PROGNOSTIC VALUE OF HIGH-RESOLUTION COMPUTED TOMOGRAPHY IN THE ASSESSMENT OF FIBROTIC INTERSTITIAL LUNG DISEASE: A SYSTEMATIC REVIEW

Authors

  • Victor Higino Vendramini Author
  • Gabriela Fróes Padilha Demétrio Author
  • Isabela Moreira Munhoz Mendonça Author
  • Beatriz Camargo de Moraes Barreira Author
  • Isabela Portela Leite Author
  • Luiz Felipe Lima Croscatto Author
  • Luiza Santos de Argollo Haber Author

DOI:

https://doi.org/10.56238/levv17n57-047

Keywords:

Interstitial Lung Diseases, Pulmonary Fibrosis, Tomography X-Ray Computed, Prognosis

Abstract

Introduction: Fibrotic interstitial lung diseases represent a heterogeneous group of chronic pulmonary disorders characterized by progressive fibrosis, irreversible architectural distortion, and substantial morbidity and mortality. High-resolution computed tomography has become central to the diagnostic workup of these conditions and is increasingly recognized as a tool for prognostic stratification beyond its diagnostic role. Specific radiological patterns and quantitative imaging features have been associated with disease progression, functional decline, and survival outcomes across different fibrotic interstitial lung disease subtypes.

Objective: The main objective of this systematic review was to evaluate the prognostic value of high-resolution computed tomography findings in patients with fibrotic interstitial lung disease. Secondary objectives included assessing the association between specific radiological patterns and mortality, disease progression, and functional decline; evaluating the prognostic role of quantitative high-resolution computed tomography metrics; comparing prognostic performance across different fibrotic interstitial lung disease subtypes; and examining the consistency of high-resolution computed tomography prognostic markers with current clinical guidelines.

Methods: A systematic search was conducted in PubMed, Scopus, Web of Science, Cochrane Library, LILACS, ClinicalTrials.gov, and the International Clinical Trials Registry Platform. Eligible studies evaluated prognostic outcomes associated with high-resolution computed tomography features in fibrotic interstitial lung disease. Study selection, data extraction, and risk of bias assessment were performed independently by reviewers, and results were synthesized narratively with structured comparison of outcomes. Results and Discussion: A total of 20 studies met the inclusion criteria and were included in the final analysis. Consistent associations were observed between high-resolution computed tomography patterns such as usual interstitial pneumonia, extent of fibrosis, traction bronchiectasis, and quantitative fibrosis scores with increased mortality and accelerated functional decline. Emerging evidence supports the incremental prognostic value of quantitative imaging techniques, although heterogeneity in methodology and outcome definitions remains a limitation.

Conclusion: High-resolution computed tomography provides meaningful prognostic information in fibrotic interstitial lung disease and should be considered an integral component of longitudinal disease assessment. Radiological markers, particularly fibrosis extent and specific structural features, offer clinically relevant insights that may support individualized risk stratification and therapeutic decision-making.

Downloads

Download data is not yet available.

References

1. Akman, G., et al. (2023). T-MACS score vs HEART score identification of major adverse cardiac events in the emergency department. American Journal of Emergency Medicine, 64, 21–25. https://doi.org/10.1016/j.ajem.2022.11.015

2. Aktemur, M. R., et al. (2025). Comparative evaluation of HEART, T-MACS, and HE-MACS scores for risk stratification and management of patients with chest pain in the emergency department. Medicine, 104(6), Article e41432. https://doi.org/10.1097/MD.0000000000041432

3. Al-Zaiti, S. S., et al. (2023). Machine learning for ECG diagnosis and risk stratification of occlusion myocardial infarction. Nature Medicine, 29, 1804–1813. https://doi.org/10.1038/s41591-023-02396-3

4. Ashburn, N. P., et al. (2023). Performance of the European Society of Cardiology 0/1-hour algorithm with high-sensitivity cardiac troponin T among patients with known coronary artery disease. JAMA Cardiology, 8(4), 347–356. https://doi.org/10.1001/jamacardio.2023.0031

5. Ataş, I., et al. (2025). Comparison of pretreatment in European Society of Cardiology acute coronary syndrome guidelines. Western Journal of Emergency Medicine, 26(6), 1679–1687. https://doi.org/10.5811/westjem.43528

6. Barnett, J., Wu, J., Chen, S., et al. (2023). Baseline CT features and response to antifibrotic therapy in fibrotic interstitial lung disease. Respiratory Medicine, 209, Article 107095.

7. Bergmark, B. A., et al. (2022). Acute coronary syndromes. The Lancet, 399(10332), 1347–1358. https://doi.org/10.1016/S0140-6736(21)02391-6

8. Bhatt, D. L., Lopes, R. D., & Harrington, R. A. (2022). Diagnosis and treatment of acute coronary syndromes: A review. JAMA, 327(7), 662–675. https://doi.org/10.1001/jama.2022.0358

9. Biscaglia, S., et al. (2023). Complete or culprit-only PCI in older patients with myocardial infarction. New England Journal of Medicine, 389(10), 889–898. https://doi.org/10.1056/NEJMoa2300468

10. Brown, A. W., Fischer, C. P., Shlobin, O. A., et al. (2015). Outcomes after hospitalization in idiopathic pulmonary fibrosis: A cohort study. Chest, 147(1), 173–179.

11. Byrne, R. A., et al. (2023). 2023 ESC Guidelines for the management of acute coronary syndromes. European Heart Journal, 44(38), 3720–3826. https://doi.org/10.1093/eurheartj/ehad191

12. Cavalier, J. S., et al. (2025). Stress cardiovascular magnetic resonance imaging in intermediate-risk emergency department patients with abnormal high-sensitivity troponin. Journal of Cardiovascular Magnetic Resonance, 27, Article 101851. https://doi.org/10.1016/j.jocmr.2025.101851

13. Cesar, L. A. M., et al. (2025). Diretriz de síndrome coronariana crônica – 2025. Arquivos Brasileiros de Cardiologia, 122(9), Article e20250619. https://doi.org/10.36660/abc.20250619

14. Chung, J. H., Chawla, A., Peljto, A. L., et al. (2022). CT-based deep learning model for predicting mortality in fibrotic lung disease. Radiology, 304(1), 135–143.

15. Cottin, V., Wollin, L., Fischer, A., et al. (2019). Fibrosing interstitial lung diseases: Knowns and unknowns. European Respiratory Review, 28(151), Article 180100.

16. De Barros e Silva, P. G. M., et al. (2025). Diretriz brasileira de atendimento à dor torácica na unidade de emergência – 2025. Arquivos Brasileiros de Cardiologia, 122(9), Article e20250620. https://doi.org/10.36660/abc.20250620

17. Diletti, R., et al. (2023). Immediate versus staged complete revascularization in patients presenting with acute coronary syndrome and multivessel disease (BIOVASC): A prospective, open-label, non-inferiority, randomized trial. The Lancet, 401(10383), 1172–1182. https://doi.org/10.1016/S0140-6736(23)00351-3

18. Doudesis, D., et al. (2023). Machine learning for diagnosis of myocardial infarction using cardiac troponin concentrations. Nature Medicine, 29, 1201–1210. https://doi.org/10.1038/s41591-023-02325-4

19. Engström, A., Mokhtari, A., & Ekelund, U. (2024). Direct comparison of the European Society of Cardiology 0/1-hour vs. 0/2-hour algorithms in patients with acute chest pain. Journal of Emergency Medicine, 66(6), e651–e659. https://doi.org/10.1016/j.jemermed.2024.02.004

20. Enomoto, Y., Nakamura, Y., Colby, T. V., et al. (2023). Quantitative assessment of fibrotic changes on HRCT predicts mortality in connective tissue disease–associated interstitial lung disease. European Respiratory Journal, 61(1), Article 2201079.

21. Flaherty, K. R., Wells, A. U., Cottin, V., et al. (2019). Nintedanib in progressive fibrosing interstitial lung diseases. New England Journal of Medicine, 381(18), 1718–1727.

22. Gulati, M., et al. (2021). 2021 AHA/ACC/ASE/CHEST/SAEM/SCCT/SCMR Guideline for the evaluation and diagnosis of chest pain: A report of the American College of Cardiology/American Heart Association joint committee on clinical practice guidelines. Circulation, 144(22), e368–e454. https://doi.org/10.1161/CIR.0000000000001029

23. Hoffmann-Vold, A. M., Allanore, Y., Alves, M., et al. (2021). Progressive interstitial lung disease in patients with systemic sclerosis-associated interstitial lung disease in the EUSTAR database. Annals of the Rheumatic Diseases, 80(2), 219–227.

24. Jacob, J., Bartholmai, B. J., Rajagopalan, S., et al. (2017a). Functional and prognostic effects of emphysema in idiopathic pulmonary fibrosis. European Respiratory Journal, 50(1), Article 1700379.

25. Jacob, J., Bartholmai, B. J., Rajagopalan, S., et al. (2017b). Mortality prediction in idiopathic pulmonary fibrosis: Evaluation of computer-based CT analysis with conventional severity measures. European Respiratory Journal, 49(1), Article 1601011.

26. Jacob, J., Bartholmai, B. J., Rajagopalan, S., et al. (2018). Evaluation of computer-based quantitative CT analysis for disease staging in idiopathic pulmonary fibrosis. European Respiratory Journal, 52(3), Article 1800442.

27. Jacob, J., Bartholmai, B. J., Rajagopalan, S., et al. (2024). Imaging progression in progressive pulmonary fibrosis and its association with survival. European Respiratory Journal, 63(2), Article 2301456.

28. Kim, H. J., Brown, M. S., Chong, D., et al. (2022). Automated CT analysis of traction bronchiectasis predicts mortality in idiopathic pulmonary fibrosis. Chest, 162(5), 1105–1114.

29. Kim, Y. J., Park, S., Lee, S. M., et al. (2024). Artificial intelligence–based CT biomarkers outperform visual scoring in idiopathic pulmonary fibrosis prognosis. Radiology, 310(2), Article e231245.

30. Kraler, S., et al. (2025). Acute coronary syndromes: Mechanisms, challenges, and new opportunities. European Heart Journal, 46(29), 2866–2889. https://doi.org/10.1093/eurheartj/ehaf289

31. Lambrou, K., et al. (2023). Impacts of high sensitivity troponin T reporting on care and outcomes in clinical practice: Interactions between low troponin concentrations and participant sex within two randomized clinical trials. International Journal of Cardiology, 393, Article 131396. https://doi.org/10.1016/j.ijcard.2023.131396

32. Ley, B., Ryerson, C. J., Vittinghoff, E., et al. (2012). A multidimensional index and staging system for idiopathic pulmonary fibrosis. Annals of Internal Medicine, 156(10), 684–691.

33. Lima Filho, M. O., et al. (2024). Estratégia invasiva na síndrome coronária aguda sem supradesnível do segmento ST. Revista da Sociedade de Cardiologia do Estado de São Paulo, 34(2), 254–261. https://doi.org/10.29381/0103-8559/20243403254-61

34. Lynch, D. A., Sverzellati, N., Travis, W. D., et al. (2018). Diagnostic criteria for idiopathic pulmonary fibrosis: A Fleischner Society White Paper. The Lancet Respiratory Medicine, 6(2), 138–153.

35. Møller, J. E., et al. (2024). Microaxial flow pump or standard care in infarct-related cardiogenic shock. New England Journal of Medicine, 390(15), 1382–1393. https://doi.org/10.1056/NEJMoa2312572

36. Miller, E. R., Putman, R. K., Vivero, M., et al. (2022). Longitudinal changes in interstitial lung abnormalities and mortality. European Respiratory Journal, 59(3), Article 2101083.

37. Rao, S. V., et al. (2025). 2025 ACC/AHA/ACEP/NAEMSP/SCAI Guideline for the management of patients with acute coronary syndromes. Journal of the American College of Cardiology, 85(22), 2135–2237. https://doi.org/10.1016/j.jacc.2024.11.009

38. Raghu, G., Remy-Jardin, M., Myers, J. L., et al. (2020). Diagnosis of idiopathic pulmonary fibrosis: An official ATS/ERS/JRS/ALAT clinical practice guideline. American Journal of Respiratory and Critical Care Medicine, 201(9), e36–e69.

39. Raghu, G., Anstrom, K. J., King, T. E. Jr., et al. (2012). Prednisone, azathioprine, and N-acetylcysteine for pulmonary fibrosis. New England Journal of Medicine, 366(21), 1968–1977.

40. Reynolds, H. R., et al. (2021). Coronary optical coherence tomography and cardiac magnetic resonance imaging to determine underlying causes of myocardial infarction with nonobstructive coronary arteries in women. Circulation, 143(7), 624–640. https://doi.org/10.1161/CIRCULATIONAHA.120.052008

41. Romei, C., Tavanti, L., Sbragia, P., et al. (2021). Idiopathic pulmonary fibrosis: Longitudinal changes of CT findings and functional decline. Radiology, 299(1), 189–197.

42. Salisbury, M. L., Lynch, D. A., van Beek, E. J., et al. (2017). Idiopathic pulmonary fibrosis: The association between extent of fibrosis on CT and lung function decline. Thorax, 72(9), 798–804.

43. Salisbury, M. L., Xia, M., Murray, S., et al. (2020). Predictors of mortality in idiopathic pulmonary fibrosis using automated CT analysis. European Respiratory Journal, 56(4), Article 2001024.

44. Sandoval, Y., et al. (2022). High-sensitivity cardiac troponin and the 2021 AHA/ACC/ASE/CHEST/SAEM/SCCT/SCMR guidelines for the evaluation and diagnosis of acute chest pain. Circulation, 146(7), 569–581. https://doi.org/10.1161/CIRCULATIONAHA.122.059678

45. Stone, G. W., et al. (2024). Intravascular imaging-guided coronary drug-eluting stent implantation: An updated network meta-analysis. The Lancet, 403(10429), 824–837. https://doi.org/10.1016/S0140-6736(23)02454-6

46. Sverzellati, N., Wells, A. U., Tomassetti, S., et al. (2010). Biopsy-proved idiopathic pulmonary fibrosis: Spectrum of nondiagnostic thin-section CT diagnoses. Radiology, 254(3), 957–964.

47. Sverzellati, N., Ryerson, C. J., Wells, A. U., et al. (2024). Serial high-resolution CT in fibrotic interstitial lung disease: Prognostic implications. European Respiratory Review, 33(171), Article 230176.

48. Thiele, H., et al. (2023). Extracorporeal life support in infarct-related cardiogenic shock. New England Journal of Medicine, 389(14), 1286–1297. https://doi.org/10.1056/NEJMoa2307227

49. Todd, F., Duff, J., & Carlton, E. (2022). Identifying low-risk chest pain in the emergency department without troponin testing: A validation study of the HE-MACS and HEAR risk scores. Emergency Medicine Journal, 39, 515–518. https://doi.org/10.1136/emermed-2021-211669

50. Walsh, S. L. F., Lederer, D. J., Ryerson, C. J., et al. (2019). Diagnostic likelihood thresholds that define a working diagnosis of idiopathic pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine, 200(9), 1146–1153.

51. Walsh, S. L. F., Devaraj, A., Enghelmayer, J. I., et al. (2018). Role of imaging in progressive-fibrosing interstitial lung diseases. European Respiratory Review, 27(150), Article 180073.

52. Walsh, S. L. F., Maher, T. M., Kolb, M., et al. (2024). Prognostic imaging biomarkers in idiopathic pulmonary fibrosis: International validation study. The Lancet Respiratory Medicine, 12(1), 45–55.

53. Walsh, S. L. F., Wells, A. U., Desai, S. R., et al. (2016). Multicentre evaluation of multidisciplinary team meeting agreement on diagnosis in diffuse parenchymal lung disease. Thorax, 71(6), 587–592.

54. Wells, A. U., Brown, K. K., Flaherty, K. R., et al. (2018). What’s in a name? That which we call IPF, by any other name would act the same. European Respiratory Journal, 51(5), Article 1800692.

55. Wenzl, F. A., et al. (2022). Sex-specific evaluation and redevelopment of the GRACE score in non-ST-segment elevation acute coronary syndromes in populations from the UK and Switzerland: A multinational analysis with external cohort validation. The Lancet, 400(10354), 744–756. https://doi.org/10.1016/S0140-6736(22)01483-0

56. Yoon, S. H., Park, C. M., Goo, J. M., et al. (2021). Quantitative texture-based analysis of CT in idiopathic pulmonary fibrosis: Prognostic implications. European Radiology, 31(3), 1748–1757.

57. Zou, Y., et al. (2021). Sex-differences in the management and clinical outcome among patients with acute coronary syndrome. BMC Cardiovascular Disorders, 21, Article 609. https://doi.org/10.1186/s12872-021-02433-4

Downloads

Published

2026-02-13

How to Cite

VENDRAMINI, Victor Higino; DEMÉTRIO, Gabriela Fróes Padilha; MENDONÇA, Isabela Moreira Munhoz; BARREIRA, Beatriz Camargo de Moraes; LEITE, Isabela Portela; CROSCATTO, Luiz Felipe Lima; HABER, Luiza Santos de Argollo. PROGNOSTIC VALUE OF HIGH-RESOLUTION COMPUTED TOMOGRAPHY IN THE ASSESSMENT OF FIBROTIC INTERSTITIAL LUNG DISEASE: A SYSTEMATIC REVIEW. LUMEN ET VIRTUS, [S. l.], v. 17, n. 57, 2026. DOI: 10.56238/levv17n57-047. Disponível em: https://periodicos.newsciencepubl.com/LEV/article/view/12191. Acesso em: 17 feb. 2026.