UM PANORAMA SOBRE O ESPECTRO ECONÔMICO DAS FOLHAS NA VEGETAÇÃO TROPICAL
DOI:
https://doi.org/10.56238/ERR01v11n1-003Palavras-chave:
Filtros Ambientais, Atributos Funcionais, Nitrogênio, Fósforo, Área Foliar Específica, Revisão Sistemática, Florestas TropicaisResumo
O Espectro Econômico das Folhas (Leaf Economic Spectrum – LES) descreve as diferentes estratégias das folhas na captura e no uso de recursos, variando desde espécies de crescimento rápido, com folhas de curta duração, até aquelas que adotam uma abordagem mais conservadora, investindo em folhas duráveis e eficientes no uso de recursos. O objetivo desta revisão sistemática é quantificar e investigar estudos sobre o Espectro Econômico das Folhas (LES) na vegetação tropical, analisando sua associação com atributos funcionais, a distribuição geográfica, os tipos de vegetação, os hábitos de vida das plantas e os principais fatores bióticos e abióticos que moldam essas características. O presente estudo realizou uma revisão sistemática em bases de dados indexadas (Web of Science, Scopus) nos últimos 20 anos (2004–2024). Foram identificadas 160 publicações. A produção de artigos que investigam propriedades funcionais das folhas e o espectro econômico das folhas nos trópicos, tema desta revisão sistemática, cresceu consideravelmente nos últimos oito anos. Identificou-se uma associação dominante de estudos publicados com a região Neotropical. Os atributos funcionais foliares mais comumente estudados no âmbito do LES (por exemplo, área foliar específica, concentração de nitrogênio foliar e capacidade fotossintética) mostraram-se associados à taxa de crescimento das plantas em nossa análise. A distribuição das pesquisas sobre o LES indica que os estudos em vegetação tropical apresentam maior esforço amostral em florestas tropicais e subtropicais secas e úmidas de folhas largas em comparação com outros tipos de vegetação. Apesar dos avanços, permanecem lacunas significativas de conhecimento, especialmente no que se refere a atributos fisiológicos e a grupos vegetais pouco estudados, como lianas, epífitas e briófitas. Pesquisas futuras devem priorizar uma gama mais ampla de formas de vida e atributos funcionais, integrando abordagens ecofisiológicas e biogeoquímicas para melhor prever as respostas da vegetação tropical às mudanças ambientais e apoiar estratégias mais eficazes de conservação e restauração.
Downloads
Referências
Anderegg, W. R., Trugman, A. T., Bowling, D. R., Salvucci, G., & Tuttle, S. E. (2019). Plant functional traits and climate influence drought intensification and land–atmosphere feedbacks. Proceedings of the National Academy of Sciences, 116(28), 14071-14076.
Aguilar-Peralta, J. S., Maldonado-López, Y., Espírito-Santo, M. M., Reyes-Chilpa, R., Oyama, K., Fagundes, M., ... & Cuevas-Reyes, P. (2022). Contrasting successional stages lead to intra-and interspecific differences in leaf functional traits and herbivory levels in a Mexican tropical dry forest. European Journal of Forest Research, 141(2), 225-239.
Albert, C. H., Thuiller, W., Yoccoz, N. G., Douzet, R., Aubert, S., & Lavorel, S. (2010). A multi‐trait approach reveals the structure and the relative importance of intra‐vs. interspecific variability in plant traits. Functional Ecology, 24(6), 1192-1201.
Araújo, I., Marimon, B. S., Scalon, M. C., Cruz, W. J., Fauset, S., Vieira, T. C., ... & Gloor, M. U. (2021). Intraspecific variation in leaf traits facilitates the occurrence of trees at the Amazonia–Cerrado transition. Flora, 279, 151829.
Araújo, I., Morandi, P. S., Müller, A. O., Mariano, L. H., Alvarez, F., da Silva, I. V., ... & Marimon, B. S. (2022). Leaf functional traits and monodominance in Southern Amazonia tropical forests. Plant Ecology, 223(2), 185-200.
Asner, G. P., & Martin, R. E. (2012). Contrasting leaf chemical traits in tropical lianas and trees: implications for future forest composition. Ecology Letters, 15(9), 1001-1007.
Baraloto, C., Hardy, O. J., Paine, C. T., Dexter, K. G., Cruaud, C., Dunning, L. T., ... & Chave, J. (2012). Using functional traits and phylogenetic trees to examine the assembly of tropical tree communities. Journal of ecology, 100(3), 690-701.
Barlow, J., França, F., Gardner, T. A., Hicks, C. C., Lennox, G. D., Berenguer, E., ... & Graham, N. A. (2018). The future of hyperdiverse tropical ecosystems. Nature, 559(7715), 517-526.
Baruch, Z., & Goldstein, G. (1999). Leaf construction cost, nutrient concentration, and net CO 2 assimilation of native and invasive species in Hawaii. Oecologia, 121, 183-192.
de Bello F, Lavorel S, Hallett LM, Valencia E, Garnier E, Roscher C, Conti L, Galland T, Goberna M, Májeková M, Montesinos-Navarro A. Functional trait effects on ecosystem stability: assembling the jigsaw puzzle. Trends in Ecology & Evolution. 2021 Sep 1;36(9):822-36.
Bernard‐Verdier, M., Navas, M. L., Vellend, M., Violle, C., Fayolle, A., & Garnier, E. (2012). Community assembly along a soil depth gradient: contrasting patterns of plant trait convergence and divergence in a Mediterranean rangeland. Journal of ecology, 100(6), 1422-1433.
Braga, N. D. S., Vitória, A. P., Souza, G. M., Barros, C. F., & Freitas, L. (2016). Weak relationships between leaf phenology and isohydric and anisohydric behavior in lowland wet tropical forest trees. Biotropica, 48(4), 453-464.
Brookshire, E. J., & Thomas, S. A. (2013). Ecosystem consequences of tree monodominance for nitrogen cycling in lowland tropical forest. PLoS One, 8(7), e70491.
Carlucci, M. B., Brancalion, P. H., Rodrigues, R. R., Loyola, R., & Cianciaruso, M. V. (2020). Functional traits and ecosystem services in ecological restoration. Restoration Ecology, 28(6), 1372-1383.
Chen, X., Sun, J., Wang, M., Lyu, M., Niklas, K. J., Michaletz, S. T., ... & Cheng, D. (2020). The leaf economics spectrum constrains phenotypic plasticity across a light gradient. Frontiers in Plant Science, 11, 735.
Cheng, J., Chu, P., Chen, D., & Bai, Y. (2016). Functional correlations between specific leaf area and specific root length along a regional environmental gradient in Inner Mongolia grasslands. Functional ecology, 30(6), 985-997.
Cintra, I., Sfair, J. C., Takata, E. S., & Almeida, J. (2024). Functional structure of an herbaceous community on a natural regeneration gradient in a seasonally dry tropical forest. Acta Oecologica, 123, 103997.
Connell, J. H., & Lowman, M. D. (1989). Low-diversity tropical rain forests: some possible mechanisms for their existence. The American Naturalist, 134(1), 88-119.
de Souza, B. C., Carvalho, E. C. D., Oliveira, R. S., de Araujo, F. S., de Lima, A. L. A., & Rodal, M. J. N. (2020). Drought response strategies of deciduous and evergreen wood species in a seasonally dry neotropical forest. Oecologia, 194, 221-236.
Díaz, S., Kattge, J., Cornelissen, J. H., Wright, I. J., Lavorel, S., Dray, S., ... & Gorné, L. D. (2016). The global spectrum of plant form and function. Nature, 529(7585), 167-171.
Delpiano, C. A., Prieto, I., Loayza, A. P., Carvajal, D. E., & Squeo, F. A. (2020). Different responses of leaf and root traits to changes in soil nutrient availability do not converge into a community-level plant economics spectrum. Plant and Soil, 450, 463-478.
Dusenge, M. E., Duarte, A. G., & Way, D. A. (2019). Plant carbon metabolism and climate change: elevated CO2 and temperature impacts on photosynthesis, photorespiration and respiration. New Phytologist, 221(1), 32-49.
Eamus, D. (1999). Ecophysiological traits of deciduous and evergreen wood species in the seasonally dry tropics. Trends in Ecology & Evolution, 14(1), 11-16.
Falcão, H. M., Medeiros, C. D., Almeida-Cortez, J., & Santos, M. G. (2017). Leaf construction cost is related to water availability in three species of different growth forms in a Brazilian tropical dry forest. Theoretical and Experimental Plant Physiology, 29, 95-108.
Feng, Y. L., Fu, G. L., & Zheng, Y. L. (2008). Specific leaf area relates to the differences in leaf construction cost, photosynthesis, nitrogen allocation, and use efficiencies between invasive and noninvasive alien congeners. Planta, 228, 383-390.
Ferrero, M. C., Tecco, P. A., & Gurvich, D. E. (2022). Is intraspecific variability an advantage in mountain invasions? Comparing functional trait variation in an invasive and a native wood species along multiple environmental gradients. Biological Invasions, 24(5), 1393-1412.
Freitas, G. V., Da Cunha, M., & Vitória, A. P. (2024). A systematic review of leaf and wood traits in the Neotropics: environmental gradients and functionality. Trees, 38(3), 551-572.
Garnier E, Navas ML, Grigulis K. Plant functional diversity: organism traits, community structure, and ecosystem properties. Oxford University Press; 2016.
Gianoli, E. (2015). The behavioural ecology of climbing plants. AoB plants, 7, plv013.
Glime, J. M. (2007). Economic and ethnic uses of bryophytes. Flora of North America, 27(1919), 14-41.
Goffinet, B. (2009). Morphology, anatomy, and classification of the Bryophyta. Bryophyte biology.
Gotsch, S. G., Nadkarni, N., Darby, A., Glunk, A., Dix, M., Davidson, K., & Dawson, T. E. (2015). Life in the treetops: ecophysiological strategies of canopy epiphytes in a tropical montane cloud forest. Ecological Monographs, 85(3), 393-412.
Götzenberger, L., de Bello, F., Bråthen, K. A., Davison, J., Dubuis, A., Guisan, A., ... & Zobel, M. (2012). Ecological assembly rules in plant communities—approaches, patterns and prospects. Biological reviews, 87(1), 111-127.
Gratani, L., Covone, F., & Larcher, W. (2006). Leaf plasticity in response to light of three evergreen species of the Mediterranean maquis. Trees, 20, 549-558.
Grime, J. P. (1974). Vegetation classification by reference to strategies. Nature, 250(5461), 26-31.
Grime, J. P. (1977). Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. The American naturalist, 111(982), 1169-1194.
Grime, J. P., & Pierce, S. (2012). The evolutionary strategies that shape ecosystems. John Wiley & Sons.
Haddaway, NR, Page, MJ, Pritchard, CC, & McGuinness, LA (2022). PRISMA2020: Um pacote R e aplicativo Shiny para produzir diagramas de fluxo compatíveis com PRISMA 2020, com interatividade para transparência digital otimizada e Open Synthesis Campbell Systematic Reviews, 18, e1230. https://doi.org/10.1002/cl2.1230
Harms, K. E., Condit, R., Hubbell, S. P., & Foster, R. B. (2001). Habitat associations of trees and shrubs in a 50‐ha neotropical forest plot. Journal of ecology, 89(6), 947-959.
Hikosaka, K. (2014). Optimal nitrogen distribution within a leaf canopy under direct and diffuse light. Plant, Cell & Environment, 37(9), 2077-2085.
HUANG, Y. T., YAO, L., AI, X. R., LÜ, S. A., & DING, Y. (2015). Quantitative classification of the subtropical evergreen-deciduous broadleaved mixed forest and the deciduous and evergreen species composition structure across two national nature reserves in the southwest of Hubei, China. Chinese Journal of Plant Ecology, 39(10), 990-1002.
Hulshof, C. M., & Swenson, N. G. (2010). Variation in leaf functional trait values within and across individuals and species: an example from a Costa Rican dry forest. Functional ecology, 24(1), 217-223.
Kikuzawa, K., & Lechowicz, M. J. (2006). Toward synthesis of relationships among leaf longevity, instantaneous photosynthetic rate, lifetime leaf carbon gain, and the gross primary production of forests. The American Naturalist, 168(3), 373-383.
Kröber, W., Heklau, H., & Bruelheide, H. (2015). Leaf morphology of 40 evergreen and deciduous broadleaved subtropical tree species and relationships to functional ecophysiological traits. Plant Biology, 17(2), 373-383.
Lambers, H., Chapin III, F. S., & Pons, T. L. (2008). Plant physiological ecology. Springer Science & Business Media.
Lapola, D. M., Pinho, P., Barlow, J., Aragão, L. E., Berenguer, E., Carmenta, R., ... & Walker, W. S. (2023). The drivers and impacts of Amazon forest degradation. Science, 379(6630), eabp8622.
Laurance, W. F., Pérez-Salicrup, D., Delamônica, P., Fearnside, P. M.’ D'Angelo, S., Jerozolinski, A., ... & Lovejoy, T. E. (2001). Rain forest fragmentation and the structure of Amazonian liana communities. Ecology, 82(1), 105-116.
Lavorel, S., & Garnier, E. (2002). Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Functional ecology, 16(5), 545-556.
Lavorel, S., McIntyre, S., Landsberg, J., & Forbes, T. D. A. (1997). Plant functional classifications: from general groups to specific groups based on response to disturbance. Trends in Ecology & Evolution, 12(12), 474-478.
Lavergne, S., Mouquet, N., Thuiller, W., & Ronce, O. (2010). Biodiversity and climate change: integrating evolutionary and ecological responses of species and communities. Annual review of ecology, evolution, and systematics, 41(1), 321-350.
Lebrija-Trejos, E., Pérez-García, E. A., Meave, J. A., Bongers, F., & Poorter, L. (2010). Functional traits and environmental filtering drive community assembly in a species‐rich tropical system. Ecology, 91(2), 386-398.
Lebrija-Trejos, E., Pérez-García, E. A., Meave, J. A., Poorter, L., & Bongers, F. (2011). Environmental changes during secondary succession in a tropical dry forest in Mexico. Journal of Tropical Ecology, 27(5), 477-489.
Li, F., Yang, Q., Zan, Q., Tam, N. F., Shin, P. K., Vrijmoed, L. L., & Cheung, S. G. (2011). Differences in leaf construction cost between alien and native mangrove species in Futian, Shenzhen, China: implications for invasiveness of alien species. Marine pollution bulletin, 62(9), 1957-1962.
Limberger, O., Homeier, J., Farwig, N., Pucha-Cofrep, F., Fries, A., Leuschner, C., ... & Bendix, J. (2021). Classification of tree functional types in a megadiverse tropical mountain forest from leaf optical metrics and functional traits for two related ecosystem functions. Forests, 12(5), 649.
Liao, J. X., Shi, H. W., Jiang, M. X., & Huang, H. D. (2007). Leaf traits of natural populations of Adiantum reniforme var. sinensis, endemic to the Three Gorges region in China. Photosynthetica, 45, 541-546.
Lohbeck, M., Lebrija-Trejos, E., Martínez-Ramos, M., Meave, J. A., Poorter, L., & Bongers, F. (2015). Functional trait strategies of trees in dry and wet tropical forests are similar but differ in their consequences for succession. PloS one, 10(4), e0123741.
Loureiro, N., Mantuano, D., Manhães, A., & Sansevero, J. (2023). Use of the trait-based approach in ecological restoration studies: a global review. Trees, 37(5), 1287-1297.
Malhi, Y., Gardner, T. A., Goldsmith, G. R., Silman, M. R., & Zelazowski, P. (2014). Tropical forests in the Anthropocene. Annual Review of Environment and Resources, 39(1), 125-159.
Martinelli, L. A., Nardoto, G. B., Soltangheisi, A., Reis, C. R. G., Abdalla-Filho, A. L., Camargo, P. B. D., ... & Vieira, S. A. (2021). Determining ecosystem functioning in Brazilian biomes through foliar carbon and nitrogen concentrations and stable isotope ratios. Biogeochemistry, 154, 405-423.
Mason, N.W.H., Richardson, S.J., Peltzer, D.A., de Bello, F., Wardle, D.A., Allen, R.B., 2012. Changes in coexistence mechanisms along a long-term soil chronosequence revealed by functional trait diversity. J. Ecol. 100, 678–689.
Matesanz, S., Blanco‐Sánchez, M., Ramos‐Muñoz, M., de la Cruz, M., Benavides, R., & Escudero, A. (2021). Phenotypic integration does not constrain phenotypic plasticity: differential plasticity of traits is associated to their integration across environments. New Phytologist, 231(6), 2359-2370.
McGill, B., Enquist, B.J., Weiher, E., Westoby, M., 2006. Rebuilding community ecology from functional traits. Trends Ecol. Evol. 21, 178–185.
Millones-Gómez PA, Yangali-Vicente JS, Arispe-Alburqueque CM, Rivera-Lozada O, Calla-Vásquez KM, Calla-Poma RD, Requena-Mendizábal MF, Minchón-Medina CA. Research policies and scientific production: A study of 94 Peruvian universities. PLoS One. 2021 May 28;16(5):e0252410. doi: 10.1371/journal.pone.0252410. PMID: 34048496; PMCID: PMC8162649.
Nascimento MT, Barbosa RI, Dexter KG, de Castilho CV, da Silva Carvalho LC, Villela DM (2017) Is the Peltogyne gracilipes monodominant forest characterised by distinct soils? Acta Oecologica 85:104–107
Nijhout, H. F. (2003). Development and evolution of adaptive polyphenisms. Evolution & development, 5(1), 9-18.
Nicotra, A. B., Chazdon, R. L., & Iriarte, S. V. (1999). Spatial heterogeneity of light and wood seedling regeneration in tropical wet forests. Ecology, 80(6), 1908-1926.
Ou, G., Zhao, K., Zuo, R., & Wu, J. (2024). Effects of research funding on the academic impact and societal visibility of scientific research. Journal of Informetrics, 18(4), 101592.
Ouédraogo, D. Y., Fayolle, A., Gourlet‐Fleury, S., Mortier, F., Freycon, V., Fauvet, N., ... & Favier, C. (2016). The determinants of tropical forest deciduousness: disentangling the effects of rainfall and geology in central Africa. Journal of Ecology, 104(4), 924-935.
Ouzzani, M., Hammady, H., Fedorowicz, Z., & Elmagarmid, A. (2016). Rayyan – um aplicativo web e móvel para revisões sistemáticas. Revisões sistemáticas, 5 , 1-10.
Pandi, V., Babu, K. N., & Dar, A. A. (2023). Differential impact of liana colonization on the leaf functional traits of co-occurring deciduous and evergreen trees in a tropical dry scrub forest. Journal of Plant Research, 1-12.
Paul, G. S., & Yavitt, J. B. (2011). Tropical vine growth and the effects on forest succession: a review of the ecology and management of tropical climbing plants. The Botanical Review, 77, 11-30.
Peh, K. S. H., Lewis, S. L., & Lloyd, J. (2011). Mechanisms of monodominance in diverse tropical tree‐dominated systems. Journal of Ecology, 99(4), 891-898.
Petter, G., Wagner, K., Wanek, W., Sánchez Delgado, E. J., Zotz, G., Cabral, J. S., & Kreft, H. (2016). Functional leaf traits of vascular epiphytes: vertical trends within the forest, intra‐and interspecific trait variability, and taxonomic signals. Functional Ecology, 30(2), 188-198.
Pierce, S., Negreiros, D., Cerabolini, B. E., Kattge, J., Díaz, S., Kleyer, M., ... & Tampucci, D. (2017). A global method for calculating plant CSR ecological strategies applied across biomes world‐wide. Functional ecology, 31(2), 444-457.
Pimentel, C., Ribeiro, R. V., Santos, M. G. D., Oliveira, R. F. D., & Machado, E. C. (2004). Effects of changes in the photosynthetic photon flux density on net gas exchange of Citrus limon and Nicotiana tabacum. Brazilian Journal of Plant Physiology, 16, 77-82.
Pineda‐García, F., Paz, H., & Meinzer, F. C. (2013). Drought resistance in early and late secondary successional species from a tropical dry forest: the interplay between xylem resistance to embolism, sapwood water storage and leaf shedding. Plant, Cell & Environment, 36(2), 405-418.
Pinheiro, C., & Chaves, M. M. (2011). Photosynthesis and drought: can we make metabolic connections from available data?. Journal of experimental botany, 62(3), 869-882.
Poorter, H., & Evans, J. R. (1998). Photosynthetic nitrogen-use efficiency of species that differ inherently in specific leaf area. Oecologia, 116, 26-37.
Reich, P. B., & Oleksyn, J. (2004). Global patterns of plant leaf N and P in relation to temperature and latitude. Proceedings of the National Academy of Sciences, 101(30), 11001-11006.
Reich, P. B. (2014). The world‐wide ‘fast–slow’plant economics spectrum: a traits manifesto. Journal of ecology, 102(2), 275-301.
Sanaphre-Villanueva, L., Pineda-García, F., Dáttilo, W., Pinzón-Pérez, L. F., Ricaño-Rocha, A., & Paz, H. (2022). Above-and below-ground trait coordination in tree seedlings depend on the most limiting resource: a test comparing a wet and a dry tropical forest in Mexico. PeerJ, 10, e13458.
Schneider, H. M. (2022). Characterization, costs, cues and future perspectives of phenotypic plasticity. Annals of botany, 130(2), 131-148.
Schnitzer, S. A. (2005). A mechanistic explanation for global patterns of liana abundance and distribution. The american naturalist, 166(2), 262-276.
Schnitzer, S. A., & Bongers, F. (2002). The ecology of lianas and their role in forests. Trends in Ecology & Evolution, 17(5), 223-230.
Schnitzer, S. A., & Bongers, F. (2011). Increasing liana abundance and biomass in tropical forests: emerging patterns and putative mechanisms. Ecology letters, 14(4), 397-406.
Schönbeck, L., Lohbeck, M., Bongers, F., Martinez Ramos, M., & Sterck, F. (2015). How do light and water acquisition strategies affect species selection during secondary succession in moist tropical forests?. Forests, 6(6), 2047-2065.
Shen, Y., Umaña, M. N., Li, W., Fang, M., Chen, Y., Lu, H., & Yu, S. (2019). Coordination of leaf, stem and root traits in determining seedling mortality in a subtropical forest. Forest Ecology and Management, 446, 285-292.
Shi, Z., Haworth, M., Feng, Q., Cheng, R., & Centritto, M. (2015). Growth habit and leaf economics determine gas exchange responses to high elevation in an evergreen tree, a deciduous shrub and a herbaceous annual. AoB Plants, 7, plv115.
Silva, J. O., Espírito-Santo, M. M., & Morais, H. C. (2015). Leaf traits and herbivory on deciduous and evergreen trees in a tropical dry forest. Basic and Applied Ecology, 16(3), 210-219.
Slot, M., & Winter, K. (2017). In situ temperature response of photosynthesis of 42 tree and liana species in the canopy of two Panamanian lowland tropical forests with contrasting rainfall regimes. New Phytologist, 214(3), 1103-1117.
Smith-Martin, C. M., Jansen, S., Brodribb, T. J., Medina-Vega, J. A., Lucani, C., Huppenberger, A., & Powers, J. S. (2022). Lianas and trees from a seasonally dry and a wet tropical forest did not differ in embolism resistance but did differ in xylem anatomical traits in the dry forest. Frontiers in Forests and Global Change, 5, 834891.
Song, L. Y., Ni, G. Y., Chen, B. M., & Peng, S. L. (2007). Energetic cost of leaf construction in the invasive weed Mikania micrantha HBK and its co-occurring species: implications for invasiveness. Botanical Studies, 48(3), 331-338.
Suárez, N. (2003). Leaf longevity, construction, and maintenance costs of three mangrove species under field conditions. Photosynthetica, 41, 373-381.
Suárez, N. (2005). Leaf construction cost in Avicennia germinans as affected by salinity under field conditions. Biologia plantarum, 49, 111-116.
Ter Steege, H., Pitman, N., Sabatier, D., Castellanos, H., Van Der Hout, P., Daly, D. C., ... & Morawetz, W. (2003). A spatial model of tree α-diversity and tree density for the Amazon. Biodiversity & Conservation, 12, 2255-2277.
Tomlinson, K. W., Poorter, L., Sterck, F. J., Borghetti, F., Ward, D., de Bie, S., & van Langevelde, F. (2013). Leaf adaptations of evergreen and deciduous trees of semi‐arid and humid savannas on three continents. Journal of Ecology, 101(2), 430-440.
van der Heijden, G. M., Schnitzer, S. A., Powers, J. S., & Phillips, O. L. (2013). Liana impacts on carbon cycling, storage and sequestration in tropical forests. Biotropica, 45(6), 682-692.
Van der Sande MT, Arets EJ, Peña‐Claros M, de Avila AL, Roopsind A, Mazzei L, Ascarrunz N, Finegan B, Alarcón A, Cáceres‐Siani Y, Licona JC. Old‐growth Neotropical forests are shifting in species and trait composition. Ecological Monographs. 2016 May;86(2):228-43.
Veenendaal, E. M., & Swaine, M. D. (1998). Limits to tree species distribution in lowland tropical rainforests. Dynamics of tropical communities, 163-191.
Vitória, A. P., Ávila-Lovera, E., de Oliveira Vieira, T., do Couto-Santos, A. P. L., Pereira, T. J., Funch, L. S., ... & Santiago, L. S. (2018). Isotopic composition of leaf carbon (δ13C) and nitrogen (δ15N) of deciduous and evergreen understorey trees in two tropical Brazilian Atlantic forests. Journal of Tropical Ecology, 34(2), 145-156.
Vitória AP, Alves LF, Santiago LS (2019) Atlantic forest and leaf traits: an overview. Trees 33:1535–1547. https://doi.org/10. 1007/s00468-019-01864-z
Vleminckx, J., Fortunel, C., Valverde‐Barrantes, O., Timothy Paine, C. E., Engel, J., Petronelli, P., ... & Baraloto, C. (2021). Resolving whole‐plant economics from leaf, stem and root traits of 1467 Amazonian tree species. Oikos, 130(7), 1193-1208.
Wallwork, A., Castro-Trujillo, B., Banin, L. F., Dent, D. H., Skiba, U., Kerdraon, D., & Sayer, E. J. (2023). Soil carbon dynamics are linked to tree species growth strategy in a naturally regenerating tropical forest. Frontiers in Forests and Global Change, 6, 1232694.
Wang, J., Wen, X., Lyu, S., & Guo, Q. (2021). Soil properties mediate ecosystem intrinsic water use efficiency and stomatal conductance via taxonomic diversity and leaf economic spectrum. Science of the Total Environment, 783, 146968.
Way, D. A., & Oren, R. A. M. (2010). Differential responses to changes in growth temperature between trees from different functional groups and biomes: a review and synthesis of data. Tree physiology, 30(6), 669-688.
Webb, C. O., & Peart, D. R. (2000). Habitat associations of trees and seedlings in a Bornean rain forest. Journal of Ecology, 88(3), 464-478.
Werden, L. K., Waring, B. G., Smith-Martin, C. M., & Powers, J. S. (2018). Tropical dry forest trees and lianas differ in leaf economic spectrum traits but have overlapping water-use strategies. Tree Physiology, 38(4), 517-530.
Wright, I. J., & Westoby, M. (2001). Understanding seedling growth relationships through specific leaf area and leaf nitrogen concentration: generalisations across growth forms and growth irradiance. Oecologia, 127, 21-29.
Wright, IJ, Reich, PB, Westoby, M., Ackerly, DD, Baruch, Z., Bongers, F., ... & Villar, R. (2004). O espectro mundial da economia foliar. Natureza , 428 (6985), 821-827.
Wuyun, T., Zhang, L., Tosens, T., Liu, B., Mark, K., Morales-Sánchez, J. Á., ... & Niinemets, Ü. (2024). Extremely thin but very robust: Surprising cryptogam trait combinations at the end of the leaf economics spectrum. Plant Diversity, 46(5), 621-629.
Wyka, T. P., Oleksyn, J., Karolewski, P., & Schnitzer, S. A. (2013). Phenotypic correlates of the lianescent growth form: a review. Annals of Botany, 112(9), 1667-1681.
Xiao, Y., Liu, S., Tong, F., Chen, B., & Kuang, Y. (2018). Dominant species in subtropical forests could decrease photosynthetic N allocation to carboxylation and bioenergetics and enhance leaf construction costs during forest succession. Frontiers in Plant Science, 9, 117.
Yan, W., Zhong, Y., & Shangguan, Z. (2016). A meta-analysis of leaf gas exchange and water status responses to drought. Scientific Reports, 6(1), 20917.
Zakharova, L., Meyer, K. M., & Seifan, M. (2019). Trait-based modelling in ecology: a review of two decades of research. Ecological Modelling, 407, 108703.
Zhang, S., Zang, R., & Sheil, D. (2022). Rare and common species contribute disproportionately to the functional variation within tropical forests. Journal of Environmental Management, 304, 114332.
Zhu, S. D., & Cao, K. F. (2010). Contrasting cost–benefit strategy between lianas and trees in a tropical seasonal rain forest in southwestern China. Oecologia, 163, 591-599.