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ABSTRACT

The Leaf Economic Spectrum (LES) describes the different strategies of leaves in capturing
and using resources, ranging from fast-growing species with short-lived leaves to those that
adopt a more conservative approach, investing in durable and efficient leaves in the use of
resources. The objective of this systematic review is to quantify and investigate studies on
the Leaf Economic Spectrum (LES) in tropical vegetation, analyzing the association with
functional traits, their geographic distribution, vegetation types, plant life habits and the main
biotic and abiotic factors that shape these characteristics. The current study performed a
systematic review of the indexed databases (Web of Science, Scopus) in the last 20 years
(2004-2024). We identified 160 publications. The discovery of articles investigating leaf
functional properties and the leaf economic spectrum in the tropics, the topic of our systematic
review, has grown considerably over the past eight years. We identified a dominant
association of studies published with the Neotropical region. The most common functional
leaf attributes studied in the framework of LES (e.g. specific leaf area, leaf nitrogen
concentration and photosynthetic capacity) were all found to be associated with the plant
growth rate in our research. The distribution of LES research shows that LES studies of
tropical vegetation cover a relatively higher amount of sampling for tropical and subtropical
dry and moist broadleaf forests than others. Despite the advances, significant knowledge
gaps remain, particularly regarding physiological traits and understudied plant groups such
as lianas, epiphytes, and bryophytes. Future research efforts must prioritize a broader range
of life forms and functional traits, integrating eco-physiological and biogeochemical
approaches to better predict the responses of tropical vegetation to environmental changes
and to support more effective conservation and restoration strategies.

Keywords: Environmental Filters. Functional Traits. Nitrogen. Phosphorus. Specific Leaf
Area. Systematic Review. Tropical Forests.
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RESUMO

O Espectro Econdmico das Folhas (Leaf Economic Spectrum — LES) descreve as diferentes
estratégias das folhas na captura e no uso de recursos, variando desde espécies de
crescimento rapido, com folhas de curta duragao, até aquelas que adotam uma abordagem
mais conservadora, investindo em folhas duraveis e eficientes no uso de recursos. O objetivo
desta revisao sistematica é quantificar e investigar estudos sobre o Espectro Econdmico das
Folhas (LES) na vegetacéo tropical, analisando sua associagdo com atributos funcionais, a
distribuicdo geografica, os tipos de vegetacao, os habitos de vida das plantas e os principais
fatores bidticos e abidticos que moldam essas caracteristicas. O presente estudo realizou
uma revisdo sistematica em bases de dados indexadas (Web of Science, Scopus) nos
ultimos 20 anos (2004—-2024). Foram identificadas 160 publica¢des. A producao de artigos
que investigam propriedades funcionais das folhas e o espectro econémico das folhas nos
tropicos, tema desta revisdo sistematica, cresceu consideravelmente nos ultimos oito anos.
Identificou-se uma associagao dominante de estudos publicados com a regido Neotropical.
Os atributos funcionais foliares mais comumente estudados no ambito do LES (por exemplo,
area foliar especifica, concentragcdo de nitrogénio foliar e capacidade fotossintética)
mostraram-se associados a taxa de crescimento das plantas em nossa analise. A distribuigao
das pesquisas sobre o LES indica que os estudos em vegetacgéao tropical apresentam maior
esforco amostral em florestas tropicais e subtropicais secas e umidas de folhas largas em
comparagao com outros tipos de vegetacdo. Apesar dos avangos, permanecem lacunas
significativas de conhecimento, especialmente no que se refere a atributos fisiolégicos e a
grupos vegetais pouco estudados, como lianas, epifitas e bridfitas. Pesquisas futuras devem
priorizar uma gama mais ampla de formas de vida e atributos funcionais, integrando
abordagens ecofisioldgicas e biogeoquimicas para melhor prever as respostas da vegetacao
tropical as mudangas ambientais e apoiar estratégias mais eficazes de conservagao e
restauracao.

Palavras-chave: Filtros Ambientais. Atributos Funcionais. Nitrogénio. Fésforo. Area Foliar
Especifica. Revisédo Sistematica. Florestas Tropicais.

RESUMEN

El Espectro Econdmico de las Hojas (Leaf Economic Spectrum — LES) describe las diferentes
estrategias de las hojas para capturar y utilizar recursos, que van desde especies de rapido
crecimiento con hojas de corta vida hasta aquellas que adoptan un enfoque mas
conservador, invirtiendo en hojas duraderas y eficientes en el uso de recursos. El objetivo de
esta revision sistematica es cuantificar e investigar los estudios sobre el Espectro Econémico
de las Hojas (LES) en la vegetacion tropical, analizando su asociacion con rasgos
funcionales, la distribucion geografica, los tipos de vegetacion, los habitos de vida de las
plantas y los principales factores bioticos y abidticos que configuran estas caracteristicas. El
presente estudio realiz6 una revisién sistematica de bases de datos indexadas (Web of
Science, Scopus) de los ultimos 20 afos (2004—-2024). Se identificaron 160 publicaciones.
La produccion de articulos que investigan las propiedades funcionales de las hojas y el
espectro econdmico de las hojas en los trépicos, tema de esta revision sistematica, ha
crecido considerablemente en los ultimos ocho anos. Se identificé una asociacion dominante
de los estudios publicados con la region Neotropical. Los atributos funcionales foliares mas
comunmente estudiados en el marco del LES (por ejemplo, area foliar especifica,
concentracion de nitrégeno foliar y capacidad fotosintética) se encontraron asociados con la
tasa de crecimiento de las plantas en nuestro analisis. La distribucion de la investigacion
sobre el LES muestra que los estudios de vegetacion tropical presentan un mayor esfuerzo
de muestreo en bosques tropicales y subtropicales secos y humedos de hojas anchas en
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comparacion con otros tipos de vegetacion. A pesar de los avances, persisten importantes
vacios de conocimiento, especialmente en relacidon con los rasgos fisioldgicos y con grupos
vegetales poco estudiados, como lianas, epifitas y bridfitas. Los esfuerzos de investigacion
futuros deben priorizar una gama mas amplia de formas de vida y rasgos funcionales,
integrando enfoques ecofisioldgicos y biogeoquimicos para predecir mejor las respuestas de
la vegetacion tropical a los cambios ambientales y apoyar estrategias mas eficaces de
conservacion y restauracion.

Palabras clave: Filtros Ambientales. Rasgos Funcionales. Nitrégeno. Fésforo. Area Foliar
Especifica. Revisidon Sistematica. Bosques Tropicales.
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1 INTRODUCTION

Plants exhibit high phenotypic plasticity, developing effective adaptive strategies to
tolerate environmental variations and unfavorable ecological interactions (Niijhout, 2003;
Schneider, 2022). Within this context, the Leaf Economic Spectrum (LES) has emerged as a
fundamental theoretical framework for understanding how leaf functional strategies mediate
resource acquisition and conservation in response to environmental variations (Wright et al.,
2004; Diaz et al., 2016). LES describes a continuous gradient of leaf attributes reflecting a
trade-off between in obtaining resources, ranging from species with short-lived leaves, high
photosynthesis rates, and fast growth that are less conservative to more conservative species
with more durable leaves and greater efficiency in resource use over time (Wright et al.,
2004).

In tropical ecosystems, where high environmental variability directly influences
species' adaptation strategies, this concept is particularly relevant (Braga et al., 2016;
Vlemincky et al., 2021; Ferrero et al., 2022). The diversity of tropical vegetation, including
forests (dry and wet), savannas, and wetlands (Barlow et al., 2018), provides an ideal setting
to investigate how biotic and abiotic factors shape plant functional traits (Malhi et al., 2014;
Lapola et al., 2023). Functional traits associated across the LES continuum are influenced by
environmental gradients such as temperature, water availability, soil fertility, and altitudinal
elevation, which act as selective pressures on plant strategies (Gotzenberger et al., 2011;
Garnier et al., 2016; de Bello et al., 2021). In low-temperature, high-altitude environments,
for example, plants typically have a low rate of photosynthesis, low nitrogen concentration,
small specific leaf area, and slow growth to minimize water loss and merit resource use
efficiency (van der Sande et al., 2016; Matesanz et al., 2021; Sanaphre-Villanueva et al.,
2022). In hot and humid regions, plants present inverse characteristics, with more delicate
leaves and higher photosynthetic rates, which promotes growth and light capture (Wright et
al., 2004).

Functional traits of leaves can vary between individuals of different species
(interspecific variation), reflecting distinct evolutionary adaptations, and between groups of
individuals within the same species (intraspecific variation), reflecting changes in local
conditions and/or ecological interactions (Araujo et al., 2021; Ferrero et al., 2022). Studies
on the variation of functional traits in individuals of the same species have been widely
studied, especially in tropical ecosystems, where competition for resources and microclimatic
variations in the environment cause these individuals to develop different adaptive strategies

to ensure the survival and perpetuation of their descendants (Albert et al., 2010; Hulshof:&
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Swenson, 2010). For example, individuals of the same species may have thicker leaves rich
in secondary compounds in areas with high herbivory pressure, while in environments with
greater availability of light and nutrients, they may develop thinner leaves with a high specific
leaf area (Lambers et al., 2008; Aguilar-Peralta et al., 2022).

The objective of this systematic review is to quantify and investigate studies on the
leaf economic spectrum (LES) in tropical vegetation. Specifically, we aim to identify studies
that focus on LES and its associated functional traits, considering their geographic
distribution, vegetation type, plant life habits, and key biotic and abiotic factors influencing
these traits. By bringing together this information, we aim to provide a comprehensive
overview of how LES-related traits have been studied in tropical ecosystems. Ultimately, we
hope that this will contribute to a better understanding of plant ecological strategies and their

potential responses to environmental change.

2 METHODOLOGY
2.1 SYSTEMATIC LITERATURE SEARCH

The bibliographic search was conducted in January 2025, targeting articles indexed in
the Web of Science and Scopus databases. We employed the search terms: “Leaf economic*
spectrum” AND “Tropical Forest” across titles, abstracts, and keywords. We did not limit the
chronological period of the search. All selected articles were written in English and presented
results that address the functional characteristics related to the leaf economic spectrum (both
at the species and community levels) and community assembly in tropical forests. In the
second stage, the retrieved articles were screened to ensure relevance. Duplicate records
and studies that did not meet the pre-established inclusion criteria were removed using the
Rayyan platform (Ouzzani et al., 2016) and the Mendeley reference manager. Articles that
did not have LES as their central theme were excluded.

In total, 286 publications were collected, from which, after the screening process, a set
of 160 articles were selected for analysis (Figure 1, Appendix S1). Data were extracted from
these scientific articles, such as: year of publication, authors, the country where the study
was conducted, area of knowledge, vegetation type, life form (wood or herbaceous),
ecological group (tree, shrub, liana, fern) and results regarding the economic spectrum of the
leaf (specific leaf area, leaf nitrogen concentration, leaf phosphorus concentration, leaf

lifespan, photosynthetic capacity, and nocturnal respiration rate).
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The annual publication growth rate was calculated based on the percentage change
between the current number of publications and the previous number. The following formula

was used: Publication growth rate=(current value- previous value)/( previous value)*100.

Figure 1
Flowchart of the research protocol and articles included in the systematic literature review on

the economic spectrum of leaves in tropical forests (adapted from Haddaway et al., 2022),

from 2009 to 2024
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3 RESULTS AND DISCUSSION
3.1 CHRONOLOGICAL EVOLUTION OF STUDIES ON LES

Over the last ten years (2014 — 2024), there has been a gradual increase in the number
of scientific publications evaluating leaf functional traits through a multidimensional approach
and their relationship with LES in tropical vegetation (Figure 2). This growth trend has
intensified since 2015, with the highest number of publications recorded in 2022.

However, the annual growth rate for publications changes throughout the years
explored, with alternating phases of exponential growth and sharp drops in the relative
number of scientific publications. Notably, 2010 is the year with the greatest relative increase,
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while subsequent years show smaller differences, thereby indicating the gradual
concentration of the research field.

Overall, the results suggest a progressive increase in scientific production, with
occasional fluctuations, possibly associated with external factors, such as research funding,
academic interest in the topic, and changes in research funding (Millones-Gémez et al., 2021;
Ou et al., 2024). Although studies addressing different resource trade-off strategies have
been ongoing since the 1970s - when Grime defined the competitive, stress-tolerant, ruderal
(CSR) theory (Grime, 1974, 1977, 2001) (reviewed by Grime & Pierce, 2012). It was not until
2004 that Wright and collaborators related the functional characteristics of leaves and
resource trade-off strategies to this central idea of “economy” for resource allocation,
grouping the characteristics that are correlated into groups with different strategies for
resource investment (Wright et al., 2004; Reich, 2014; Pierce et al., 2017). The growing
volume of publications observed in recent years underscores the increasing relevance of the
LES framework and suggests a continued expansion of research on plant resource-use

strategies in tropical ecosystems.

Figure 2
Number of published scientific articles about the leaf economic spectrum in tropical
vegetation from 2004 to 2024. The gray bars represent the absolute count of publications per

year, while the black line indicates the percentage change from the previous year (N=160)
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3.2 GLOBAL DISTRIBUTION OF STUDIES ON LES

On the global scale, scientific publications did not show a homogeneous distribution
among countries with tropical vegetation. Research efforts were mainly focused on the
tropical part of the Asian continent, which played a significant role, representing 33.5% of the
total data, and in the Neotropical region, with substantial contributions from Brazil (15%),
Panama (9.5%) and Mexico (7.7%). In contrast, the low occurrence of researched areas in
the African continent and Oceania is notable, representing only 6% to 2.4% of the total. This
imbalance in research coverage is not exclusive to studies on functional attributes. When
analyzing the anthropogenic influence on tropical forests, Malhi et al. (2014) already
highlighted this disparity in forest types and emphasized the need to expand study areas.
Similarly, Loureiro et al. (2023), identified the same pattern in scientific research distribution
when assessing the functional traits of plants in forest restoration areas, suggesting that this
research gap extends beyond leaf economics studies to the broader spectrum of functional
data.

When examining the distribution of studies across the different ecoregions, we
observed that 68% of the scientific articles were conducted in tropical and subtropical moist
broadleaf forests, while just over 23% occurred in dry, desert, and floodplain (Figure 3). The
greater concentration of studies in humid ecoregions can be explained by two factors: the
inhomogeneous distribution of research areas since more than 58% (n=68) of these studies
were conducted in Brazil, China, and Panama; and/or the strong interest of the academic
community in the high diversity, adaptation, and resilience of the species present in these
environments (Malhi et al., 2014; Zhang et al., 2022).
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Figure 3
Relative frequency of ecoregions (N= 173) reported in studies on the leaf economic spectrum

in tropical vegetation published between the years 2004 and 2024
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In monodominant forests, in which a single tree species represents more than 50%
proportion of basal area and abundance (Hart et al., 1989; Peh et al., 2011), the factors that
modulate leaf functional traits are not fully understood, but there is evidence that they are
related to the absence of disturbance, shade tolerance, soil nutrient availability, as well as
evolutionary and spatial characteristics (Connell & Lowman, 1989; Hart et al., 1989; Peh et
al., 2011; Brookshire & Thomas, 2013; Nascimento et al., 2017; Araujo et al., 2022).

Despite the ecological importance of these forest formations, the literature on the
subject remains limited. In our research, only one study appeared that explicitly examined
the functional leaf characteristics related to LES in monodominant species. When evaluating
the functional leaf characteristics of Brosimum rubescens Taub. (Moraceae), Araujo et al.
(2022) observed that, in monodominant forests in the Amazon, this species presents
functional characteristics that favor the acquisition of resources, such as larger specific leaf
area, stomatal size, and maximum stomatal aperture. These attributes promote high
photosynthetic rates and faster growth, favoring its dominance. On the other hand, in mixed
forests, B. rubescens adopts an opposite strategy, characterized by functional traits
associated with resource conservation, such as thicker adaxial cuticle, palisade and spongy
parenchyma, and thicker leaves. These adaptations are often related to drought resistance

and greater water use efficiency (Gratani et al. 2006). The ability of this species to adjust its
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functional traits according to the environment reflects its high phenotypic plasticity, allowing
it to adapt to different ecological conditions and contributing to its persistence and dominance

in certain areas (Araujo et al., 2022).

3.3 FUNCTIONAL TRAITS ASSOCIATED WITH LES

Our data indicates that studies on LES prioritize the evaluation of structural traits and
nutritional composition, representing more than 90% of the attributes analyzed (Figure 4A).
This discrepancy may be directly related to the specific objectives of each research or the
difficulty and high experimental costs involved in providing physiological data. The
predominance of chemicals and morphological traits - particularly specific leaf area and
nitrogen and phosphorus concentrations (Figure 4B) in scientific literature can be explained
by their strong relationship with plant productivity and resource use efficiency. These
variables are widely used to assess plant growth strategies and adaptation to varying
environmental conditions (Wright et al., 2004; Reich et al., 2014; Cheng et al., 2016) and are
highly responsive to environmental gradients (Wright & Westoby, 2001; Wright et al., 2004;
Reich & Oleksy, 2004).

Figure 4

Relative frequency of leaf functional traits (N=384) in studies on the leaf economic spectrum.
The top graphic (A) shows the frequency of traits grouped into three categories: physiological
(green), morphological (brown) and chemical (blue). The bottom graphic (B) details the

frequency of specific traits within each of those categories
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Although the key attributes proposed in the LES model (Wright et al., 2004) offer
valuable insights into plant resource acquisition strategies, numerous other traits also
contribute substantially to plant functioning. Of the total number of leaf attributes evaluated
in the articles surveyed in this review, 54% (N=453) refer to attributes that are not directly
linked to LES. Attributes such as leaf hardness and density, dark respiration rate, efficiency
in the use of photosynthetic nitrogen and phosphorus, among others, are not part of the main
axis of LES (Kikuzawa et al., 2006; Chen et al., 2020), but many studies add these variables
to the methodology because they are important in adding biochemical, physiological and
defense information as they play roles correlated with the main variables of the model
(Loureiro et al., 2023; Freitas et al., 2024).

Notably, traits related to leaf construction cost, dark respiration, and nitrogen isotopic
composition monitoring indicate a gap in the understanding of plant energy efficiency and
metabolism. This knowledge gap is particularly relevant considering that several studies
suggest that traits such as photosynthetic capacity, nitrogen and phosphorus concentrations,
specific leaf area, and leaf lifespan are governed by LES and guide leaf trait combinations in
an economic spectrum (Wright et al., 2004; Chen et al., 2020). Nutrient concentrations and
photosynthetic rate are positively correlated with specific leaf areas and negatively related to
leaf lifespan (Wright et al., 2004; Diaz et al., 2016). Thus, species with larger, thinner leaves
tend to exhibit higher resource acquisition and growth rates over shorter lifespans, whereas
species with conservative traits typically show slower growth rates and higher investment in
leaf construction (Reich et al., 1997; Wright et al., 2004; Diaz et al., 2016).

Despite being less frequently studied, leaf construction cost is a fundamental
functional trait, as it determines the energy spent by plants to synthesize carbon skeletons
and nitrogen compounds (Eamus et al., 1999; Xiao et al., 2018). Fast-growing species tend
to have a larger specific leaf area, thinner blades, and lower leaf construction costs compared
to slower-growing plants (Li et al., 2011). Such characteristics can be good predictors for
evaluating plant resistance to environmental stress (Suarez, 2003, 2005), growth, and
survival (Baruch & Goldstein, 1999; Liao et al., 2007; Song et al., 2007; Feng et al., 2008).

Nitrogen is strongly correlated with plant growth and photosynthetic processes,
including carboxylation, bioenergetics, and light-harvesting components (Poorter & Evans,
1998), so it is positively related to photosynthetic capacity and photosynthetic nitrogen use
efficiency (Feng et al., 2008; Hikosaka, 2014). Xiao et al. (2018) observed that in early
successional forests, the cost of leaf construction is lower and inversely proportional to

photosynthetic capacity, specific leaf area, and photosynthetic nitrogen use efficiency
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compared to late successional forests. This trend may be related to the change in floristic

composition and, consequently, to changes in the functional characteristics of the community.

3.4 HOW PLANT LIFE HABIT CHANGES THE TRAITS OF THE LES

Sampling effort and data availability for LES vary considerably among different plant
life habits. Arboreal individuals (n= 148) were recorded in approximately 70% of the total
articles, wood lianas (climbers; n= 24) and shrubs (n= 19) (Figure 5) accounted for only 14%
and 9% of the records, respectively. This discrepancy is mainly due to the greater abundance
of trees and the facility of data collection, as the arboreal stratum of a community is widely

studied in several fields of plant ecology and physiology.

Figure 5
Relative frequency of plant growth habit (N= 212) reported in studies on the leaf economic

spectrum in tropical vegetation published between the years 2004 and 2024
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In contrast, other life forms, such as subshrubs, palms, and non-wood species, were
markedly underrepresented in datasets, with the last seven being recorded only once in the
research. This low representation may be related to the difficulty in collecting data or to
methodological limitations of leaf attributes in these life habits. Bryophytes have often been
ignored in conservation actions because they are seen as plants of lesser relevance and
complex to identify (Goffinet et al., 2009; Glime, 2017). In addition, groups such as mosses,
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hemiepiphytes and epiphytes have distinct ecological strategies, which may make it difficult
for them to adapt to the traditional LES axes (Petter et al., 2015; Wuyun et al., 2024).

Among these underrepresented groups, wood lianas are particularly noteworthy. Their
climbing growth form allows them to reach the forest canopy while bypassing the structural
constraints faced by understory plants (Wyka et al., 2013; Smith-Martin et al., 2022). Although
this group has low diversity and contributes relatively little to the wood biomass of the forest
(van der Heijden et al., 2013; Gianoli, 2015; Slot & Winter, 2017), their ecological role is
significant. Lianas are often dominant in more open habitats, such as clearings, forest edges,
and human-disturbed areas, where their growth strategies give them competitive advantages
(Laurence et al., 2001; Schnitzer & Bongers, 2002; Schnitzer, 2005). Understanding how their
functional traits influence their growth strategies may help explain the recent increase in their
abundance in tropical forests (Schnitzer & Bongers, 2011), especially in disturbed areas and
in the process of succession. Regardless of forest type, lianas tend to adopt more acquisitive
strategies for resource capture, positioning themselves at the fast end of the LES. (Zhu &
Cao, 2010). Typically, lianas are characteristics such as high specific leaf area (low LMA),
high nutrient concentrations, higher photosynthetic and respiration rates, lower leaf
construction cost per unit area and useful lifespan (Paul & Yavitt, 2011; Zhu & Cao, 2010;
Asner & Martin, 2012).

Differences in leaf economic strategies are also observed between plant species with
distinct leaf habitats, such as decidual and evergreen trees. Plants with different growth forms
exhibit distinct ecophysiological strategies even when coexisting in the same environment
(Pimentel et al., 2004; Shi et al., 2015; Yan et al., 2016, Vitdria et al., 2018). Regardless of
the forest type or growth habit, plant species with deciduous or evergreen leaf habits that
coexist have distinct leaf functional characteristics (Huang et al., 2015). Evergreen species
generally display lower photosynthetic efficiency, reduced nutrient concentration, smaller
specific leaf area, and longer useful lifespan (Reich et al., 1997; Tomlinson et al., 2013; Silva
et al., 2019). In contrast, deciduous species are more efficient in capturing resources, with
higher efficiency in the photosynthetic rate, larger specific leaf area, lower leaf construction
cost, and shorter useful lifespan (Wright et al., 2004; Krober et al., 2015; de Souza et al.,
2020). According to Pandi et al. (2023), deciduous trees, by adopting acquisitive resource-
use strategy, exhibit greater competitive advantage over evergreen species in environments
without liana colonization (greater specific leaf area and mass-based nitrogen concentration),
while evergreen species were more shade tolerant and acclimated better in shaded

environments.
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3.5 ENVIRONMENTAL FACTORS SHAPE FOLIAR STRATEGIES

Soil fertility results from the combined effects of physical, chemical, and biological
factors that regulate nutrient mobilization and directly influence plant metabolism (Shen et al.,
2019; Vitoria et al. 2019; Delpiano et al. 2020). In tropical ecosystems, fertile soils favour
species with rapid resource-acquisition strategies, while nutrient-poor soils select for species
exhibiting more conservative functional traits (Freitas et al., 2024). A study conducted in a
subtropical evergreen broadleaves forest in China demonstrated that soil fertility is one of the
main factors that influenced the functional response of plants (Shen et al., 2019). The results
showed that species adapted to rapid resource acquisition are more abundant in soils rich in
phosphorus and potassium, but poor in nitrogen and organic matter. In contrast, species with
conservative strategies predominate in soils with high nitrogen and organic matter contents,
but low in phosphorus and potassium (Shen et al., 2019).

In addition to soil fertility, water availability is one of the main limiting factors for plant
performance in natural ecosystems (Pinheiro & Chaves, 2011). In dry tropical forests, water
availability acts as an environmental filter, selecting functional leaf traits that enhance species
survival under drought conditions (Lebrija-Trejos et al., 2010). Under these conditions, plants
adopt different strategies to minimize water loss through stomata and, at the same time,
maintain efficient CO, assimilation (Falcao et al., 2017). In areas with greater water
availability, a pattern characterized by larger specific leaf area, higher nitrogen and
phosphorus concentrations, thinner leaves, and lower water-use efficiency is observed
(Appendix S2). On the other hand, in environments with water restriction, thicker leaves and
greater water use efficiency prevail, reflecting adaptations to drought conditions (Schonbeck
et al., 2015; Ouédraogo et al., 2016; Wang et al., 2021).

Although Wright et al. (2004) demonstrated that mean annual precipitation is not a
strong global predictor of measuring leaf characteristics related to LES. Martinelli et al. (2021)
observed that, across evaluating the elemental and isotopic concentration of carbon and
nitrogen, soil and climate conditions showed a strong relationship with leaf functional
characteristics in different Brazilian biomes. Species sampled in the Caatinga, vegetation
located in dry environments, presented more conservative characteristics, with higher values
in leaf N concentration and 6'°N, and lower C:N ratio, indicating a longer nitrogen residence
time in the soil due to low leaching and lower absorption by plants (Martinelli et al., 2021). In
contrast, species sampled in areas with higher average annual precipitation, such as

evergreen forests of the Atlantic Forest and the Amazon Rainforest, present low levels of leaf
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nitrogen and a high C:N ratio, indicating a greater dependence on an acquisition strategy to
obtain and use resources efficiently (Martinelli et al., 2021, Freitas et al., 2024).

Temperature and solar radiation intensity are two strongly correlated environmental
variables within the LES that influence the adaptive leaf characteristics of plants. Most studies
found in the literature relate leaf functional characteristics with the different adaptive ways of
the plant to deal with thermal and light stress (Appendix S2). In general, plants in
environments with high light intensity tend to present lower SLA, high photosynthetic rate and
consequently, higher nitrogen concentrations, and lower leaf longevity (Wright et al., 2004;
Gotsch et al., 2015; Falcao et al., 2017; Limberger et al., 2021).

Changes in temperature, climate and rainfall regime caused by climate change can
negatively affect the fithess of acquisitive species, since these species are more dependent
on resources and in conditions of drought and rising temperatures, these resources can
become scarce, compromising the survival of these species (Wright et al., 2004; Lavergne et
al., 2010; Reich, 2014; Anderegg et al., 2019). In addition, increased CO2 concentration in
the atmosphere can affect the balance between carbon absorption and water loss, impacting
the efficiency of photosynthesis and modifying the functional characteristics of leaves over
time (Way & Oren, 2010; Dusenge et al., 2019).

These changes in LES parameters can directly impact on the dynamics of tropical
forests, affecting ecological succession, plant biomass and the carbon cycle. Constant
monitoring of leaf functional traits and LES in different ecosystems is essential to understand
how plants react to climate change and the effects that these reactions will have on the
resilience of tropical ecosystems.

Leaf functional adaptations associated with the les through ecological succession

At both local and regional scales, the distribution of plant communities is influenced by
adaptations to variations in biotic conditions, such as competition and herbivory, and abiotic
conditions, such as temperature and precipitation (Veenendaal et al., 1998; Webb & Peart,
2000; Harms et al., 2001; Ter Steege et al., 2003). These environmental filters play a central
role in the selecting traits associated with plant adaptive strategies (Lavorel et al., 1997;
Lavorel & Garnier, 2002; Zakharova et al., 2019; Baraloto et al., 2012). Understanding how
these functional traits link physiological mechanisms to community assembly processes is
fundamental to ecology. (McGill et al., 2006; Bernard-Verdier et al., 2012; Mason et al., 2012).

Among the studies reviewed leaf functional traits associated with LES, 55% (n=88)
analyzed the influence of these traits on species success along successional gradients

(Appendix S2). The drivers ecological successions vary across forest type, community
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structure, and composition. However, predictable patterns in leaf economic spectrum emerge
along the LES continuum in response to changing environmental conditions and resource
availability (Wright et al., 2004). This pattern reflects a fundamental ecological trade-off: in
early successional stages, pioneer species tend to invest in thin, highly photosynthetic leaves
to maximize light and nutrient capture, whereas later-successional species develop thicker,
more durable leaves that enhance resource conservation and longevity (Reich, 2014).

Areas undergoing forest succession often reflect a history of disturbance or
degradation, and their functional attributes indicate the current phase of the succession
process (Reich et al., 2004). In areas where succession occurs without external influences
that alter the structure of the vegetation, the community typically follows the theoretical model
proposed by Grime’s C-S-R strategy (Grime et al., 1974, 1997; 2001; Grime & Pierce, 2012;
Cintra et al., 2024). In the initial stages, such as in pastures and early regeneration areas,
species with acquisitive functional traits predominate, which favor rapid growth and
reproduction in environments with highlight availability (Cintra et al., 2024). As regeneration
progresses and the structure of the vegetation becomes more complex, the environment acts
as a filter, favoring species adapted to resource limitations and more conservative strategies
(Cintra et al., 2024).

Different approaches associated with LES have been used to explain species success
along successional gradients (Lohbeck et al., 2015). Studies on LES in wet and dry
vegetation have revealed contrasting patterns in species’ leaf strategies (Wright et al., 2004;
Diaz et al., 2016). Studies comparing moist and dry tropical vegetation reveal contrasting
successional dynamics. In tropical moist forests, succession is primarily driven by decreasing
light availability due to canopy closure, whereas in tropical dry forests, it is closely linked to
progressive increases in water availability over time (Nicotra et al., 1999; Lebrija-Trejos et al.,
2011; Pineda-Garcia et al., 2013).

Direct variations in leaf functional traits and LES of species throughout ecological
succession have implications for forest preservation and recovery strategies (Werden et al.,
2018; Carlucci et al., 2020; Loureiro et al., 2023). The advancement of deforestation and
climate change can significantly alter the expected patterns of forest succession, directly
influencing the adaptive characteristics of the plant (Reich et al., 2003; Wallwork et al., 2023;
Cintra et al., 2024). Furthermore, understanding the variation in functional traits throughout
ecological succession can provide support for more effective restoration strategies, especially
in degraded areas, where natural succession may be limited by resource availability (Loureiro
et al., 2023).
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4 FINAL CONSIDERATIONS AND PERSPECTIVE

This systematic review allowed us to quantify and investigate studies on the Leaf
Economic Spectrum (LES) in tropical vegetation, providing an overview of the progress of
research in this field. The increase in the growth rate of scientific publications in recent
decades reinforces the relevance of the topic. However, the variation in the number of
publications in different years, as shown in Figure 4, suggests that external factors, such as
funding and academic interests, determine the total number of articles written on the subject,
influencing the scientific pace.

The results suggest that most studies focus on the evaluation of chemical and
morphological functional attributes, meaning that functional attributes related to plant
physiological processes, such as leaf construction cost and respiration rates, remain little
explored. This gap highlights the need to expand methodological approaches to obtain more
comprehensive information on leaf functioning, particularly about energy efficiency and plant
metabolism. Furthermore, some life forms, such as lianas, epiphytes and bryophytes, remain
underrepresented in literature, which limits the understanding of the functional diversity of
tropical plants. Future studies should focus on the inclusion of these groups to improve
knowledge about the traits that structure the functional continuum of LES, particularly those
that mediate the response of sensitive species to variations in environmental variables.

Environmental factors stand out as key elements in the configuration of foliar
strategies. Variations in soil fertility, water availability, temperature and light intensity act as
ecological filters, selecting species with more acquisitive or conservative strategies,
depending on the supply of resources. In addition, changes throughout ecological succession
directly influence the distribution of functional traits, reflecting predictable patterns of
adaptation of species to environmental conditions and interactions with other plants.

The geographic distribution of LES studies reveals a significant bias, with most
research concentrated on humid tropical forests in Asia and the Neotropics, while drier
regions such as savannas and seasonal forests, as well as continents such as Africa and
Oceania, remain underexplored. This inequality raises a critical point: much of the current
knowledge may be limited to specific environmental conditions, hindering broader predictions
about leaf functionality in different tropical ecosystems.

By bringing together and analyzing the current state of the art on LES, this review
provides a solid foundation for future investigations, highlighting the need for integrated
approaches that combine ecophysiology, biogeochemistry, and functional modeling.

Progress in this field is essential to understanding the economic trade-offs of leaves,
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predicting how plants will respond to environmental changes, and improving conservation,
management, and ecological restoration strategies in tropical ecosystems in a changing

world.
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Leaf functional traits evaluated in studies on the Leaf Economic Spectrum in tropical vegetation

N:P

ID Amass CCL LL LNC LPC ratio Rmass SLA LMA 5'5N
1 v v v v
2 v
3 v v
4 v v v
5 v v v v
6 v v
7 v v v v
8 v v v
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Total
Geral

24

4

14

98

7

12

6

106

42

7

Amass - Photosynthetic assimilation rates, CCL - Construction cost leaf, LL - Leaf lifespan, LNC - leaf nitrogen concentrations, LPC- leaf phosphorus
concentrations, N:P ratio - molar or mass-based ratio between nitrogen (N) and phosphorus (P) concentrations, Rmass - Dark respiration rate, SLA - Specific
Leaf Area, LMA - Leaf mass per area, 815N - stable nitrogen isotopes ("*N/'“N).
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