GREEN CONCRETE: AN ALTERNATIVE FOR REDUCING CARBON DIOXIDE (CO2) EMISSIONS IN CIVIL CONSTRUCTION AND A SCOPE FOR OBTAINING LEED CERTIFICATION
DOI:
https://doi.org/10.56238/ERR01v10n6-058Keywords:
Green Concrete, Carbon Dioxide, Portland Cement, Supplemental Cementitious Materials (SCM), LEED CertificationAbstract
This study investigates green concrete as a strategic solution for the decarbonization of civil construction, focusing on the high emissions associated with cement production. It aims to analyze the reduction in carbon footprint obtained by partially replacing cement with Supplemental Cementitious Materials (SCMs) — such as blast furnace slag, fly ash, and calcined clays — and to establish the direct correlation of this mitigation with obtaining LEED certification. The research uses a methodology of bibliographic review and analysis of technical data on emissions, mechanical performance, and certification criteria. The results demonstrate that SCMs have drastically lower intrinsic emissions than cement (reductions greater than 90%) and frequently optimize mechanical performance and durability. The work concludes that the specification of green concrete, validated by tools such as Life Cycle Assessment (LCA) and Environmental Product Declarations (EPDs), constitutes a technically robust alternative and a pragmatic strategy to meet the credits in the Materials and Resources (MR) category of LEED.
Downloads
References
INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA (IBGE). Pesquisa Anual da Indústria da Construção (PAIC). Rio de Janeiro, [s.d.]. Disponível em: https://www.ibge.gov.br/estatisticas/economicas/industria/9018-pesquisa-anual-da-industria-da-construcao.html. Acesso em: [21.10.2025]
PAZ, Diogo Henrique Fernandes de. Produção de material cimentício a base de resíduo de construção e demolição para aplicação em bloco estrutural. Recife, 2019. 168 f. Tese (Doutorado em Engenharia Civil) – Universidade Federal de Pernambuco, Recife, 2019. Disponível em: https://repositorio.ufpe.br/bitstream/123456789/34491/1/TESE%20Diogo%20Henrique%20Fernandes%20de%20Paz.pdf. Acesso em: [21.10.2025]
LARIA, V.; MAROCHI, R. Alternativas de concreto sustentável para redução dos impactos ambientais. Artigo Científico (Engenharia Civil) - Faculdade Anhanguera de Caxias do Sul, Caxias do Sul, [s.d.]. Acesso em: 21 out. 2025
GREEN BUILDING COUNCIL BRASIL. Conheça a Certificação LEED. [Barueri, 2025]. Disponível em: https://www.gbcbrasil.org.br/certificacao/certificacao-leed/. Acesso em: 21 out. 2025.
MORICONI, G. Recyclable materials in concrete technology: sustainability and durability.Department of Materials and Environment Engineering and Physics, Universita Politecnica delle Marche, Ancona, Italyhttps://www.semanticscholar.org/paper/Recyclable-materials-in-concrete-technology-%3A-and-Moriconi/0a0ae3ffe66cdf300416f808096840084da3be01 Acesso em: 21 out. 2025.
ISAIA, G. C.; GASTALDINI, A. L. G. Sustentabilidade do concreto com altos teores de escória e cinzas volantes. REVISTA IBRACON DE ESTRUTURAS E MATERIAIS, v. 2, n. 3, p. 244-253, set. 2009.
TOMA, Nataly Ayumi. DESENVOLVIMENTO DE CONCRETO FLEXÍVEL COM REDUZIDO CONSUMO DE CIMENTO (GREEN ENGINEERED CEMENTITIOUS COMPOSITE). 2021. Trabalho de Conclusão de Curso (Bacharel em Engenharia Civil) – Curso de Engenharia Civil, Universidade do Vale do Rio dos Sinos - UNISINOS, São Leopoldo, 2021.
MEHTA, P. K.; MONTEIRO, P. J. M. Concreto: microestrutura, propriedades e materiais.
NEVILLE, A. M. Propriedades do concreto
ABNT NBR 16697:2018 - Cimento Portland — Requisitos.
CECARBON. Calculadora de consumo energético e emissões de carbono para edificações. São Paulo, 2025. Disponível em: https://www.cecarbon.com.br. Acesso em: 21 out. 2025.
Higgins, Brendan; Curran, Michael; and Spillane, John P., "Maximising the Potential Use of Ground Granulated Blast-Furnace Slag (GGBS) in Cement: An Irish Investigation" (2020). Civil Engineering Research in Ireland 2020. 2.
HELALI, S.; ALBALAWI, S.; ALANAZI, M.; ALANAZI, B.; BEL HADJ ALI, N. Optimizing Carbon Footprint and Strength in High-Performance Concrete Through Data-Driven Modeling. **Sustainability**, v. 17, art. 7808, 2025[cite: 4, 5, 6, 13]. Disponível em: https://doi.org/10.3390/sul7177808 [cite: 13]. Acesso em: 26 out. 2025.
Naraindas Bheel, Omrane Benjeddou, Hamad R. Almujibah, Suhail Ahmed Abbasi, Samiullah Sohu, Mahmood Ahmad, Mohanad Muayad Sabri Sabri, Effect of calcined clay and marble dust powder as cementitious material on the mechanical properties and embodied carbon of high strength concrete by using RSM-based modelling, Heliyon, Volume 9, Issue 4, 2023, e15029, ISSN 2405-8440, https://doi.org/10.1016/j.heliyon.2023.e15029. Acesso em: 26 out. 2025.
U.S. GREEN BUILDING COUNCIL. LEED v4.1 Building Design and Construction Reference Guide. Washington, D.C.: U.S. Green Building Council, 2021. Disponível em: <https://www.usgbc.org/leed/v41>. Acesso em: 26 out. 2025.
ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 16697: Cimento Portland – Requisitos. Rio de Janeiro: ABNT, 2018.
TAYLOR, H. F. W. Cement chemistry. 2. ed. London: Thomas Telford, 1997.
INTERNATIONAL ENERGY AGENCY (IEA). Cement: Tracking Clean Energy Progress. Paris: IEA, 2023. Disponível em: https://www.iea.org/energy-system/industry/cement. Acesso em: 8 nov. 2025.
SCRIVENER, Karen L.; GARTNER, Ellis M. Eco-efficient cements. In: GIANNINI, E. (ed.). RILEM Technical Letters, v. 3, p. 154-162, 2018.
GLOBAL CEMENT AND CONCRETE ASSOCIATION (GCCA). Concrete Future: GCCA 2050 Net Zero Concrete Roadmap. London: GCCA, 2021.
Banco de dados do CBAM (Carbon Border Adjustment Mechanism), conforme reportado pela plataforma Climatiq (dados de 2023).
O'FLYNN, D. et al. (2020). Mechanical and durability properties of GGBS concrete. Construction and Building Materials, Vol. 235.
ABNT NBR ISO 14025. (2017). Rótulos e declarações ambientais – Declarações ambientais do Tipo III – Princípios e procedimentos. Rio de Janeiro: ABNT.