s disease. Brain Sci. 2021;11(3):334. doi:10.3390/brainsci11030334.

20. Li X, Liu M, Zhang L, Zhao Y, Yao L, Zhu J, et al. Multimodal MRI fusion for early identification of mild cognitive impairment using DTI and fMRI. Front Aging Neurosci. 2022;14:894013. doi:10.3389/fnagi.2022.894013.

21. Sener S, Cinar A, Karahanoglu FI. Early detection of mild cognitive impairment using vision transformer models applied to resting-state fMRI. Comput Methods Programs Biomed. 2023;232:107447. doi:10.1016/j.cmpb.2023.107447.

22. Wang S, Chen X, Shen T, Chen L, Liu M. Diagnostic performance of fMRI-based radiomics in Alzheimer’s disease: A meta-analysis. Eur Radiol. 2023;33(5):3173–85. doi:10.1007/s00330-022-09047-0.

23. Zhao K, Luo C, Li J, Zhou J, Li S. Deep learning analysis of resting-state fMRI for early Alzheimer’s disease detection. Magn Reson Imaging. 2023;101:42–50. doi:10.1016/j.mri.2023.03.009.

24. Lu X, Zhang Y, Chen H, Li J. Combining resting-state fMRI with cognitive performance for early detection of Alzheimer’s disease. Front Neurosci. 2024;18:1324791. doi:10.3389/fnins.2024.1324791.

25. Bonarota R, Marini F, D’Angelo E, Cavedo E. Standardizing segmentation and preprocessing pipelines for Alzheimer’s neuroimaging research. Neuroimage Clin. 2024;41:103273. doi:10.1016/j.nicl.2024.103273.

26. Sener S, Cinar A. Slice-based attention networks improve early MCI detection from rs-fMRI. J Neural Eng. 2024;21(3):036021. doi:10.1088/1741-2552/ad3a51.

27. Li T, Zhu W, He Y, Yao Z. Multi-center resting-state fMRI harmonization for Alzheimer’s disease prediction. Neuroinformatics. 2024;22(2):345–59. doi:10.1007/s12021-023-09658-3.

28. Chen H, Liu Y, Wang Y, Zhou J. Graph neural network model for mild cognitive impairment and Alzheimer’s disease classification using rs-fMRI. Front Aging Neurosci. 2025;17:1382042. doi:10.3389/fnagi.2025.1382042.

29. Bonarota R, D’Angelo E, Marini F. Advances in multimodal MRI integration for Alzheimer’s research: methodological perspectives. Alzheimers Dement. 2025;21(1):44–53. doi:10.1002/alz.13789.

30. Dennis EL, Thompson PM. Mapping connectivity alterations in Alzheimer’s disease using fMRI. Trends Neurosci. 2023;46(2):124–38. doi:10.1016/j.tins.2022.10.007.

31. Kim H, Yoo S, Kim DJ. Graph-based deep learning approaches for Alzheimer’s disease diagnosis using neuroimaging data: A review. J Magn Reson Imaging. 2024;59(2):381–95. doi:10.1002/jmri.28991.

32. Jiang J, Kang L, Ma S, Zhang W. Functional disconnection of default mode network in Alzheimer’s disease: a meta-analytic review. Neurosci Biobehav Rev. 2023;149:105173. doi:10.1016/j.neubiorev.2023.105173.

33. Müller M, Haller S, Giannakopoulos P. Variability in fMRI preprocessing and its impact on Alzheimer’s biomarker discovery. Front Neurol. 2023;14:1210453. doi:10.3389/fneur.2023.1210453.

34. Guyatt GH, Oxman AD, Kunz R, Vist GE, Falck-Ytter Y, Schünemann HJ. Rating quality of evidence and strength of recommendations: GRADE framework. BMJ. 2022;376:e070515. doi:10.1136/bmj-2021-070515.

35. Singh A, D’Cunha NM, Ghosh A, Coxon JP. Artificial intelligence in Alzheimer’s disease neuroimaging: current status and future perspectives. Ageing Res Rev. 2025;96:102218. doi:10.1016/j.arr.2025.102218.

Downloads

Published

2025-10-23

How to Cite

PEREIRA FILHO, Leonardo Lucas; GUIMARÃES, Lara Fernanda de Sá; DE MATTOS, Carlos Alberto; DE MATTOS, Juliana Cristina Levada; GANDINI, Breno de Amaral; GARCIA, Marcos Alexandre Lima; GRASSIOLI, Lucas Guimarães. APPLICATIONS OF FUNCTIONAL MAGNETIC RESONANCE IMAGING IN THE EARLY DIAGNOSIS OF ALZHEIMER’S DISEASE: A SYSTEMATIC REVIEW. LUMEN ET VIRTUS, [S. l.], v. 16, n. 53, p. e9177 , 2025. DOI: 10.56238/levv16n53-096. Disponível em: https://periodicos.newsciencepubl.com/LEV/article/view/9177. Acesso em: 11 feb. 2026.