COMPUTATIONAL STUDIES FOR NEW POSSIBILITIES IN THE SYNTHESIS OF DRUG CANDIDATE MOLECULES

Authors

  • Tainara Soares dos Santos Author
  • Michelle Bueno de Moura Pereira Author
  • Larissa Moura de Matos Franco Author
  • Ana Carolina Menezes Mendonça Valente Author
  • João Eustáquio Antunes Author

DOI:

https://doi.org/10.56238/levv17n57-024

Keywords:

In Silico Studing, Bioinformatics, Glioblastoma, Drug Discovery

Abstract

The discovery of new drugs is a challenging field involving multiple stages of testing and regulatory approval. However, it holds the potential to transform disease treatment, improve patients’ quality of life, and even save lives. Bioinformatics plays a fundamental role in drug development, enabling a more efficient and precise approach to the discovery and optimization of new therapeutic agents. Virtual screening, for instance, employs computational simulations to identify the most promising molecules for specific targets. This allows for a faster and more targeted selection of potential drug candidates, reducing the number of compounds that need to be experimentally tested. After the identification and validation of a pharmacological target—such as kinase enzymes in cancer—it becomes possible to design promising molecules for that target. In the case of brain cancers, such as glioblastoma, studies focused on the ability of molecules to cross the blood–brain barrier can contribute significantly. In this context, previous computational studies were carried out to select molecules with favorable pharmacokinetic parameters, high biological activity, and feasible synthetic potential. The objective of this work was to perform  in silico studies to select promising molecules that could be proposed as new potential drug candidates for glioblastoma treatment. An  in silico study involving 57 molecules was conducted. All proposed molecules were evaluated using computational platforms to assess pharmacokinetic parameters such as oral bioavailability according to Lipinski’s “Rule of Five,” kinase inhibition potential, and ability to cross the blood–brain barrier. In this study, it was possible to identify a group of the most promising molecules. Molecules 20, 39, 44, 45, 51, and 55 demonstrated potential to cross the blood–brain barrier, according to the final Score defined in this study. Molecules 20, 39, 45, 51, 54, 55, 56, and 57 showed promising kinase inhibition activity based on their calculated pIC₅₀ values, indicating them as the most promising candidates. Notably, molecule 39 stood out by presenting the highest estimated pIC₅₀ value and the highest overall Score in the screening. Therefore, through this in silico study, molecule 39 can be highlighted as the most promising candidate for synthesis and in vitro testing.

Downloads

Download data is not yet available.

References

ALDAZ, P., & AROZARENA, I. (2021). Tyrosine kinase inhibitors in adult glioblastoma: An (un)closed chapter? Cancers, 13(22), 5799.

ALQAHTANI, S. In silico ADME-Tox modeling: progress and prospects. Expert Opinion on Drug Metabolism & Toxicology, v. 13, n. 11, p. 1147–1158, 2 nov. 2017.

ANTUNES, JOAO EUSTAQUIO; DE MOURA PEREIRA, MICHELLE BUENO, et al. New method for predict biological activity of kinases inhibitors. SCIREA Journal of Chemistry. V. 2, n. 2, April 2017.

ANTUNES, JOAO EUSTAQUIO; DE MOURA PEREIRA, MICHELLE BUENO. Rational Computational Study for New Kinase Inhibitors. Journal of Drug Design and Medicinal Chemistry, v. 5, n. 3, p. 40-46, 2019.

ANTUNES JE, FREITAS MP AND RITTNER R. (2008a). Bioactivities of a series of phosphodiesterase type 5 (PDE-5) inhibitors as modelled by MIA-QSAR. Eur. Jour. Med. Chem. 43, 1632-1638.

ANTUNES JE, FREITAS MP, DA CUNHA EFF, RAMALHO TC AND RITTNER R. (2008b) In silico prediction of novel phosphodiesterase type-5 inhibitors derived from Sildenafil, Vardenafil and Tadalafil. Bioorg. Med. Chem. 16, 7599-7606.

AZEVEDO, LIVIANE D. de et al. Sínteses e propriedades de fármacos inibidores da tirosina quinase BCR-ABL, utilizados no tratamento da leucemia mieloide crônica. Química Nova, v. 40, p. 791-809, 2017.

BAIN, JENNY et al. The selectivity of protein kinase inhibitors: a further update. Biochemical Journal, v. 408, n. 3, p. 297-315, 2007.

BALLABH P, BRAUN A, NEDERGAARD M. A barreira hematoencefálica: uma visão geral: estrutura, regulação e implicações clínicas. Neurobiol Dis. 2004 Jun; 16 (1):1-13.

BANERJEE, P. et al. ProTox-II: a webserver for the prediction of toxicity of chemicals. Nucleic Acids Research, v. 46, n. W1, p. W257–W263, 2 jul. 2018.

BIOATIVAS: regra dos cinco de Lipinski e preparação de heterociclo 1, 3, 4-oxadiazol em forno de micro-ondas doméstico. Química Nova, v. 41, p. 110-115, 2018.

BRIDGES AJ, ZHOU H, CODY DR, REWCASTLE GW, MCMICHAEL A, SHOWALTER HDH, FRY DW, KRAKER AJ AND DENNY WA. (1996). Tyrosine Kinase Inhibitors. An Unusually Steep Structure−Activity Relationship for Analogues 4-(3-Bromoanilino)-6,7-dimethoxyquinazoline (PD 153035), a Potent Inhibitor of the Epidermal Growth Factor Receptor. Jour. Med. Chem. V.,39,p. 267-276.

CAPELOZZI, VERA LUIZA. Papel da imuno-histoquímica no diagnóstico do câncer de pulmão. Jornal Brasileiro de Pneumologia, v. 35, p. 375-382, 2009.

DANCEY C AND REIDY J. (2006). Estatística Sem Matemática para Psicologia: Usando SPSS para Windows. 5. ed. Porto Alegre, Artmed.

DIAS, T. A. O., COUT, D. S., & CARDOSO, E. J. R. (2022). Quality of life in glioblastoma after the introduction of temozolomide: A systematic review. Research, Society and Development. v. 11, p.15.

DRESEMANN G. Temozolomide in malignant glioma. OncoTargets Ther. 2010. v.3, p. 139-46.

DOYTCHINOVA, I. (2022). Drug Design—Past, Present, Future. Molecules, v.27, p.5, 1496. https://doi.org/10.3390/molecules27051496.

FERLAY, J., COLOMBET, M., SOERJOMATARAM, I., PARKIN, D. M., PIÑEROS, M., ZNAOR, A., & BRAY, F. (2021). Cancer statistics for the year 2020: An overview.International Journal of Cancer. Advance online publication.

FERNANDES GS, ANTUNES JE, PEREIRA MBM, MARINHO ACB, MACHADO B, MOREIRA ACS, FREITAS MP AND LANG K. (2015). In silico Pharmacokinetics Studies for Quinazolines Proposed as EGFR Inhibitors. Open Jour. Med. Chem. 5, 106-115.

FERREIRA, L. et al. Molecular Docking and Structure-Based Drug Design Strategies. Molecules, v. 20, n. 7, p. 13384–13421, 22 jul. 2015.

FRY, David W. et al. A specific inhibitor of the epidermal growth factor receptor tyrosine kinase. Science, v. 265, n. 5175, p. 1093-1095, 1994.

GOLAN, David et al. Princípios de farmacologia: a base fisiopatológica da farmacoterapia. 2009.

HUANG PH, CAVENEE WK, FURNARI FB, WHITE FM. Uncovering therapeutic targets for glioblastoma: a systems biology approach. Cell Cycle. 2007. 6(22):2750 4.

JACOB C. (1988). Statistical power analysis for the behavioral sciences. 2.ed. Hillsdale, NJ: Erlbaum.

KATZUNG BG, TREVOR AJ. Farmacologia básica e clínica. 13ª ed. Porto Alegre: Artmed, 2017.

KAUR, T. et al. Molecular Docking in Formulation and Development. Current Drug Discovery Technologies, v. 16, n. 1, p. 30–39, 2019.

KONTOYIANNI, M. Docking and Virtual Screening in Drug Discovery. Methods in Molecular Biology (Clifton, N.J.), v. 1647, p. 255–266, 2017.

LACROIX M. et al. A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. J. Neurosurg. 2001. 95(2):190-8.

LOPES, NEI R.; ABREU, MARIA THERESA CL. Inibidores de tirosino quinase na leucemia mieloide crônica. Revista Brasileira de Hematologia e Hemoterapia, v. 31, p. 449-453, 2009.

LOUIS DN. et al. World Health Organization Classification of Tumours of the Central Nervous System. 4a edição (vol 1) IARC/WHO Geneva. 2007.

MIKOVSKI, DANIELE et al. Química Medicinal E A Sua Importância No Desenvolvimento De Novos Fármacos. Revista Saúde e Desenvolvimento, v. 12, n. 13, p. 29-43, 2018.

MOLINARO, A.M., TAYLOR, J.W., WIENCKE, J.K., & WRENSCH, M.R. (2019). Genetic and molecular epidemiology of adult diffuse glioma. Nature Reviews Neurology, 15(7), 405-41721(6):720-7.

MOLINSPIRATION CHEMINFORMATICS. Disponível em: <https://www.molinspiration.com/>.

MORRIS, G. M.; LIM-WILBY, M. Molecular Docking. Em: KUKOL, A. (Ed.). Molecular Modeling of Proteins. Methods Molecular BiologyTM. Totowa, NJ: Humana Press, 2008. p. 365–382.

PATEL NP, LYON KA, HUANG JH. The effect of race on the prognosis of the glioblastoma patient: a brief review. Neurological research. 2019; 41(11), 967-971.

PINZI, L.; RASTELLI, G. Molecular Docking: Shifting Paradigms in Drug Discovery. International Journal of Molecular Sciences, v. 20, n. 18, p. 4331, jan. 2019.

REWCASTLE, G. W. et al. Synthesis of 4-(Phenylamino) pyrimidine Derivatives as ATP-Competitive Protein Kinase Inhibitors with Potential for Cancer Chemotherap. Current Organic Chemistry, v. 4, n. 7, p. 679-706, 2000.

ROUSSEAU A, MOKHTARI K, DUYCKAERTS C. The 2007 WHO classification of tumors of the central nervous system - what has changed? Curr Opin Neurol. 2008.

SANAI N, BERGER MS. Glioma extent of resection and its impact on patient outcome. Neurosurgery. 2008

SANTOS, T. S. Uso da Bioinformática para selecionar moléculas candidatas a fármacos.2022. Trabalho de Conclusão de Curso (graduação). Instituto Ciências da Vida da Universidade Federal de Juiz de Fora. Governador Valadares.83 f.2022.

SILVA B. V, et al., Proteínas quinases: características estruturais e inibidores químicos, Quim. Nova, Vol. 32, No. 2, 453-462, 2009.

STANZIONE, F.; GIANGRECO, I.; COLE, J. C. Use of molecular docking computational tools in drug discovery. Em: Progress in Medicinal Chemistry. [s.l.] Elsevier, 2021. v. 60p. 273–343.

TABATABAI G. et al. Molecular diagnostics of gliomas: the clinical perspective. Acta Neuropathol. 2010.120(5):585-92.

VERLI, H. (Org.). Bioinformática: da Biologia à Flexibilidade Molecular. 1ª edição: SBBq, 2014.

WEININGER, D. SMILES, A chemical language and information system. 1. Introduction to methodology and encoding rules. Journal of Chemical Information and Computer Sciences, v. 28, n. 1, p. 31–36, 1 fev. 1988.

WELLER M. Novel diagnostic and therapeutic approaches to malignant glioma. Swiss Med Wkly. 2011. 141:w13210.

WOLFF JE. et al. Nitrosourea efficacy in high-grade glioma: a survival gain analysis summarizing 504 cohorts with 24193 patients. J Neurooncol. 2008. 88(1):57-63.

Published

2026-02-09

How to Cite

DOS SANTOS, Tainara Soares; PEREIRA, Michelle Bueno de Moura; FRANCO, Larissa Moura de Matos; VALENTE, Ana Carolina Menezes Mendonça; ANTUNES, João Eustáquio. COMPUTATIONAL STUDIES FOR NEW POSSIBILITIES IN THE SYNTHESIS OF DRUG CANDIDATE MOLECULES. LUMEN ET VIRTUS, [S. l.], v. 17, n. 57, p. e12103, 2026. DOI: 10.56238/levv17n57-024. Disponível em: https://periodicos.newsciencepubl.com/LEV/article/view/12103. Acesso em: 17 feb. 2026.