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ABSTRACT

Enzymatic biosensors are highly specific and sensitive analytical devices capable of
quantifying analytes quickly and at low cost, making them attractive for clinical,
environmental, and industrial applications. However, quantitatively predicting their response
requires robust mathematical models that integrate reagent diffusion, enzyme kinetics, and
current generation. The objective of this chapter was to present the fundamental equations
for developing models based on partial differential equations of Michaelis-Menten kinetics to
describe substrate and product diffusion in the enzyme layer and calculate the generated
electrical current. In summary, these models can aid in the design of biosensors, are
applicable to the study of electrochemical behavior, and provide a useful tool for predicting
the analytical response of these devices.

Keywords: Enzymatic Biosensors. Biotechnology. Mathematical Modeling. Partial
Differential Equations.

RESUMO

Os biossensores enzimaticos sao dispositivos analiticos de alta especificidade e
sensibilidade, capazes de quantificar analitos com rapidez e baixo custo, tornando-os
atrativos para aplicagdes clinicas, ambientais e industriais. Entretanto, prever
quantitativamente sua resposta exige modelos matematicos robustos que integrem difusao
de reagentes, a cinética enzimatica e a geragao de corrente. O objetivo deste capitulo foi
apresentar as equacgoes fundamentais para o desenvolvimento de modelos, baseados em
equacodes diferenciais parciais da cinética de Michaelis-Menten para descrever a difusdo do
substrato e produto na camada enzimatica e o calculo da corrente elétrica gerada. Em
sintese, os modelos podem auxiliar no desenho de biossensores, sendo aplicaveis no estudo
do comportamento eletroquimico e fornecem um instrumento util para previsdo da resposta
analitica desses dispositivos.
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RESUMEN

Los biosensores enzimaticos son dispositivos analiticos altamente especificos y sensibles,
capaces de cuantificar analitos con rapidez y a bajo coste, lo que los hace atractivos para
aplicaciones clinicas, ambientales e industriales. Sin embargo, la prediccién cuantitativa de
su respuesta requiere modelos matematicos robustos que integren la difusion de reactivos,
la cinética enzimatica y la generacion de corriente. El objetivo de este capitulo fue presentar
las ecuaciones fundamentales para el desarrollo de modelos basados en ecuaciones
diferenciales parciales de la cinética de Michaelis-Menten para describir la difusién del
sustrato y del producto en la capa enzimatica y calcular la corriente eléctrica generada. En
resumen, estos modelos pueden facilitar el disefio de biosensores, son aplicables al estudio
del comportamiento electroquimico y proporcionan una herramienta util para predecir la
respuesta analitica de estos dispositivos.

Palabras clave: Biosensores Enzimaticos. Biotecnologia. Modelado Matematico.
Ecuaciones Diferenciales Parciales.
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1 INTRODUCTION
Mathematical modeling has played a crucial role in advancing biotechnology, enabling

the understanding, optimization, and prediction of behaviors of complex biological systems.
One of the milestones of this evolution was the application of differential equations to describe
biochemical phenomena, such as those that occur in bioreactors and other biotechnological
processes. These mathematical models have been fundamental in representing biochemical
interactions and transformations more accurately, in addition to enabling the identification of
patterns that are essential to understand the behavior of biological systems1

The importance of mathematical modeling in biotechnology goes beyond the mere
quantitative representation of phenomena. It organizes disconnected information about
biological processes, corrects flaws in conventional understanding, and provides a logical
analysis of the interactions between the components of the system. This approach, which is
based on techniques for analyzing enzyme kinetics, mass and energy balances that
contribute to a detailed understanding of biochemical processes, is essential for the
development of new therapies, diagnostic products and solutions for environmental and
health detections2. The use of mathematical models also allows the optimization and control
of biotechnological processes, such as biomass production and biocatalysis, which involve
enzymes or microorganisms in specific chemical reactions3.

In particular, the mathematical modeling of enzymatic biosensors has gained
prominence, given the growing demand for sensitive, selective, and fast-response detection
devices. Biosensors are used in a wide range of applications, including the detection of
glucose, lactate, and other biomarkers, representing an alternative to conventional analysis
methods4. Modeling these systems is essential for understanding their behavior and
performance under different operating conditions, allowing them to predict and optimize their
responses. In this context, the application of differential equations and mathematical
simulation techniques has proven to be a powerful resource for the development of models
that can improve the performance of biosensors by determining the ideal parameters for each
specific application5.

The research presented in this chapter aims to understand the mathematical modeling
of an enzymatic biosensor, focusing on the application of differential equations to simulate
and predict its behavior. The objective is to comment on developed models, evaluate the
relationship between the biosensor parameters and their response, and identify the ideal
limits for the operation of these devices. Thus, modeling can contribute to improving the
efficiency and applicability of biosensors in various areas of biotechnology and health.
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2 ENZYMATIC BIOSENSORS: DEFINITION AND CLASSIFICATIONS ~

Enzymatic biosensors are analytical devices that use enzymes, such as biological
recognition elements, to detect and quantify specific substances in a sample. These devices
combine an enzyme with a physical or chemical transducer that converts the biological
interaction into a measurable signal6. The basic functioning of an enzyme biosensor involves
immobilizing the enzyme on a surface capable of detecting measurable changes after
occupying the active site. When the substance of interest (analyte) is present in the sample,
it occupies this site of the enzyme, producing a specific signal of the enzymatic reaction. This
signal is the result of a change in a physical or chemical property, such as pH, temperature,
electrical potential, among others, which is detected by the transducer.

Enzymatic biosensors offer high specificity due to the selectivity of enzymes by their
substrates. This means that they can differentiate between very similar substances, making
them very useful instruments in a variety of applications, including medical diagnosis,

environmental monitoring, food quality control, and biotechnology?7.

2.1 CLASSIFICATION OF ENZYMATIC BIOSENSORS ACCORDING TO THE TYPE OF
TRANSDUCER

Enzymatic biosensors can be classified based on the type of transducer used in
electrochemical, optical, thermal, or piezoelectric. Each type offers specific advantages
depending on the desired application8.

Electrochemical biosensors are the most common and can be subdivided into three
main categories. Amperometric, capable of measuring the current generated by the
oxidation or reduction of an analyte on the surface of the electrode. Glucose oxidase is a
typical example of an enzyme used in amperometric biosensors for the detection of glucose
in the blood. Potentiometrics, detect the change in the electrical potential caused by the
interaction of the analyte with the enzyme. A common example is the selective ion biosensor,
which uses an enzyme membrane to detect specific ions. Conductometric tests measure
the change in the electrical conductivity of the medium resulting from the enzymatic reaction.
These sensors are used to detect changes in the concentration of ions.

Optical biosensors detect changes in optical properties, such as absorption,
fluorescence, and luminescence, caused by the interaction between the analyte and the
enzyme. They can also be subdivided into three types. Fluorescent, they use enzymes that,
when interacting with the substrate, produce or modify fluorescence. They are very sensitive
and can detect very low concentrations of analytes. Luminescent, they are based on the

emission of light resulting from an enzymatic reaction. An example is the use of luciferase for
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the detection of ATP. Colorimetrics, measure the color change resulting from the enzymatic
reaction. They are simple and easy to use, and are often used in quick tests.

Thermal enzymatic biosensors, also known as calorimetrics, operate by measuring the
temperature change that occurs due to the specific enzymatic reaction. When an enzyme
interacts with its substrate, this reaction can release or absorb heat, and this thermal variation
is directly proportional to the concentration of the analyte present in the sample. To detect
small changes in temperature, a high-sensitivity thermistor or other temperature sensor is
positioned near the area where the reaction occurs. Although they are not as sensitive as
other types, the great advantage of these enzymatic biosensors is their robustness and
stability, allowing them to be used efficiently in adverse pH or temperature conditions, and
with complex samples. Its key features include simplicity of operation and the ability to
analyze substrates in multiple dies.

Piezoelectric enzymatic biosensors are analytical devices that utilize the selectivity of
an enzyme immobilized on the surface of a piezoelectric material, usually a quartz crystal.
The enzymatic reaction with its specific substrate generates a change in mass on the crystal
surface. This change in mass, however small, modifies the resonant frequency of the
piezoelectric material, a physical phenomenon detected by a transducer. The resulting
electrical signal is then correlated with the analyte concentration, allowing for highly sensitive,
real-time detection. Key features of these biosensors include label-free detection, speed, and

enzyme specificity.

2.2 CLASSIFICATION AS TO THE METHOD OF IMMOBILIZATION OF THE ENZYME

Enzyme immobilization is a key step in the development of enzymatic biosensors, as
it directly affects sensor stability, activity, and repurposing. The main methods of
immobilization are related to four strategies. In physical adsorption, the enzyme is adsorbed
on the surface of the transducer through physical interactions, such as Van der Waals,
hydrophobic, and ionic forces. This method is simple, but the binding is usually weak and can
lead to leaching of the enzyme. In the covalent bond the enzyme is covalently bonded to
the surface of the transducer. This method provides a strong and stable bond, increasing the
lifetime of the biosensor. The third strategy, called matrix trapping, consists of encapsulating
the enzyme in a polymeric matrix or gel. This method protects the enzyme from harsh
conditions, but can limit substrate diffusion. Finally, in crosslinking, the enzyme is bound to
other enzyme molecules or to a scaffold by means of crosslinking agents. This method
creates a stable enzyme network and increases the enzyme density on the surface of the
transducer.
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2.3 CLASSIFICATION AS TO THE NATURE OF BIOLOGICAL RECOGNITION ~
Enzymatic biosensors can be classified according to the specificity of the enzymatic
interaction. Substrate-specific biosensors utilize enzymes that are specific to a particular
substrate. For example, glucose oxidase is specific to glucose. Inhibitory biosensors detect
the presence of specific enzyme inhibitors. These sensors are useful for the detection of
contaminants or toxins that inhibit enzyme activity. Activity biosensors measure the overall
enzyme activity in a sample, rather than focusing on a single substrate or inhibitor. They are

useful in metabolic studies and clinical diagnostics.

2.4 THE EFFICIENCY OF AN ENZYMATIC BIOSENSOR

The efficiency of enzymatic biosensors is largely attributed to the specificity of the
enzymes used. Enzymes are biological proteins that catalyze specific chemical reactions,
which allow the selective detection of a particular substrate in the presence of other
components in a sample6. Enzyme specificity is one of the main factors contributing to the
high efficiency of enzymatic biosensors, allowing the detection of very low concentrations of
analytes in complex samples. In addition, how quickly enzymatic biosensors can provide
results is another crucial aspect of their efficiency. According to Grieshaber et al. (2008),
electrochemical enzymatic biosensors, in particular, are capable of producing almost
instantaneous responses due to the rapid kinetics of enzymatic reactions. This feature is
especially valuable in clinical applications, where rapid diagnosis can be vital.

The stability of enzymatic biosensors also contributes to their efficiency. Advanced
methods of enzyme immobilization, such as covalent bonding and encapsulation in polymeric
matrices, help maintain enzyme activity for prolonged periods, even under adverse
conditions10. Techniques such as enzymatic crosslinking not only increase stability, but also
allow the reuse of biosensors, reducing costs and improving the sustainability of analytical
processes.

The sensitivity of enzymatic biosensors is widely documented11. The combination of
highly sensitive transducers with specific enzymes allows the detection of analytes at levels
on the order of nanograms per milliliter. This low level of sensitivity is particularly important in
areas such as food safety and environmental monitoring, where early detection of
contaminants can prevent public health problems and ecological damage.

Finally, the miniaturization and portability of enzymatic biosensors are aspects that
increase their efficiency12. Xie and Herten (2020) discuss how advances in optical transducer
technology have enabled the development of compact and portable biosensors, which can
be used directly in the field for fast and accurate analyses. This portability is especially useful
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in resource-constrained environments where laboratory analytical methods would be

impractical.

2.5 MATHEMATICAL MODELING

Mathematical modeling is a fundamental approach in several areas of knowledge,
allowing the representation of real systems through equations and mathematical concepts.
Essentially, mathematical modeling consists of translating real-world problems into a set of
mathematical expressions that can be analyzed, solved, and used to predict the behavior of
dynamic and complex systems13. The construction of a mathematical model involves,
initially, the simplification of a real system, identifying the most relevant variables and the
relationships between them, in order to create a representation that is as accurate as possible
to the real phenomenon.

In practice, mathematical modeling can be applied in various fields, such as
engineering, economics, biology, physics, and even the social sciences. For example, in
mechanical and civil engineering, mathematical models are often used to predict the behavior
of structures under different load conditions, which is essential for the safe and efficient
design of buildings and bridges14. In biology, mathematical models can be used to
understand population growth or the spread of disease, helping to guide public health policy.

Building a mathematical model usually follows several steps. First, the problem is
clearly defined, establishing the objectives of the model and the main variables involved.
Then, a mathematical formulation is developed, where assumptions about the behavior of
the system are adopted that allow simplifying it. These assumptions are critical as they
determine the accuracy and applicability of the model. Subsequently, the model is solved
mathematically, which may involve solving differential equations, optimizing functions, or
numerical simulations. Finally, the model is validated by comparing the mathematical or
computational results with experimental or observational data. If necessary, the model can
be adjusted to improve its accuracy and applicability.

An important aspect of mathematical modeling is the interpretation of results. A model
may be mathematically correct, but if the initial assumptions are inadequate, the results may
not accurately reflect reality. Therefore, mathematical modeling requires a deep
understanding of both the actual system and the mathematical tools used15. The ability to
mathematically model a system provides a quantitative view that is crucial for decision-

making in complex contexts, anticipating behaviors and decisions in applications.
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2.6 MATHEMATICAL MODELING APPLIED TO BIOSENSORS ~

Mathematical modeling can be a very useful step for the development and optimization
of biosensors, allowing a detailed understanding of their mechanisms and the prediction of
their performance under various conditions. Biosensors are devices that use a combination
of a biological component and a transducer to detect and quantify chemicals, biomolecules,
or cells. Mathematical modeling helps translate the complex interactions between these parts
into mathematical equations that are understandable and applicable in the real context.

The interaction between the analyte and the biological component of the biosensor is
fundamental for its functioning. Mathematical models, such as the Langmuir equation, are
often used to describe the kinetics of adsorption and bonding of molecules. Langmuir's
equation, given by = where 0 is the fraction of occupied sites, is the affinity constant, and is

the concentration of the analyte, allows us to estimate the maximum binding capacity of the

biosensore%kcckacw. In addition, models based on the Michaelis—Menten equation are

applied in enzyme systems, where the reaction rate is described by the equation, with the

maximum velocity and the Michaelis constantv = Z’”“—igvmaka”.
m

The transducer converts the biochemical response into a measurable signal.
Mathematical models that describe transducer response are essential to the accuracy and
reliability of biosensors. In optical biosensors, the variation in the intensity of reflected or
transmitted light is often modeled using the Beer-Lambert equation, where is the absorbance,
is the intensity of the incident light, is the intensity of the transmitted light, € is the molar
absorption coefficient, is the concentration of the analyte, and is the thickness of the
sampled = log10 (I,/I) = eclAlyIc 1 8.

Dynamic models are used to simulate the temporal behavior of biosensors, which is
crucial for systems that operate under varying conditions or need rapid response. Models
based on differential equations are employed to describe the reaction kinetics and diffusion
dynamics of the analyte on the sensor surface19. For example, the Fick diffusion equation,

where is the concentration of the analyte, is the diffusion coefficient and is the Laplacian
operator, is used to model the spatial distribution of the analyte in a biosensor.g—f — DV?C =

0C DV?

Mathematical modeling can also assist in the design of biosensor design. Numerical
simulations allow the evaluation of sensor performance under different operating conditions,
helping to identify the best conditions to maximize sensitivity and specificity. Techniques such
as sensitivity analysis and optimization based on genetic algorithms are often used to adjust

parameters and improve the analytical response of these devices20.
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Mathematical modeling in enzymatic biosensors can play a key role in improving and \
understanding the performance of these devices, offering a detailed quantitative view of the
complex interactions between enzymes and analytes. Through mathematical models, it is
possible to predict enzyme kinetics, optimize enzyme immobilization, and adjust the
operating conditions of the biosensor to maximize its sensitivity and specificity. This is
especially relevant in applications where accuracy and speed of detection are critical, such
as in medical diagnostics and environmental monitoring. Through modeling, it is possible to
identify potential limitations in the configuration of the biosensor and propose improvements
even before its manufacture. Thus, the combination of mathematical modeling with
technological advances in enzymatic biosensors can improve the development process and
also expand the possibilities of application of these devices in new fields, contributing

significantly to the evolution of biological detection technologies.

3 APPLIED EQUATIONS REPRESENTATIVE OF MATHEMATICAL MODELS

The development of the mathematical model of an enzymatic biosensor can be divided
into two stages: the modeling of the diffusion of substances in the enzymatic layer and the
modeling of the electrical response generated by the enzymatic reaction. The objective of
this approach is to predict the behavior of the biosensor under different operating conditions,
using concepts of diffusion, enzyme kinetics and Faraday's Law.

The modeling of the diffusion of substances in the enzyme layer can be described by
Fick's first Law, which quantifies the flow of a substance as a function of the concentration

gradient, as expressed in equation (1).

opP
J() =-D— (1)

Where:
is the Jdiffusion flow, is the diffusion coefficient of the species, is the concentration gradient of the
species in the axial direction of the enzyme layer. This approach allows modeling the distribution of

substrate and product concentration along the enzyme layer, which is fundamental to understand the

temporal and spatial variations in the concentrations of the compoundsD Z—:sz.
Fick's second Law, equation (2), is also applied to describe the evolution of
concentrations in time and space, considering both the temporal and spatial variation of

substrate and product concentrations21. The partial differential equations (PDEs) that arise

S 8T 19 S b R T R R A R R T e RS

Classical and Modern Mechanics: An Interdisciplinary Overview
MATHEMATICAL MODELING IN ENZYMATIC BIOSENSORS



\

from this modeling can be solved numerically using the Finite Difference Method (FDM),

technique that stands out for its stability in nonlinear problems.

oP D 9*C )
0z  0x? @
Enzymatic kinetics can be described by equation (3) of Michaelis-Menten, which

relates the speed of the enzymatic reaction to the concentration of the substrate.

Vmax [S]

Ky + ST (3)

v(s) =

Where:

v is the reaction rate, is the maximum reaction rate, is the substrate concentration, and is the Michaelis—
Menten constant that represents the affinity of the enzyme for the substrate. This equation is used to
model the rate of conversion of the substrate to product by the enzyme, providing the basis for
integrating enzyme kinetics into the diffusion modelV,,.,[S]1K.,°. The integration of Michaelis-Menten
kinetics with substrate diffusion allows for a more accurate simulation of the behavior of the biosensor,

considering both the transport of substances and the reactions catalyzed by enzymes21.

The generation of electric current in the enzymatic biosensor can be modeled by
Faraday's Law, equation (4), which relates the flow of substances to the production of current.

The equation used is:
It)y=n-A-F-]() (4)

where [ is the current generated by the reaction, n the number of electrons transferred,
Faraday's constant and the surface area of the electrode and FAJ the diffusion flux. The
application of this law, together with enzyme kinetics and diffusion, allows the electrical
response of an enzyme biosensor to be modeled>5.

One of the methods for solving diffusion EDPs is the Finite Difference Method (FDM)
that can be applied numerically in computational environments, allowing discretization of
temporal and spatial derivatives in a mesh. The approximations used can follow the
concentrations at specific points on the surface of the biosensor that can be divided into a

grid of points, as represented in equation (5):
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n+1 n 2 n n n
6_C ~ Ci _Ci 0° C ~ Ci+1—2Cl~ +Ci—1

at At 7 9x2 Ax? (5)
Where:

is the concentration on the knot in the instant. The resulting system has a tri-diagonal matrix structure,
typical of one-dimensional diffusion problems, which ensures computational efficiency. The typical
boundary conditions applied are: initial condition, Clin
C(t = 0,x) = Cy; boundary at , fixed concentration ; boundary at , null gradient . Ensuring physical

coherence and numerical stability. The usual implementation uses the parameters and , as reported in

the literaturex = 0C = Cyx = L(3 = 0)At = 1sAx = 10um'®.

3.1 FIT OF THE SIMULATED CURVE TO THE EXPERIMENTAL DATA

To improve the correspondence between the simulated results and the experimental
data22, adjustments to the model curve can be performed by means of nonlinear regression.
The most common adopted function is an increasing exponential, of the type expressed in

equation (6):
fOO=a -1-eP) +c (6)

This functional form reflects the behavior of systems with first-order kinetics, common
in amperometric biosensors. The adjustment can be performed via the least squares
algorithm (curve_fit, SciPy), in Python language, allowing the precise calibration of the
simulation parameters, for example with and ), against the real data. This process ensures a
simulated curve with a coefficient of determination, quantitatively validating modela = 100b =
0,155R? = 0,99%2. To ensure consistency with the experimental data, the input values used
in the simulation should include parameters reported in experimental trials, for example, such

as those reported by Baronas et al. (2021), as presented in Table 1:

Table 1

Typical input parameters used in the biosensor simulation
Parameter Symbol Value Unit
Initial substrate concentration Co 1 uM
Initial product concentration P, 0 UM
Substrate diffusion coefficient D, 300 um?3/s
Coefficient of diffusion of the product Dp 300 Mm?/s
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Maximum enzyme rate Viax 100 puM/s
Michaelis—Menten constant K, 100 uM
Enzyme layer thickness d 100 um
Number of electrons transferred per reaction n 2 -
Electrode area The 0,07* cm?
Faraday's constant F 96,485 C/mol

'\

* The electrode area assumed to be 0.07 cm? based on typical amperometric biosensor configurations reported
in the literature9,21. Source: prepared by the author based on Baronas et al. (2021).

These parameters are inserted into the previously described mathematical model and
used as a basis for the simulation of the values of the electric current over time. From this

data, it is possible to generate comparative curves between simulation and experiment.

3.2 ANALYSIS AND EVALUATION OF BIOSENSOR PERFORMANCE

After the application and validation of the model, simulation tests are performed to
evaluate the impact of key parameters on the performance of the biosensor, such as the initial
substrate concentration (), the maximum enzyme rate () and the thickness of the enzyme
layer (d). The high degree of statistical correlation obtained in the adjustments demonstrates
that the developed model will be reliable to represent the real dynamics of enzymatic
biosensors[Co] Va2

After validation, simulation tests are carried out to study the sensitivity of the model to
changes in the main parameters. In this step, it is possible to identify, for example, that very
high enzyme layer thicknesses () limit diffusion and reduce the final electric current, while
substrate concentrations greater than 6,000 uM lead to response saturationd > 100 um?".
These characteristics are consistent with the literature and reinforce the usefulness of the

model for optimizing the design of enzymatic biosensors9.

4 CONCLUSIONS

Mathematical models for predicting the behaviors of amperometric enzymatic
biosensors demonstrate the ability to simulate and predict the diffusion of the sample and the
generation of the generated current. The simulated response usually presents excellent fit to
the experimental data, which validates the structure and parameters adopted in the model.
The use of partial differential equations, combined with Michaelis-Menten kinetics and
Faraday's law, is effective in describing the enzymatic analytical system.

Compared to modeling approaches, discretization via Finite Difference Method (FDM)
and parity analysis provided greater robustness in model calibration and validation. The
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sensitivity analysis demonstrates that factors such as enzyme layer thickness and initial
substrate concentration play a crucial role in optimizing the biosensor response,
corroborating recent results in the literature.

Thus, it is concluded that the modeling applied to enzymatic biosensors not only
adequately reproduces the experimental behavior, but also offers reliable subsidies for the
design and improvement of these devices. The study contributes significantly to the
theoretical understanding of analytical response behavior, supporting its development in

clinical, environmental, and industrial contexts.

REFERENCES

Bailey, J. E. (1998). Biochemical engineering fundamentals (2nd ed.). New York, NY:
McGraw-Hill.

Engasser, J. L. (1988). Modeling of biochemical systems. Berlin, Germany: Springer-Verlag.

Machado, A. F. (2016). Modelagem de processos biotecnolégicos: Teoria e aplicagbes. Séao
Paulo, Brazil: Editora Universitaria.

Moreira, A. L. (2010). Biossensores: Principios e aplicagdes. Rio de Janeiro, Brazil: Editora
Fiocruz.

Barlett, P. N., & Al-Lawati, H. A. (1998). Electrochemical evaluation of ferrocene-modified
enzymes for use in biosensors. Biosensors and Bioelectronics, 13(5), 631-640.
https://doi.org/10.1016/S0956-5663(98)00003-9

Turner, A. P. F. (2013). Biosensors: Fundamentals and applications. Oxford, United Kingdom:
Oxford University Press.

Scognamiglio, V., Campese, M., & Polo, A. (2010). Biosensors for environmental monitoring:
An overview. Analytical Letters, 43(16), 392-405.
https://doi.org/10.1080/00032711003687023

Gorton, L. (2005). Biosensors and modern biospecific analytical techniques. Amsterdam,
Netherlands: Elsevier.

Grieshaber, D., MacKenzie, R., Voros, J., & Reimhult, E. (2008). Electrochemical biosensors
- Sensor principles and  architectures.  Sensors, 8(3), 1400-1458.
https://doi.org/10.3390/s8031400

Upadhyay, L. S. B. (2015). Enzyme inhibition based biosensors: A review. Analytical Methods,
7(19), 7683-7698. https://doi.org/10.1039/C5AY01753A

Verma, N., & Bhardwaj, A. (2015). Biosensor technology for pesticides - A review. Applied

Biochemistry and Biotechnology, 175(6), 3093-3119. https://doi.org/10.1007/s12010-
015-1489-2

SR XL B SN

S 8T 19 S b R T R R A R R T e RS

Classical and Modern Mechanics: An Interdisciplinary Overview
MATHEMATICAL MODELING IN ENZYMATIC BIOSENSORS



Xie, Y., & Herten, G. (2020). Fluorescence lifetime biosensing. Trends in Analytical Chemistry,
127, 115892. https://doi.org/10.1016/j.trac.2020.115892

Castro, M. de, & Silva, L. da. (2018). Introdugcdo a modelagem matematica (4th ed.). Sédo
Paulo, Brazil: Editora Académica.

Medeiros, P. (2019). Modelagem matematica aplicada a engenharia (3rd ed.). Rio de Janeiro,
Brazil: Ciéncia Moderna.

Ribeiro, J. P. (2020). Modelagem matematica: Teoria e pratica (2nd ed.). Curitiba, Brazil:
Editora Universitaria.

Langmuir, 1. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum.
Journal of the American Chemical Society, 40(9), 1361-1403.
https://doi.org/10.1021/ja02242a004

Michaelis, L., & Menten, M. L. (1913). Die Kinetik der Invertinwirkung. Biochemische
Zeitschrift, 49, 333-369.

Lambert, J. (1852). Photometrie. In Encyclopédie méthodique. Paris, France.

Fick, A. (1855). Uber Diffusion. Annalen der Physik und Chemie, 170(1), 59-86.
https://doi.org/10.1002/andp.18551700105

Goldberg, D. E. (1989). Genetic algorithms in search, optimization, and machine learning.
Boston, MA: Addison-Wesley.

D’Souza, S. F. (2001). Immobilization and stabilization of enzymes for biosensor applications.
Applied Biochemistry and Biotechnology, 96(1-3), 225-238.
https://doi.org/10.1385/ABAB:96:1-3:225

Baronas, R., Ivanauskas, F., & Kulys, J. (2021). Mathematical modeling of biosensors (2nd
ed.). Cham, Switzerland: Springer Nature Switzerland AG.

S 8T 19 S b R T R R A R R T e RS

Classical and Modern Mechanics: An Interdisciplinary Overview
MATHEMATICAL MODELING IN ENZYMATIC BIOSENSORS



