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RESUMO 

A solução analítica de diversos problemas práticos em engenharia é de difícil execução, devendo ser 

resolvidos numericamente ou experimentalmente. Portanto, uma ótima solução é a modelagem 

experimental. Fundamentado na análise dimensional, a qual é baseada nos métodos de medições e 

análise de problemas físicos, a similitude é desenvolvida. Este trabalho teve como objetivo encontrar 

uma equação preditiva que possibilita-se determinar quais seriam as deformações sofridas pelo eixo 

que poderiam influenciar no rendimento da pessoa com deficiência durante o seu deslocamento. Para 

validação do processo foi utilizado um software de elementos finitos para simular a cadeira e alterar 

todas as variáveis envolvidas. Por fim, uma equação preditiva geral foi levantada e possibilitou por 

simples cálculos prever comportamentos que poderiam ser corrigidos com pequenos ajustes. 
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1 INTRODUÇÃO 

As atividades desportivas para as pessoas com deficiência é uma realidade desde meados do 

século vinte. E de forma promissora vem agregando, desde então, valor e técnicas científicas ao seu 

contexto. No Brasil, os esportes paralímpicos vêm ganhando espaço progressivamente, nos últimos 

dez anos. No país já estão presentes praticamente todas as modalidades desportivas, com equipes 

técnicas estruturadas (Torres, 2015). No ano de 2016 haverá as Olimpíadas e as Paraolimpíadas do Rio 

de Janeiro, estimulando diversos setores econômicos, paratletas e pesquisadores a fim de desenvolver 

novos conhecimentos e tecnologias. Assim, é importante conhecer as especificidades da mencionada 

relação – cadeira/atleta. Contudo, poucas alterações têm sido propostas no que tange às dimensões dos 

componentes estruturais do equipamento. Se um equipamento desta natureza tem o papel de assessorar 

o usuário deficiente de forma a garantir-lhe o máximo de liberdade de locomoção e estabilidade, então 

não se justifica desprezar uma contínua diversidade de dimensões antropométricas generalizando-as 

em modelos manufaturados em série (Cardoso, 2015). Como em outros casos de acessórios de 

acessibilidade (muletas, botas, apoios, luvas, equipamentos de proteção) as cadeiras de rodas foram 

adotadas por seus usuários para atividades extraconvencionais, como atividades desportivas. E para 

tanto, estes acessórios e equipamentos foram aplicados em sua forma natural, isto é, sem adequadas 

adaptações. Este trabalho aborda o comportamento em modelagem de uma barra circular componente 

do eixo traseiro de uma cadeira de rodas paralímpica, para que se possa realizar o ajuste da cambagem 

da roda de propulsão - é o quanto esta pode inclinar-se em relação ao chão. Geralmente, os esportes 

em cadeiras de rodas usam, unanimemente, a cambagem diferente de zero grau – roda perpendicular 

ao nível do solo. A cambagem desenvolve mais estabilidade à rotação e movimentos ágeis, para as 

cadeiras de rodas. Porém, também implicam no aumento da resistência à propulsão. A cambagem ainda 

exerce uma função de segurança – por se tratar de um esporte de contato, ela mantém as mãos dos 

atletas nos aros, durante a propulsão, afastadas de um atleta para outro, durante choques ou embates 

(Cardoso, 2015). 

 

2 METODOLOGIA 

Fundamentado na análise dimensional, a qual base nos métodos de medições e análise de 

problemas físicos, a similitude é desenvolvida. Levantada quais variáveis afetam o fenômeno, estas 

variáveis podem ser representadas em grupos adimensionais ou π-termos. Esta representação, 

conhecida como teorema dos π-termos de Buckingham, torna possível determinar quais são os grupos 

adimensionais importantes para o problema e predizer a relação funcional entre eles (Murphy, 1950). 

O número de π-termos necessários para expressar o fenômeno segundo o teorema dos Pi-termos de 

Buckingham, é: 
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s=n-b               (1) 

 

Onde, s é o número de π-termos, n é o número de variáveis envolvidas e b o número de 

dimensões básicas envolvidas. 

Os π-termos devem ser adimensionais e linearmente independentes, além disso, um novo π-

termos pode ser obtido pela combinação de outros π-termos, através de divisões mútuas ou 

multiplicações, o que possibilita uma maior simplificação. Os π-termos podem ser expressos da 

seguinte forma: 

 

π_1=F(π_2,π_3,π_4,…,π_s)             (2) 

 

Por conseguinte, é apresentada a metodologia para um modelo aproximado onde foram 

consideradas cinco variáveis que afetam diretamente a variável dependente deflexão, que são: 

 

a) A força aplicada (F); 

b) O comprimento da barra (C);  

c) O diâmetro da barra circular (Ø); 

d) O deslocamento (δ); 

e) O módulo de elasticidade (E). 

 

3 IDENTIFICAÇÃO DOS π-TERMOS ADIMENSIONAIS 

Para determinar os termos adimensionais envolvidos nos problemas, a metodologia descrita 

por Murphy (1950) foi adotada, ou seja, uma vez levantada às variáveis envolvidas, monta-se uma 

matriz com os expoentes da dimensão envolvida para cada variável (Carneiro, 1996).  

Para a geração da matriz escreve-se primeiro em uma linha horizontal as variáveis envolvidas 

no processo, que foram descritas anteriormente. Em seguida, em uma linha vertical a esquerda da linha 

horizontal denota-se as dimensões relevantes. As dimensões relevantes são a unidade de força (F) e a 

unidade de comprimento (L). 

Destarte, gerando a matriz das variáveis dimensionais: 

 

Para cada variável têm-se as seguintes dimensões estabelecidas: 

 

Tabela 1. Dimensões das variáveis. 
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VARIÁVEIS (n) DIMENSÕES (b) 

A deflexão (δ) L 

A força aplicada (F) F 

Diâmetro da Barra Circular (Ø) L 

O modulo de elasticidade (E) FL-2 

O comprimento da Barra (C) L 

 

Dadas as dimensões de cada variável se preenche a matriz: 

 

Expressa por “A” a matriz nas duas últimas colunas e por “B” a matriz formada pelo restante 

dos elementos da matriz original, é dado que: 

 

Calcula-se a determinante da matriz A. Essa determinante deve ser diferente de zero, caso seja 

igual a zero deve-se reordenar as linhas e colunas da matriz para que o determinante seja diferente de 

zero. 

 

A partir das matrizes A e B gera-se uma terceira matriz C: 

 

Sendo assim: 

 

Por fim, gera-se uma matriz final com os π-termos utilizando as matrizes A, B, C e D, sendo D 

uma matriz identidade da ordem do numero de π-termos, da seguinte forma (Murphy, 1950): 

 

Número de π-termos;       

         

s=5-2=3            (10) 

 

Forma da matriz final: 
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Evidentemente: 

 

Consequentemente: 

 

𝜋1 =
𝛿

𝐶
             (12) 

 

𝜋2 =
Ø

𝐶
             (13) 

 

𝜋3 =
𝐸𝐶2

𝐹
             (14) 

 

Assim sendo: 

 

𝜋1 = 𝐹(𝜋2, 𝜋3)            (15) 

 

𝛿

𝐶
= 𝐹(

Ø

𝐶
,

𝐸𝐶2

𝐹
)               (16) 

 

Para chegar a uma equação final em função dos π-termos utiliza-se uma combinação obtida 

pela multiplicação das equações componentes de “s” Pi-termos (Sedov, 1986), ou seja: 

 

𝜋1 =
𝐹(𝜋2,𝜋3̅̅ ̅̅ )𝐹( 𝜋2̅̅ ̅̅ ,𝜋3)

𝐹(𝜋2̅̅ ̅̅ ,𝜋3̅̅ ̅̅ )
           (17) 
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Para obter as equações componentes de cada um dos Pi-termos, escreve-se uma relação onde o 

Pi-termo dependente estará em função apenas de outro Pi-termo qualquer, enquanto todos os demais 

parâmetros serão mantidos constantes. 

As funções escolhidas para efetuar as simulações foram funções potenciais do tipo 𝜋1 = 𝑐1𝜋𝑖
𝑐2, 

e assim combinadas pela função produto mostrada anteriormente. 

 

Assim: 

 

𝐹(𝜋2, 𝜋3̅̅ ̅) = (𝜋1)𝜋3̅̅ ̅̅  = 𝐺𝜋2
𝑚           (18) 

𝐹( 𝜋2̅̅ ̅, 𝜋3) = (𝜋1)𝜋2̅̅ ̅̅  = 𝐻𝜋3
𝑛          (19) 

 

Para determinar as constantes G, H, m, n, serão realizadas simulações pelo método de 

elementos finitos utilizando o software Autodesk Inventor Professional 2013 (versão estudante). 

 

4  SIMULAÇÃO 

O modelo adotado foi de um para um. Primeiramente, o projeto representado no desenho 

esquemático da cadeira de rodas paralímpica foi submetido à análise de tensão por método de 

elementos finitos, do software de desenho e simulação. Conforme o esquema, o programa incrementou 

o desenho com a malha dos elementos nodais. 

 

Figura 1. Incremento da Malha: (Elementos: 124697 – Nós: 256450). 
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As restrições ou engastes foram aplicados nas regiões rígidas do modelo, isto é, aquelas onde 

o apoio às solicitações é maior. No caso da cadeira de rodas, estas regiões são representadas pelas rodas 

traseiras e dianteiras. No esquema as rodas dianteiras não foram representadas, de forma que, o seu 

equivalente de engaste foi o apoio dos pés, como sendo a vizinhança mais próxima. Estas restrições 

impostas estão destacadas em azul neon, Fig. 1. 

O objetivo da simulação foi observar os deslocamentos máximos na região crítica do modelo, 

representada pelo eixo de acoplamento das rodas traseiras. Desta forma, este componente do sistema 

como um todo, é o objeto de estudos aqui tratado, destacado a seguir, com o respectivo deslocamento 

após a solicitação: 

 

Figura 2. Simulação de carregameto. 

 
 

Tabela 2. Propriedades da barra circular no eixo da roda. 

Dimensões 

Ø (diâmetro da barra) 0,0172 (m) 

C (comprimento da barra) 0,0540 (m) 

Propriedades 

E(Alumínio 6061) 7,0 x 1010 (N/m2) 

Ѵ(Coeficiente de Poisson) 0,33 (u.l.) 

 

5 PARÂMETROS CONSTANTES 

Para 𝜋2̅̅ ̅··: 

 

Tabela 3. Variáveis Constantes de 𝜋2̅̅ ̅. 

Variáveis Constantes Dimensões 

Comprimento da Barra (C) 0,054 (m) 

Força Aplicada (F) 800,0 (N) 

 

       Para 𝜋3̅̅ ̅··: 

Tabela 4. Variáveis Constantes de 𝜋3̅̅ ̅. 

Variáveis Constantes Dimensões 

Comprimento da barra (C) 0,054 (m) 

Diâmetro da barra (Ø) 0,0172 (m) 
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6 SIMULAÇÕES 

Para: 

 

        𝐹(𝜋2, 𝜋3̅̅ ̅) = (𝜋1)𝜋3̅̅ ̅̅   = 𝐺𝜋2
𝑚           (20) 

 

        Π3_constante = (E x C2) ÷ F = (7,0e10 x 0,0542) ÷ 800,0 = 255150     (21) 

 

Tabela 5. Variáveis Constantes de 𝜋3̅̅ ̅. 

Variáveis Constantes Dimensões 

Comprimento da barra (C) 0,054 (m) 

Força Aplicada (F) 800,0 (N) 

Módulo de elasticidade (E) 7,0 x 1010 (N/m2) 

 

Variando o diâmetro (Ø) da barra cilíndrica para obter o comportamento da variável dependente 

deslocamento por flexão da barra (δ): 

 

Tabela 6. Dados da Simulação. 

"Dados da Simulação" 

Ø (m) 0,0088 0,0102 0,0116 0,0130 0,0144 0,0158 0,0172 

PI_1 0,01515 0,00870 0,00498 0,00319 0,00211 0,00147 0,00107 

PI_2 0,16296 0,18889 0,21481 0,24074 0,26667 0,29259 0,31852 

 

Figura 3. Relação entre 𝜋1 e 𝜋2. 

 
 

Para: 

 

𝐹( 𝜋2̅̅ ̅, 𝜋3) = (𝜋1)𝜋2̅̅ ̅̅   = 𝐻𝜋3
𝑛          (22) 

 

Π2_constante = Ø ÷ C = 0,0172 ÷ 0,054 = 0,31851852       (23) 

 

π1 = 1E-05π2-3,992
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Tabela 7. Variáveis Constantes de 𝜋2̅̅ ̅. 

Variáveis Constantes Dimensões 

Comprimento da barra (C) 0,054 (m) 

Diâmetro da barra (Ø) 0,0172 (m) 

Módulo de elasticidade (E) 7,0 x 1010 (N/m2) 

 

Variando a força aplicada (F), carregamento, na barra cilíndrica para obter o comportamento 

da variável dependente deslocamento por flexão da barra (δ): 

 

Tabela 8. Dados da Simulação. 

"Dados da Simulação" 

F (N) 600,0 700,0 800,0 900,0 1000,0 1100,0 1200,0 

PI_1 0,000575 0,000725 0,000973 0,001162 0,00144852 0,00156593 0,00168944 

PI_3 340200,0 291600,0 255150,0 226800,0 204120,0 185563,6 170100,0 

 

Figura 4. Relação entre 𝜋1 e 𝜋3. 

 
 

7 TESTE DE VALIDADE 

O teste de validade é obtido por uma equação em que, um dos PI-termos é mantido constante, 

para um valor distinto daqueles da primeira série de dados. 

 

Nova simulação para um novo 𝜋2̿̿ ̿ constante: 

 

Assim para: 

 

𝐹(𝜋3, 𝜋2̿̿ ̿) = (𝜋1)𝜋2̿̿ ̿̿   = 𝐿𝜋3
𝑣              (25) 

 

 

π1 = 596832π3-1,628
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Tabela 9. Novas Variáveis Constantes de 𝜋2̿̿ ̿. 
Variáveis Constantes Dimensões 

Comprimento da barra (C) 0,065 (m) 

Diâmetro da barra (Ø) 0,0172 (m) 

Módulo de elasticidade (E) 7,0 x 1010 (N/m2) 

 

Variando a força aplicada (F), carregamento, na barra cilíndrica para obter o comportamento 

da variável dependente deslocamento por flexão da barra (δ): 

 

Tabela 10. Dados da Simulação. 

"Dados da Simulação" 

F (N) 600,0 700,0 800,0 900,0 1000,0 1100,0 1200,0 

PI_1 0,00110831 0,00129292 0,00147754 0,00166308 0,00184769 0,00203231 0,00221692 

PI_3 492916,67 422500,00 369687,50 328611,11 295750,00 268863,64 246458,33 

 

Figura 5. Relação entre π_1 e π_3 para o teste de validade 

 
 

Desta forma, a equação para o teste de validade será da forma: 

 

𝐹(𝜋3, 𝜋2̿̿ ̿) = (𝜋1)𝜋2̿̿ ̿̿   = 𝐿𝜋3
𝑣 = 549,48𝜋3

−1        (26) 

 

𝐹( 𝜋2̅̅ ̅, 𝜋3) = (𝜋1)𝜋2̅̅ ̅̅   = 𝐻𝜋3
𝑛 = 596832𝜋3

−1,628       (27) 

 

 

Sabe-se, da primeira simulação que: 

 

𝜋3̅̅ ̅ =
𝐸(𝐿)2

𝐹
= 0,319          (28) 

 

Assim: 
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𝐹(𝜋2̅̅ ̅, 𝜋3̅̅ ̅) = 596832(0,319)−1,628 = 380369,7         (29) 

 

𝐹(𝜋2̅̅ ̅, 𝜋3̿̿ ̿) = 549,48(0,319)−1 = 1722,5        (30) 

 

Sendo assim: 

 

𝐹(𝜋2,𝜋3̅̅ ̅̅ )

𝐹(𝜋2̅̅ ̅̅ ,𝜋3̅̅ ̅̅ )
=

𝐹(𝜋2,𝜋3̿̿ ̿̿ )

𝐹(𝜋2̅̅ ̅̅ ,𝜋3̿̿ ̿̿ )
                                 (31) 

 

596832𝜋3
−1,628 

380369,7
=

549,48𝜋3
−1

1722,5
                      (32) 

 

1,57 𝜋3
−1,628 = 0,319 𝜋3

−1         (33) 

 

0,096 ≈ 0,068  (reduzindo as casas decimais)  → 0,1 ≈ 0,1 

 

Denota-se que os valores são muito próximos e o teste de validade é aceito. 

 

8 EQUAÇÃO PREDITIVA GERAL 

Uma vez que a função produto passou pelo teste de validade, temos que a equação preditiva 

pode ser determinada da seguinte forma: 

 

𝐹(𝜋2, 𝜋3̅̅ ̅) = (𝜋1)𝜋3̅̅ ̅̅   = 𝐺𝜋2
𝑚 = 0,00005𝜋2

−3,992        (34) 

 

𝐹( 𝜋2̅̅ ̅, 𝜋3) = (𝜋1)𝜋2̅̅ ̅̅   = 𝐻𝜋3
𝑛 = 596832𝜋3

−1,628        (35) 

 

𝜋2̅̅ ̅ =
Ø

𝐿
= 0,319            (36) 

 

𝐹(𝜋2̅̅ ̅, 𝜋3̅̅ ̅) = 596832(0,319)−1,628 = 380369,7       (37) 

A partir da função produto tem-se que: 

𝜋1 =
𝐹(𝜋2,𝜋3̅̅ ̅̅ )𝐹( 𝜋2̅̅ ̅̅ ,𝜋3)

𝐹(𝜋2̅̅ ̅̅ ,𝜋3̅̅ ̅̅ )
           (38) 
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𝜋1 =
(0,00005𝜋2

−3,992 )(596832𝜋3
−1,628 )

596832(0,319)−1,628         (39) 

Evidentemente a equação preditiva final fica da forma: 

 

𝜋1 = 7,84𝑥10−4(𝜋2
−3,992 )(𝜋3

−1,628 )         (40) 

Substituindo os valores dos π-termos: 

𝜋1 =
𝛿

𝐿
 ;  𝜋2 =

∅

𝐿
 ;  𝜋3 =

𝐸𝐿2

𝐹
           (41) 

Enfim: 

𝛿 = 7,84𝑥10−4 (𝐿) (
∅

𝐿
)

−3,992 

(
𝐸𝐿2

𝐹
)

−1,628

               (42) 

 

Para uma validação mais precisa, a equação final deve ser validada de alguma forma por dados 

de modelos experimentais. No entanto com a intenção de atender as necessidades de adequação e 

adaptação, este trabalho propôs a análise do comportamento do eixo de uma estrutura ergonômica, que 

contempla um ergômetro para pessoas com deficiências físicas dependentes de cadeiras de rodas. Tal 

análise contribuirá para a habilitação e reabilitação física de pessoas com deficiência, baseada 

dimensões antropométricas pessoais de cada pessoa. 

 

NOMENCLATURA  

F Força aplicada. 

C Comprimento da barra. 

E Módulo de elasticidade. 

L Dimensão básica de comprimento. 

K Constante polinomial. 

G Constante polinomial. 

 

Letras gregas  

δ Deslocamento do eixo. 

π Termos adimensionais. 

Ø Diâmetro da barra circular. 

 

Sobrescritos. 

m Expoente polinomial 

n Expoente polinomial 

 

 

 



 

 
Mecânica Clássica e Moderna: Um Panorama Interdisciplinar 

SIMILITUDE EM DESLOCAMENTO DA BARRA COM SEÇÃO CIRCULAR NO EIXO INCLINADO DA CADEIRA DE RODAS PARALÍMPICA 

 

REFERÊNCIAS 

 

CARDOSO, L. S., Estrutura Modular Ajustável para Ergômetros de Cadeirantes Desportivos; 

Dissertação de mestrado; UFU; 2015. 

 

CARNEIRO, F. L., Análise Dimensional e Teoria da Semelhança e dos Modelos Físicos, 2ª ed., Ed. 

UFRJ, 1996. 

 

MURPHY G., Similitude in Engineering, The Ronald Press Co., NY, 1950. 

 

SEDOV, L. I., Similarity and Dimensional Methods in Mechanics, 1ª ed., 1982. 

 

TORRES, M. M., Nova Metodologia para Testes Ergométricos em Pessoas com Deficiência; 

Dissertação de mestrado; UFU; 2015. 


