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ABSTRACT 
Enzymatic biosensors are highly specific and sensitive analytical devices capable of 
quantifying analytes quickly and at low cost, making them attractive for clinical, 
environmental, and industrial applications. However, quantitatively predicting their response 
requires robust mathematical models that integrate reagent diffusion, enzyme kinetics, and 
current generation. The objective of this chapter was to present the fundamental equations 
for developing models based on partial differential equations of Michaelis-Menten kinetics to 
describe substrate and product diffusion in the enzyme layer and calculate the generated 
electrical current. In summary, these models can aid in the design of biosensors, are 
applicable to the study of electrochemical behavior, and provide a useful tool for predicting 
the analytical response of these devices. 
 
Keywords: Enzymatic Biosensors. Biotechnology. Mathematical Modeling. Partial 
Differential Equations. 
 
RESUMO  
Os biossensores enzimáticos são dispositivos analíticos de alta especificidade e 
sensibilidade, capazes de quantificar analitos com rapidez e baixo custo, tornando-os 
atrativos para aplicações clínicas, ambientais e industriais. Entretanto, prever 
quantitativamente sua resposta exige modelos matemáticos robustos que integrem difusão 
de reagentes, a cinética enzimática e a geração de corrente. O objetivo deste capítulo foi 
apresentar as equações fundamentais para o desenvolvimento de modelos, baseados em 
equações diferenciais parciais da cinética de Michaelis-Menten para descrever a difusão do 
substrato e produto na camada enzimática e o cálculo da corrente elétrica gerada. Em 
síntese, os modelos podem auxiliar no desenho de biossensores, sendo aplicáveis no estudo 
do comportamento eletroquímico e fornecem um instrumento útil para previsão da resposta 
analítica desses dispositivos. 
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RESUMEN 
Los biosensores enzimáticos son dispositivos analíticos altamente específicos y sensibles, 
capaces de cuantificar analitos con rapidez y a bajo coste, lo que los hace atractivos para 
aplicaciones clínicas, ambientales e industriales. Sin embargo, la predicción cuantitativa de 
su respuesta requiere modelos matemáticos robustos que integren la difusión de reactivos, 
la cinética enzimática y la generación de corriente. El objetivo de este capítulo fue presentar 
las ecuaciones fundamentales para el desarrollo de modelos basados en ecuaciones 
diferenciales parciales de la cinética de Michaelis-Menten para describir la difusión del 
sustrato y del producto en la capa enzimática y calcular la corriente eléctrica generada. En 
resumen, estos modelos pueden facilitar el diseño de biosensores, son aplicables al estudio 
del comportamiento electroquímico y proporcionan una herramienta útil para predecir la 
respuesta analítica de estos dispositivos. 
 
Palabras clave: Biosensores Enzimáticos. Biotecnología. Modelado Matemático. 
Ecuaciones Diferenciales Parciales.
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1 INTRODUCTION 
Mathematical modeling has played a crucial role in advancing biotechnology, enabling 

the understanding, optimization, and prediction of behaviors of complex biological systems. 

One of the milestones of this evolution was the application of differential equations to describe 

biochemical phenomena, such as those that occur in bioreactors and other biotechnological 

processes. These mathematical models have been fundamental in representing biochemical 

interactions and transformations more accurately, in addition to enabling the identification of 

patterns that are essential to understand the behavior of biological systems1 

The importance of mathematical modeling in biotechnology goes beyond the mere 

quantitative representation of phenomena. It organizes disconnected information about 

biological processes, corrects flaws in conventional understanding, and provides a logical 

analysis of the interactions between the components of the system. This approach, which is 

based on techniques for analyzing enzyme kinetics, mass and energy balances that 

contribute to a detailed understanding of biochemical processes, is essential for the 

development of new therapies, diagnostic products and solutions for environmental and 

health detections2. The use of mathematical models also allows the optimization and control 

of biotechnological processes, such as biomass production and biocatalysis, which involve 

enzymes or microorganisms in specific chemical reactions3. 

In particular, the mathematical modeling of enzymatic biosensors has gained 

prominence, given the growing demand for sensitive, selective, and fast-response detection 

devices. Biosensors are used in a wide range of applications, including the detection of 

glucose, lactate, and other biomarkers, representing an alternative to conventional analysis 

methods4. Modeling these systems is essential for understanding their behavior and 

performance under different operating conditions, allowing them to predict and optimize their 

responses. In this context, the application of differential equations and mathematical 

simulation techniques has proven to be a powerful resource for the development of models 

that can improve the performance of biosensors by determining the ideal parameters for each 

specific application5. 

The research presented in this chapter aims to understand the mathematical modeling 

of an enzymatic biosensor, focusing on the application of differential equations to simulate 

and predict its behavior. The objective is to comment on developed models, evaluate the 

relationship between the biosensor parameters and their response, and identify the ideal 

limits for the operation of these devices. Thus, modeling can contribute to improving the 

efficiency and applicability of biosensors in various areas of biotechnology and health. 
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2 ENZYMATIC BIOSENSORS: DEFINITION AND CLASSIFICATIONS  

Enzymatic biosensors are analytical devices that use enzymes, such as biological 

recognition elements, to detect and quantify specific substances in a sample. These devices 

combine an enzyme with a physical or chemical transducer that converts the biological 

interaction into a measurable signal6. The basic functioning of an enzyme biosensor involves 

immobilizing the enzyme on a surface capable of detecting measurable changes after 

occupying the active site. When the substance of interest (analyte) is present in the sample, 

it occupies this site of the enzyme, producing a specific signal of the enzymatic reaction. This 

signal is the result of a change in a physical or chemical property, such as pH, temperature, 

electrical potential, among others, which is detected by the transducer. 

 Enzymatic biosensors offer high specificity due to the selectivity of enzymes by their 

substrates. This means that they can differentiate between very similar substances, making 

them very useful instruments in a variety of applications, including medical diagnosis, 

environmental monitoring, food quality control, and biotechnology7.  

 

2.1 CLASSIFICATION OF ENZYMATIC BIOSENSORS ACCORDING TO THE TYPE OF 

TRANSDUCER 

Enzymatic biosensors can be classified based on the type of transducer used in 

electrochemical, optical, thermal, or piezoelectric. Each type offers specific advantages 

depending on the desired application8. 

Electrochemical biosensors are the most common and can be subdivided into three 

main categories. Amperometric, capable of measuring the current generated by the 

oxidation or reduction of an analyte on the surface of the electrode. Glucose oxidase is a 

typical example of an enzyme used in amperometric biosensors for the detection of glucose 

in the blood. Potentiometrics, detect the change in the electrical potential caused by the 

interaction of the analyte with the enzyme. A common example is the selective ion biosensor, 

which uses an enzyme membrane to detect specific ions. Conductometric tests measure 

the change in the electrical conductivity of the medium resulting from the enzymatic reaction. 

These sensors are used to detect changes in the concentration of ions. 

Optical biosensors detect changes in optical properties, such as absorption, 

fluorescence, and luminescence, caused by the interaction between the analyte and the 

enzyme. They can also be subdivided into three types. Fluorescent, they use enzymes that, 

when interacting with the substrate, produce or modify fluorescence. They are very sensitive 

and can detect very low concentrations of analytes. Luminescent, they are based on the 

emission of light resulting from an enzymatic reaction. An example is the use of luciferase for 
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the detection of ATP. Colorimetrics, measure the color change resulting from the enzymatic 

reaction. They are simple and easy to use, and are often used in quick tests. 

Thermal enzymatic biosensors, also known as calorimetrics, operate by measuring the 

temperature change that occurs due to the specific enzymatic reaction. When an enzyme 

interacts with its substrate, this reaction can release or absorb heat, and this thermal variation 

is directly proportional to the concentration of the analyte present in the sample. To detect 

small changes in temperature, a high-sensitivity thermistor or other temperature sensor is 

positioned near the area where the reaction occurs. Although they are not as sensitive as 

other types, the great advantage of these enzymatic biosensors is their robustness and 

stability, allowing them to be used efficiently in adverse pH or temperature conditions, and 

with complex samples. Its key features include simplicity of operation and the ability to 

analyze substrates in multiple dies.  

Piezoelectric enzymatic biosensors are analytical devices that utilize the selectivity of 

an enzyme immobilized on the surface of a piezoelectric material, usually a quartz crystal. 

The enzymatic reaction with its specific substrate generates a change in mass on the crystal 

surface. This change in mass, however small, modifies the resonant frequency of the 

piezoelectric material, a physical phenomenon detected by a transducer. The resulting 

electrical signal is then correlated with the analyte concentration, allowing for highly sensitive, 

real-time detection. Key features of these biosensors include label-free detection, speed, and 

enzyme specificity. 

 

2.2 CLASSIFICATION AS TO THE METHOD OF IMMOBILIZATION OF THE ENZYME 

Enzyme immobilization is a key step in the development of enzymatic biosensors, as 

it directly affects sensor stability, activity, and repurposing. The main methods of 

immobilization are related to four strategies. In physical adsorption, the enzyme is adsorbed 

on the surface of the transducer through physical interactions, such as Van der Waals, 

hydrophobic, and ionic forces. This method is simple, but the binding is usually weak and can 

lead to leaching of the enzyme. In the covalent bond the enzyme is covalently bonded to 

the surface of the transducer. This method provides a strong and stable bond, increasing the 

lifetime of the biosensor. The third strategy, called matrix trapping, consists of encapsulating 

the enzyme in a polymeric matrix or gel. This method protects the enzyme from harsh 

conditions, but can limit substrate diffusion. Finally, in crosslinking,  the enzyme is bound to 

other enzyme molecules or to a scaffold by means of crosslinking agents. This method 

creates a stable enzyme network and increases the enzyme density on the surface of the 

transducer. 
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2.3 CLASSIFICATION AS TO THE NATURE OF BIOLOGICAL RECOGNITION 

Enzymatic biosensors can be classified according to the specificity of the enzymatic 

interaction. Substrate-specific biosensors utilize enzymes that are specific to a particular 

substrate. For example, glucose oxidase is specific to glucose. Inhibitory biosensors detect 

the presence of specific enzyme inhibitors. These sensors are useful for the detection of 

contaminants or toxins that inhibit enzyme activity. Activity biosensors measure the overall 

enzyme activity in a sample, rather than focusing on a single substrate or inhibitor. They are 

useful in metabolic studies and clinical diagnostics. 

 

2.4 THE EFFICIENCY OF AN ENZYMATIC BIOSENSOR  

The efficiency of enzymatic biosensors is largely attributed to the specificity of the 

enzymes used. Enzymes are biological proteins that catalyze specific chemical reactions, 

which allow the selective detection of a particular substrate in the presence of other 

components in a sample6. Enzyme specificity is one of the main factors contributing to the 

high efficiency of enzymatic biosensors, allowing the detection of very low concentrations of 

analytes in complex samples. In addition, how quickly enzymatic biosensors can provide 

results is another crucial aspect of their efficiency. According to Grieshaber et al. (2008), 

electrochemical enzymatic biosensors, in particular, are capable of producing almost 

instantaneous responses due to the rapid kinetics of enzymatic reactions. This feature is 

especially valuable in clinical applications, where rapid diagnosis can be vital. 

The stability of enzymatic biosensors also contributes to their efficiency. Advanced 

methods of enzyme immobilization, such as covalent bonding and encapsulation in polymeric 

matrices, help maintain enzyme activity for prolonged periods, even under adverse 

conditions10. Techniques such as enzymatic crosslinking not only increase stability, but also 

allow the reuse of biosensors, reducing costs and improving the sustainability of analytical 

processes. 

The sensitivity of enzymatic biosensors is widely documented11. The combination of 

highly sensitive transducers with specific enzymes allows the detection of analytes at levels 

on the order of nanograms per milliliter. This low level of sensitivity is particularly important in 

areas such as food safety and environmental monitoring, where early detection of 

contaminants can prevent public health problems and ecological damage. 

Finally, the miniaturization and portability of enzymatic biosensors are aspects that 

increase their efficiency12. Xie and Herten (2020) discuss how advances in optical transducer 

technology have enabled the development of compact and portable biosensors, which can 

be used directly in the field for fast and accurate analyses. This portability is especially useful 
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in resource-constrained environments where laboratory analytical methods would be 

impractical. 

 

2.5 MATHEMATICAL MODELING 

 Mathematical modeling is a fundamental approach in several areas of knowledge, 

allowing the representation of real systems through equations and mathematical concepts. 

Essentially, mathematical modeling consists of translating real-world problems into a set of 

mathematical expressions that can be analyzed, solved, and used to predict the behavior of 

dynamic and complex systems13. The construction of a mathematical model involves, 

initially, the simplification of a real system, identifying the most relevant variables and the 

relationships between them, in order to create a representation that is as accurate as possible 

to the real phenomenon. 

 In practice, mathematical modeling can be applied in various fields, such as 

engineering, economics, biology, physics, and even the social sciences. For example, in 

mechanical and civil engineering, mathematical models are often used to predict the behavior 

of structures under different load conditions, which is essential for the safe and efficient 

design of buildings and bridges14. In biology, mathematical models can be used to 

understand population growth or the spread of disease, helping to guide public health policy. 

 Building a mathematical model usually follows several steps. First, the problem is 

clearly defined, establishing the objectives of the model and the main variables involved. 

Then, a mathematical formulation is developed, where assumptions about the behavior of 

the system are adopted that allow simplifying it. These assumptions are critical as they 

determine the accuracy and applicability of the model. Subsequently, the model is solved 

mathematically, which may involve solving differential equations, optimizing functions, or 

numerical simulations. Finally, the model is validated by comparing the mathematical or 

computational results with experimental or observational data. If necessary, the model can 

be adjusted to improve its accuracy and applicability. 

An important aspect of mathematical modeling is the interpretation of results. A model 

may be mathematically correct, but if the initial assumptions are inadequate, the results may 

not accurately reflect reality. Therefore, mathematical modeling requires a deep 

understanding of both the actual system and the mathematical tools used15. The ability to 

mathematically model a system provides a quantitative view that is crucial for decision-

making in complex contexts, anticipating behaviors and decisions in applications. 
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2.6 MATHEMATICAL MODELING APPLIED TO BIOSENSORS  

Mathematical modeling can be a very useful step for the development and optimization 

of biosensors, allowing a detailed understanding of their mechanisms and the prediction of 

their performance under various conditions. Biosensors are devices that use a combination 

of a biological component and a transducer to detect and quantify chemicals, biomolecules, 

or cells. Mathematical modeling helps translate the complex interactions between these parts 

into mathematical equations that are understandable and applicable in the real context.   

The interaction between the analyte and the biological component of the biosensor is 

fundamental for its functioning. Mathematical models, such as the Langmuir equation, are 

often used to describe the kinetics of adsorption and bonding of molecules. Langmuir's 

equation, given by = where θ is the fraction of occupied sites, is the affinity constant, and is 

the concentration of the analyte, allows us to estimate the maximum binding capacity of the 

biosensor𝜃
𝑘𝛼 𝐶

1 + 𝑘𝛼 𝐶
𝑘𝛼𝐶16. In addition, models based on the Michaelis–Menten equation are 

applied in enzyme systems, where the reaction rate is described by the equation, with the 

maximum velocity and the Michaelis constant𝑣 =  
𝑉𝑚𝑎𝑥 [𝑆]

𝑘𝑚 + [𝑆]
𝑉𝑚𝑎𝑥𝑘𝑚

17. 

The transducer converts the biochemical response into a measurable signal. 

Mathematical models that describe transducer response are essential to the accuracy and 

reliability of biosensors. In optical biosensors, the variation in the intensity of reflected or 

transmitted light is often modeled using the Beer-Lambert equation, where is the absorbance, 

is the intensity of the incident light, is the intensity of the transmitted light, ε is the molar 

absorption coefficient, is the concentration of the analyte, and is the thickness of the 

sample𝐴 =  𝑙𝑜𝑔10 (𝐼0/𝐼) = 𝜖𝑐𝑙𝐴𝐼0𝐼𝑐 𝑙 18.  

Dynamic models are used to simulate the temporal behavior of biosensors, which is 

crucial for systems that operate under varying conditions or need rapid response. Models 

based on differential equations are employed to describe the reaction kinetics and diffusion 

dynamics of the analyte on the sensor surface19. For example, the Fick diffusion equation, 

where is the concentration of the analyte, is the diffusion coefficient and is the Laplacian 

operator, is used to model the spatial distribution of the analyte in a biosensor.
𝜕𝐶

𝜕𝑡
− 𝐷𝛻2𝐶 =

0𝐶 𝐷𝛻2 

Mathematical modeling can also assist in the design of biosensor design. Numerical 

simulations allow the evaluation of sensor performance under different operating conditions, 

helping to identify the best conditions to maximize sensitivity and specificity. Techniques such 

as sensitivity analysis and optimization based on genetic algorithms are often used to adjust 

parameters and improve the analytical response of these devices20. 



 

 
Classical and Modern Mechanics: An Interdisciplinary Overview 

MATHEMATICAL MODELING IN ENZYMATIC BIOSENSORS 

Mathematical modeling in enzymatic biosensors can play a key role in improving and 

understanding the performance of these devices, offering a detailed quantitative view of the 

complex interactions between enzymes and analytes. Through mathematical models, it is 

possible to predict enzyme kinetics, optimize enzyme immobilization, and adjust the 

operating conditions of the biosensor to maximize its sensitivity and specificity. This is 

especially relevant in applications where accuracy and speed of detection are critical, such 

as in medical diagnostics and environmental monitoring. Through modeling, it is possible to 

identify potential limitations in the configuration of the biosensor and propose improvements 

even before its manufacture. Thus, the combination of mathematical modeling with 

technological advances in enzymatic biosensors can improve the development process and 

also expand the possibilities of application of these devices in new fields, contributing 

significantly to the evolution of biological detection technologies. 

 

3 APPLIED EQUATIONS REPRESENTATIVE OF MATHEMATICAL MODELS 

The development of the mathematical model of an enzymatic biosensor can be divided 

into two stages: the modeling of the diffusion of substances in the enzymatic layer and the 

modeling of the electrical response generated by the enzymatic reaction. The objective of 

this approach is to predict the behavior of the biosensor under different operating conditions, 

using concepts of diffusion, enzyme kinetics and Faraday's Law. 

The modeling of the diffusion of substances in the enzyme layer can be described by 

Fick's first Law, which quantifies the flow of a substance as a function of the concentration 

gradient, as expressed in equation (1). 

 

𝐽(𝑡) = −𝐷
𝜕𝑃

𝜕𝑧
                                                                (1) 

 

Where: 

is the 𝐽diffusion flow, is the diffusion coefficient of the species, is the concentration gradient of the 

species in the axial direction of the enzyme layer. This approach allows modeling the distribution of 

substrate and product concentration along the enzyme layer, which is fundamental to understand the 

temporal and spatial variations in the concentrations of the compounds𝐷
𝜕𝑃

𝜕𝑧
𝑃𝑧21. 

 

Fick's second Law, equation (2), is also applied to describe the evolution of 

concentrations in time and space, considering both the temporal and spatial variation of 

substrate and product concentrations21. The partial differential equations (PDEs) that arise 
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from this modeling can be solved numerically using the Finite Difference Method (FDM), a 

technique that stands out for its stability in nonlinear problems. 

 

𝜕𝑃

𝜕𝑧
 =  𝐷 

𝜕²𝐶

𝜕𝑥²
                                                                (2) 

 

Enzymatic kinetics can be described by equation (3) of Michaelis-Menten, which 

relates the speed of the enzymatic reaction to the concentration of the substrate. 

 

𝑣(𝑠) =  
𝑉𝑚𝑎𝑥[𝑆]

𝐾𝑚 + [𝑆]
,                                                        (3) 

 

Where: 

 

v is the reaction rate, is the maximum reaction rate, is the substrate concentration, and is the Michaelis–

Menten constant that represents the affinity of the enzyme for the substrate. This equation is used to 

model the rate of conversion of the substrate to product by the enzyme, providing the basis for 

integrating enzyme kinetics into the diffusion model𝑉𝑚𝑎𝑥[𝑆]𝐾𝑚
9. The integration of Michaelis-Menten 

kinetics with substrate diffusion allows for a more accurate simulation of the behavior of the biosensor, 

considering both the transport of substances and the reactions catalyzed by enzymes21. 

 

The generation of electric current in the enzymatic biosensor can be modeled by 

Faraday's Law, equation (4), which relates the flow of substances to the production of current. 

The equation used is: 

 

𝐼(𝑡) = 𝑛 ⋅ 𝐴 ⋅ 𝐹 ⋅ 𝐽(𝑡)                                                             (4) 

 

where I is the current generated by the reaction, 𝑛 the number of electrons transferred, 

Faraday's constant and the surface area of the electrode and 𝐹𝐴𝐽  the diffusion flux. The 

application of this law, together with enzyme kinetics and diffusion, allows the electrical 

response of an enzyme biosensor to be modeled5. 

One of the methods for solving diffusion EDPs is the Finite Difference Method (FDM) 

that can be applied numerically in computational environments, allowing discretization of 

temporal and spatial derivatives in a mesh. The approximations used can follow the 

concentrations at specific points on the surface of the biosensor that can be divided into a 

grid of points, as represented in equation (5): 
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𝜕𝐶

𝜕𝑡
≈

𝐶𝑖
𝑛+1 − 𝐶𝑖

𝑛

𝛥𝑡
, 

𝜕2 𝐶

𝜕𝑥2
≈

𝐶𝑖+1
𝑛 −2𝐶𝑖

𝑛+𝐶𝑖−1
𝑛

𝛥𝑥2
     (5) 

 

Where: 

 

is the concentration on the knot in the instant. The resulting system has a tri-diagonal matrix structure, 

typical of one-dimensional diffusion problems, which ensures computational efficiency. The typical 

boundary conditions applied are: initial condition, 𝐶𝑖
𝑛𝑖𝑛 

𝐶(𝑡 = 0, 𝑥) = 𝐶0; boundary at , fixed concentration ; boundary at , null gradient . Ensuring physical 

coherence and numerical stability. The usual implementation uses the parameters and , as reported in 

the literature𝑥 = 0𝐶 = 𝐶0𝑥 = 𝐿(
𝜕𝐶

𝜕𝑡
= 0)𝛥𝑡 = 1𝑠𝛥𝑥 = 10𝜇𝑚15. 

 

3.1 FIT OF THE SIMULATED CURVE TO THE EXPERIMENTAL DATA 

To improve the correspondence between the simulated results and the experimental 

data22, adjustments to the model curve can be performed by means of nonlinear regression. 

The most common adopted function is an increasing exponential, of the type expressed in 

equation (6): 

 

𝑓(𝑡) =  𝑎 ⋅ (1 − 𝑒−𝑏⋅𝑡 )  + 𝑐      (6) 

 

This functional form reflects the behavior of systems with first-order kinetics, common 

in amperometric biosensors. The adjustment can be performed via the least squares 

algorithm (curve_fit, SciPy), in Python language, allowing the precise calibration of the 

simulation parameters, for example with and ), against the real data. This process ensures a 

simulated curve with a coefficient of determination, quantitatively validating model𝑎 = 100𝑏 =

0,155𝑅2 ≅  0,9922. To ensure consistency with the experimental data, the input values used 

in the simulation should include parameters reported in experimental trials, for example, such 

as those reported by Baronas et al. (2021), as presented in Table 1: 

 

Table 1  

Typical input parameters used in the biosensor simulation 

Parameter Symbol Value Unit 

Initial substrate concentration 𝐶0 1 μM 

Initial product concentration 𝑃0 0 μM 

Substrate diffusion coefficient 𝐷𝑠 300 μm²/s 

Coefficient of diffusion of the product 𝐷𝑃 300 μm²/s 



 

 
Classical and Modern Mechanics: An Interdisciplinary Overview 

MATHEMATICAL MODELING IN ENZYMATIC BIOSENSORS 

Maximum enzyme rate 𝑉𝑀𝐴𝑋 100 μM/s 

Michaelis–Menten constant 𝐾𝑚 100 μM 

Enzyme layer thickness d 100 μm 

Number of electrons transferred per reaction n 2 - 

Electrode area The 0,07* cm² 

Faraday's constant F 96,485 C/mol 

* The electrode area assumed to be 0.07 cm² based on typical amperometric biosensor configurations reported 
in the literature9,21. Source: prepared by the author based on Baronas et al. (2021). 

 

These parameters are inserted into the previously described mathematical model and 

used as a basis for the simulation of the values of the electric current over time. From this 

data, it is possible to generate comparative curves between simulation and experiment. 

 

3.2 ANALYSIS AND EVALUATION OF BIOSENSOR PERFORMANCE 

After the application and validation of the model, simulation tests are performed to 

evaluate the impact of key parameters on the performance of the biosensor, such as the initial 

substrate concentration (), the maximum enzyme rate () and the thickness of the enzyme 

layer (d). The high degree of statistical correlation obtained in the adjustments demonstrates 

that the developed model will be reliable to represent the real dynamics of enzymatic 

biosensors[𝐶₀]𝑉𝑚𝑎𝑥
21,22.  

After validation, simulation tests are carried out to study the sensitivity of the model to 

changes in the main parameters. In this step, it is possible to identify, for example, that very 

high enzyme layer thicknesses () limit diffusion and reduce the final electric current, while 

substrate concentrations greater than 6,000 μM lead to response saturation𝑑 > 100 𝜇𝑚21. 

These characteristics are consistent with the literature and reinforce the usefulness of the 

model for optimizing the design of enzymatic biosensors9. 

 

4 CONCLUSIONS 

Mathematical models for predicting the behaviors of amperometric enzymatic 

biosensors demonstrate the ability to simulate and predict the diffusion of the sample and the 

generation of the generated current. The simulated response usually presents excellent fit to 

the experimental data, which validates the structure and parameters adopted in the model. 

The use of partial differential equations, combined with Michaelis-Menten kinetics and 

Faraday's law, is effective in describing the enzymatic analytical system. 

Compared to modeling approaches, discretization via Finite Difference Method (FDM) 

and parity analysis provided greater robustness in model calibration and validation. The 
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sensitivity analysis demonstrates that factors such as enzyme layer thickness and initial 

substrate concentration play a crucial role in optimizing the biosensor response, 

corroborating recent results in the literature.  

Thus, it is concluded that the modeling applied to enzymatic biosensors not only 

adequately reproduces the experimental behavior, but also offers reliable subsidies for the 

design and improvement of these devices. The study contributes significantly to the 

theoretical understanding of analytical response behavior, supporting its development in 

clinical, environmental, and industrial contexts. 
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