Global Trends and Research Gaps in Pesticide Toxicology: A Scientometric Analysis Using Zebrafish (Danio rerio)

Authors

  • Alice Estivalet Visentini Author
  • Claudia Smaniotto Barin Author
  • Maiara Dorneles Costa Author
  • Carlos Eduardo Ratzinger Costodio Author
  • Mayck Souza de Oliveira Author
  • Vania Lucia Loro Author

DOI:

https://doi.org/10.56238/ERR01v10n4-021

Keywords:

Environmental, Ecotoxicology, Agriculture, Fish, 2,4-D

Abstract

This scientometric review mapped research on pesticide toxicity in zebrafish (Danio rerio), focusing on the most relevant scientific publications in the field. The search was conducted on the Web of Science platform using the keywords “TS (Topic Search) = (“Danio rerio” OR “zebrafish”) AND (“pesticides” OR “herbicides” OR “fungicides”)”. After applying exclusion criteria, 159 articles (2004–2024) were analyzed, revealing a high citation index and growing impact of this research line, especially in the past two years (2021 and 2022). The most active countries include China, the USA, and Brazil, with significant international collaborations, highlighting the global importance of the topic. Co-citation analysis of sources revealed the influence of journals such as Chemosphere and Aquatic Toxicology as essential for advancing research. Furthermore, the results indicate that zebrafish (Danio rerio) has been established as a key model for studying the toxicological effects of pesticides, particularly during early developmental stages, contributing to environmental risk assessment. The study also highlighted interdisciplinarity and the use of classical methodologies, such as the Bradford Protein Assay, in modern contexts. Finally, research trends were observed, emphasizing oxidative stress parameters, cardiotoxicity, and neurotoxicity, as well as gaps related to long-term pesticide exposure and underlying molecular mechanisms.

Downloads

Download data is not yet available.

References

Braga, A. P. A., Souza, L. R. D., Lima, M. G. F., Cruz, J. M., Souza, A. C. Z. D., Costa, M. S., & Marin-Morales, M. A. (2024). The zebrafish as an alternative animal model for ecotoxicological research and testing. Brazilian Archives of Biology and Technology, 67, e24220968. https://doi.org/10.1590/1678-4324-2024220968

Bridi, D., Altenhofen, S., Gonzalez, J. B., Reolon, G. K., & Bonan, C. D. (2017). Glyphosate and Roundup® alter morphology and behavior in zebrafish. Toxicology, 392, 32–39. https://doi.org/10.1016/j.tox.2017.10.007

Crosby, E. B., Bailey, J. M., Oliveri, A. N., & Levin, E. D. (2015). Neurobehavioral impairments caused by developmental imidacloprid exposure in zebrafish. Neurotoxicology and Teratology, 49, 81–90. https://doi.org/10.1016/j.ntt.2015.02.006

DeMicco, A., Cooper, K. R., Richardson, J. R., & White, L. A. (2010). Developmental neurotoxicity of pyrethroid insecticides in zebrafish embryos. Toxicological Sciences, 113(1), 177–186. https://doi.org/10.1093/toxsci/kfp258

Eddins, D., Cerutti, D., Williams, P., Linney, E., & Levin, E. D. (2010). Zebrafish provide a sensitive model of persisting neurobehavioral effects of developmental chlorpyrifos exposure: Comparison with nicotine and pilocarpine effects and relationship to dopamine deficits. Neurotoxicology and Teratology, 32(1), 99–108. https://doi.org/10.1016/j.ntt.2009.08.005

Haendel, M. A., Tilton, F., Bailey, G. S., & Tanguay, R. L. (2004). Developmental toxicity of the dithiocarbamate pesticide sodium metam in zebrafish. Toxicological Sciences, 81(2), 390–400. https://doi.org/10.1093/toxsci/kfh220

Hirsch, J. E. (2005). An index to quantify an individual’s scientific research output. Proceedings of the National Academy of Sciences, 102(46), 16569–16572. https://doi.org/10.1073/pnas.0507655102

Lykogianni, M., Bempelou, E., Karamaouna, F., & Aliferis, K. A. (2021). Do pesticides promote or hinder sustainability in agriculture? The challenge of sustainable use of pesticides in modern agriculture. Science of the Total Environment, 795, 148625. https://doi.org/10.1016/j.scitotenv.2021.148625

Mansouri, A., Cregut, M., Abbes, C., Durand, M. J., Landoulsi, A., & Thouand, G. (2017). The environmental issues of DDT pollution and bioremediation: A multidisciplinary review. Applied Biochemistry and Biotechnology, 181(1), 309–339. https://doi.org/10.1007/s12010-016-2214-5

Sánchez-Bayo, F., & Wyckhuys, K. A. (2019). Worldwide decline of the entomofauna: A review of its drivers. Biological Conservation, 232, 8–27. https://doi.org/10.1016/j.biocon.2019.01.020

Severo, E. S., Marins, A. T., Cerezer, C., Costa, D., Nunes, M., Prestes, O. D., & Loro, V. L. (2020). Ecological risk of pesticide contamination in a Brazilian river located near a rural area: A study of biomarkers using zebrafish embryos. Ecotoxicology and Environmental Safety, 190, 110071. https://doi.org/10.1016/j.ecoenv.2019.110071

Spinak, E. (1998). Scientometric indicators. Ciência da Informação, 27(2), 141–148.

Stehr, C. M., Linbo, T. L., Incardona, J. P., & Scholz, N. L. (2006). The developmental neurotoxicity of fipronil: Notochord degeneration and locomotor defects in zebrafish embryos and larvae. Toxicological Sciences, 92(1), 270–278. https://doi.org/10.1093/toxsci/kfj008

Tilton, F. A., Bammler, T. K., & Gallagher, E. P. (2011). Swimming impairment and acetylcholinesterase inhibition in zebrafish exposed to copper or chlorpyrifos separately, or as mixtures. Comparative Biochemistry and Physiology C-Toxicology & Pharmacology, 153(1), 9–16. https://doi.org/10.1016/j.cbpc.2010.07.008

Tudi, M., Daniel Ruan, H., Wang, L., Lyu, J., Sadler, R., Connell, D., & Phung, D. T. (2021). Agriculture development, pesticide application and its impact on the environment. International Journal of Environmental Research and Public Health, 18(3), 1112. https://doi.org/10.3390/ijerph18031112

van den Berg, H. (2009). Global status of DDT and its alternatives for use in vector control to prevent disease. Environmental Health Perspectives, 117(11), 1656–1663. https://doi.org/10.1289/ehp.0900785

van Raan, A. (1996). Advanced bibliometric methods as quantitative core of peer review based evaluation and foresight exercises. Scientometrics, 36(3), 397–420. https://doi.org/10.1007/BF02129602

Visentini, A. E., & et al. (2025). Do estágio embrio-larval ao adulto: Uma revisão narrativa sobre a toxicidade do ácido 2,4-diclorofenoxiacético em peixe-zebra (Danio rerio). In Open science research VIII (pp. 275–288). Cientifica Digital. https://doi.org/10.37885/241218515

Wang, Y., Lv, L., Yu, Y., Yang, G., Xu, Z., Wang, Q., & Cai, L. (2017). Single and joint toxic effects of five selected pesticides on the early life stages of zebrafish (Danio rerio). Chemosphere, 170, 61–67. https://doi.org/10.1016/j.chemosphere.2016.11.130

Yang, D. R., Lauridsen, H., Buels, K., Chi, L. H., La Du, J., Bruun, D. A., Olson, J. R., Tanguay, R. L., & Lein, P. J. (2011). Chlorpyrifos-oxon disrupts zebrafish axonal growth and motor behavior. Toxicological Sciences, 121(1), 146–159. https://doi.org/10.1093/toxsci/kfr028

Yen, J., Donerly, S., Levin, E. D., & Linney, E. A. (2011). Differential acetylcholinesterase inhibition of chlorpyrifos, diazinon and parathion in larval zebrafish. Neurotoxicology and Teratology, 33(6), 735–741. https://doi.org/10.1016/j.ntt.2011.10.004

Yu, L., Chen, M. L., Liu, Y. H., Gui, W. J., & Zhu, G. N. (2013). Thyroid endocrine disruption in zebrafish larvae following exposure to hexaconazole and tebuconazole. Aquatic Toxicology, 138, 35–42. https://doi.org/10.1016/j.aquatox.2013.04.001

Zuanazzi, N. R., de Castilhos Ghisi, N., & Oliveira, E. C. (2020). Analysis of global trends and gaps for studies about 2,4-D herbicide toxicity: A scientometric review. Chemosphere, 241, 125016. https://doi.org/10.1016/j.chemosphere.2019.125016

Downloads

Published

2025-09-15

Issue

Section

Articles

How to Cite

Global Trends and Research Gaps in Pesticide Toxicology: A Scientometric Analysis Using Zebrafish (Danio rerio). (2025). ERR01, 10(4), e8100 . https://doi.org/10.56238/ERR01v10n4-021