USE OF BIOINFORMATICS TO SELECT CANDIDATE DRUG MOLECULES

Authors

  • Jullyana Bicalho Costa Author
  • Tainara Soares dos Santos Author
  • Larissa Moura de Matos Franco Author
  • Ana de Araújo Sathler Author
  • Michelle Bueno de Moura Pereira Author
  • João Eustáquio Antunes Author

DOI:

https://doi.org/10.56238/levv16n53-039

Keywords:

Cancer, New Drug Development, Bioinformatics

Abstract

The development of new drugs can present several challenges, with a significant bottleneck being the ability to combine a molecule that is both a potent pharmacological inhibitor and achievable for synthesis. Prior computational studies must be performed to identify molecules with good pharmacokinetic parameters, high biological activity, and a high likelihood of being synthesized. Among the various computational tools used in the study of new drugs are those used to predict pharmacokinetic parameters. After identifying and validating a pharmacological target, such as kinase enzymes in cancer, promising molecules can be designed for this target. If the cancer is brain cancer, studies of promising molecules with the ability to cross the blood-brain barrier can be significantly beneficial. Therefore, the objective of this study is to conduct computational studies to select promising molecules for the treatment of brain cancer. Ninety-eight molecules were selected for this study. The selection criterion was, first, to assess the feasibility of synthesizing these molecules. Next, computational studies were performed to evaluate pharmacokinetic parameters, kinase inhibition, and blood-brain barrier crossing. The results of this study allowed the selection of five most promising molecules. These molecules can be synthesized and tested in vitro. Therefore, it can be concluded that this study allowed the reduction of a considered large number of proposed molecules to a small number of those considered most promising, thus reducing the time and cost required to develop promising molecules for the treatment of this type of cancer.

Downloads

Download data is not yet available.

References

ANDRADE, EL et al. Estudos não clínicos necessários para o desenvolvimento de novos medicamentos - Parte I: estudos iniciais in silico e in vitro, descoberta e validação de novos alvos, comprovação de princípios e robustez de estudos em animais. Revista Brasileira de Pesquisas Médicas e Biológicas , v. 49, 2016.

ANTUNES, Joao Eustaquio; DE MOURA PEREIRA, Michelle Bueno. Rational Computational Study for New Kinase Inhibitors. Journal of Drug Design and Medicinal Chemistry, v. 5, n. 3, p. 40-46, 2019. DOI: https://doi.org/10.11648/j.jddmc.20190503.12

AZEVEDO, Liviane D. de et al. Sínteses e propriedades de fármacos inibidores da tirosina quinase BCR-ABL, utilizados no tratamento da leucemia mieloide crônica. Química Nova, v. 40, p. 791- 809, 2017.

BAIN, Jenny et al. The selectivity of protein kinase inhibitors: a further update. Biochemical Journal, v. 408, n. 3, p. 297-315, 2007. DOI: https://doi.org/10.1042/BJ20070797

BANKS, William A. The blood–brain barrier as a regulatory interface in the gut–brain axes. Physiology & behavior, v. 89, n. 4, p. 472-476, 2006. DOI: https://doi.org/10.1016/j.physbeh.2006.07.004

BANKS, William A.; ERICKSON, Michelle A. The blood–brain barrier and immune function and dysfunction. Neurobiology of disease, v. 37, n. 1, p. 26-32, 2010. DOI: https://doi.org/10.1016/j.nbd.2009.07.031

BARREIRO, Eliezer J. Estratégia de simplificação molecular no planejamento racional de fármacos: a descoberta de novo agente cardioativo. Química nova, v. 25, p. 1172-1180, 2002. DOI: https://doi.org/10.1590/S0100-40422002000700018

BARREIRO, Eliezer J.; FRAGA, Carlos Alberto Manssour. Química Medicinal-: As bases moleculares da ação dos fármacos. Artmed Editora, 2014.

SILVA, Bárbara V. et al. Proteínas quinases: características estruturais e inibidores químicos. Químicanova, v. 32, n. 2, p. 453-462, 2009. DOI: https://doi.org/10.1590/S0100-40422009000200032

BEGLEY, David J.; BRIGHTMAN, Milton W. Structural and functional aspects of the blood-brain barrier. Peptide transport and delivery into the central nervous system, p. 39-78, 2003. DOI: https://doi.org/10.1007/978-3-0348-8049-7_2

CAPELOZZI, Vera Luiza. Papel da imuno-histoquímica no diagnóstico do câncer de pulmão. Jornal Brasileiro de Pneumologia, v. 35, p. 375-382, 2009. DOI: https://doi.org/10.1590/S1806-37132009000400012

CONNOLLY, Terrence J.; MCGARRY, Patrick; SUKHTANKAR, Sunil. An eco-efficient pilot plant scale synthesis of two 5-substituted-6, 7-dimethoxy-1-H-quinazoline-2, 4-diones. Green Chemistry, DOI: https://doi.org/10.1039/b504305k

v. 7, n. 8, p. 586-589, 2005.

DE DEUS VIEIRA, Gabriel; DE SOUSA, Camila Maciel. Aspectos celulares e fisiológicos da Barreira Hematoencefálica. Journal of Health & Biological Sciences, v. 1, n. 4, p. 166, 2013. DOI: https://doi.org/10.12662/2317-3076jhbs.v1i4.38.p166.2013

DENIPOTE, Fabiana Gouveia; TRINDADE, Erasmo Benício Santos de Moraes; BURINI, Roberto Carlos. Probióticos e prebióticos na atenção primária ao câncer de cólon. Arquivos de Gastroenterologia, v. 47, p. 93-98, 2010. DOI: https://doi.org/10.1590/S0004-28032010000100016

DOS SANTOS PINHEIRO, Renata Batista et al. Análise in silico do perfil farmacocinético e toxicológico do complexo tioglicolato de Zinco II [Zn (ATG) 2 (OH2) 2]. Research, Society and Development, v. 11, n. 6, p. e44711629430-e44711629430, 2022. DOI: https://doi.org/10.33448/rsd-v11i6.29430

FERNANDES, Gabriela Souza et al. In Silico Pharmacokinetics Studies for Quinazolines Proposed as EGFR Inhibitors. Open Journal of Medicinal Chemistry, v. 5, n. 04, p. 106, 2015. DOI: https://doi.org/10.4236/ojmc.2015.54007

FRY, David W. et al. A specific inhibitor of the epidermal growth factor receptor tyrosine kinase. Science, v. 265, n. 5175, p. 1093-1095, 1994. DOI: https://doi.org/10.1126/science.8066447

GOLAN, David et al. Princípios de farmacologia: a base fisiopatológica da farmacoterapia. In: Princípios de farmacologia: a base fisiopatológica da farmacoterapia. 2009

GUIDO, Rafael VC; ANDRICOPULO, Adriano D.; OLIVA, Glaucius. Planejamento de fármacos, biotecnologia e química medicinal: aplicações em doenças infecciosas. Estudos avançados, v. 24, p. 81-98, 2010. DOI: https://doi.org/10.1590/S0103-40142010000300006

HUGHES, James P. et al. Princípios da descoberta precoce de medicamentos. Jornal britânico de farmacologia , v. 162, n. 6, pág. 1239-1249, 2011.

LEVITZKI, Alexander; MISHANI, Eyal. Tyrphostins and other tyrosine kinase inhibitors. Annual review of biochemistry, v. 75, n. 1, p. 93-109, 2006. DOI: https://doi.org/10.1146/annurev.biochem.75.103004.142657

LIANG, Xin et al. Molecular computing and bioinformatics. Molecules, v. 24, n. 13, p. 2358, 2019. DOI: https://doi.org/10.3390/molecules24132358

LOMBARDINO, Joseph G.; LOWE, John A. O papel do químico medicinal na descoberta de medicamentos - antes e agora. Nature Reviews Drug Discovery , v. 3, n. 10, pág. 853-862, 2004. DOI: https://doi.org/10.1038/nrd1523

LOPES, Nei R.; ABREU, Maria Theresa CL. Inibidores de tirosino quinase na leucemia mielóide crônica. Revista Brasileira de Hematologia e Hemoterapia, v. 31, p. 449-453, 2009. DOI: https://doi.org/10.1590/S1516-84842009005000089

LUCENA, Rita de Cássia G. et al. Correlação clínico-topográfica em glioblastomas multiformes nas síndromes motoras: significados fisiopatológicos. Arquivos de Neuro-Psiquiatria , v. 64, p. 441- 445, 2006. DOI: https://doi.org/10.1590/S0004-282X2006000300017

MAH, James TL; LOW, Esther SH; LEE, Edmund. In silico SNP analysis and bioinformatics tools: a review of the state of the art to aid drug discovery. Drug discovery today, v. 16, n. 17-18, p. 800- 809, 2011. DOI: https://doi.org/10.1016/j.drudis.2011.07.005

MIKOVSKI, Daniele et al. Química Medicinal E A Sua Importância No Desenvolvimento De Novos Fármacos. Revista Saúde e Desenvolvimento, v. 12, n. 13, p. 29-43, 2018.

Molinspiration Cheminformatics.

Disponível em: <https://www.molinspiration.com/>.

PATEL, Ronak Y.; DOERKSEN, Robert J. Protein kinase− inhibitor database: structural variability of and inhibitor interactions with the protein kinase P-loop. Journal of proteome research, v. 9, n. 9, p. 4433-4442, 2010. DOI: https://doi.org/10.1021/pr100662s

REWCASTLE, G. W. et al. Synthesis of 4-(Phenylamino) pyrimidine Derivatives as ATP- Competitive Protein Kinase Inhibitors with Potential for Cancer Chemotherap. Current Organic Chemistry, v. 4, n. 7, p. 679-706, 2000. DOI: https://doi.org/10.2174/1385272003376094

ROJAS, Hugo; RITTER, Cristiane; PIZZOL, Felipe Dal. Mechanisms of dysfunction of the blood- brain barrier in critically ill patients: emphasis on the role of matrix metalloproteinases. Revista Brasileira de terapia intensiva, v. 23, p. 222-227, 2011. DOI: https://doi.org/10.1590/S0103-507X2011000200016

ROSKOSKI JR, Robert. Properties of FDA-approved Small Molecule Protein Kinase Inhibitors: A 2023 Update. Pharmacological research, p. 106552, 2022. DOI: https://doi.org/10.1016/j.phrs.2022.106552

SANTOS, Victória Laysna dos Anjos; GONSALVES, Arlan de Assis; ARAÚJO, Cleônia Roberta Melo. Abordagem didática para o desenvolvimento de moléculas bioativas: regra dos cinco de Lipinski e preparação de heterociclo 1, 3, 4-oxadiazol em forno de micro-ondas doméstico. Química Nova, v. 41, p. 110-115, 2018. DOI: https://doi.org/10.21577/0100-4042.20170135

YANG, Yongliang; ADELSTEIN, S. James; KASSIS, Amin I. Descoberta de alvos a partir de abordagens de mineração de dados. Descoberta de drogas hoje , v. 17, p. S16-S23, 2012.

Published

2025-10-10

How to Cite

COSTA, Jullyana Bicalho; DOS SANTOS, Tainara Soares; FRANCO, Larissa Moura de Matos; SATHLER, Ana de Araújo; PEREIRA, Michelle Bueno de Moura; ANTUNES, João Eustáquio. USE OF BIOINFORMATICS TO SELECT CANDIDATE DRUG MOLECULES. LUMEN ET VIRTUS, [S. l.], v. 16, n. 53, p. e8834 , 2025. DOI: 10.56238/levv16n53-039. Disponível em: https://periodicos.newsciencepubl.com/LEV/article/view/8834. Acesso em: 5 dec. 2025.