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ABSTRACT 
This study investigates Ant Colony Optimization (ACO) as an Artificial Intelligence strategy 
for the joint economic tuning of water and nitrogen in iceberg lettuce and melon crops, within 
the Agriculture 4.0 framework. Well-established agronomic production functions from the 
literature are replicated and embedded in a transparent two-dimensional grid formulation, in 
which pheromone deposition is proportional to performance and global evaporation controls 
the balance between exploration and intensification. The analysis focuses on solution quality, 
convergence dynamics, and sensitivity to key algorithm parameters and grid resolution. The 
economic optima obtained with ACO are consistent with results reported for existing 
AI/optimization-based tools and methods (such as INTELIAGRI, MBL, and Pattern Search), 
including a case in which the optimum lies on the boundary of the decision domain. Net 
revenues are computed under a uniform economic scenario, ensuring comparability across 
crops and approaches. The paper concludes by summarizing practical configuration 
guidelines for ACO and discussing their implications for the design of decision support 
systems in Agriculture 4.0 aimed at efficient water and nitrogen management. 
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RESUMO  
Este trabalho investiga a Otimização por Colônia de Formigas (ACO) como estratégia de 
Inteligência Artificial para o ajuste econômico conjunto de água e nitrogênio nas culturas de 
alface-americana e meloeiro, no contexto da Agricultura 4.0. Para isso, são replicadas 
funções de produção agronômicas consolidadas na literatura, às quais se aplica uma 
formulação em malha bidimensional, com depósito de feromônio proporcional ao 
desempenho e evaporação global, de modo a equilibrar exploração e intensificação da 
busca. Avaliam-se sistematicamente a qualidade das soluções, a dinâmica de convergência 
e a sensibilidade a parâmetros-chave do algoritmo e à resolução da malha. Os ótimos 
econômicos obtidos pela ACO mostram-se consistentes com resultados de ferramentas e 
métodos de IA/otimização previamente reportados (como INTELIAGRI, MBL e PS), inclusive 
em cenário de ótimo localizado na fronteira do domínio de decisão. As receitas líquidas são 
calculadas em um enquadramento econômico uniforme, o que garante a comparabilidade 
entre culturas e abordagens. Por fim, são sintetizadas diretrizes práticas de configuração da 
ACO e discutidas suas implicações para o desenho de sistemas de apoio à decisão em 
Agricultura 4.0 voltados ao manejo eficiente de recursos hídricos e nitrogenados.  
 
Palavras-chave: Eficiência Produtiva. Manejo de Recursos Agrícolas. Funções de 
Produção. Agricultura Inteligente. Otimização Bioinspirada. Sistemas de Apoio à Decisão. 
 
RESUMEN 
Este trabajo investiga la Optimización por Colonia de Hormigas (ACO) como una estrategia 
de Inteligencia Artificial para el ajuste económico conjunto de agua y nitrógeno en los cultivos 
de lechuga iceberg y melón, en el contexto de la Agricultura 4.0. Para ello, se replican 
funciones de producción agronómicas consolidadas en la literatura, a las que se aplica una 
formulación en malla bidimensional, con depósito de feromonas proporcional al desempeño 
y evaporación global, con el fin de equilibrar la exploración y la intensificación de la 
búsqueda. Se evalúan sistemáticamente la calidad de las soluciones, la dinámica de 
convergencia y la sensibilidad a parámetros clave del algoritmo y a la resolución de la malla. 
Los óptimos económicos obtenidos mediante ACO son consistentes con los resultados de 
herramientas y métodos de IA/optimización previamente reportados (como INTELIAGRI, 
MBL y PS), incluso en escenarios en los que el óptimo se localiza en la frontera del dominio 
de decisión. Los ingresos netos se calculan dentro de un marco económico uniforme, lo que 
garantiza la comparabilidad entre cultivos y enfoques. Por último, se sintetizan directrices 
prácticas para la configuración de la ACO y se discuten sus implicaciones para el diseño de 
sistemas de apoyo a la decisión en Agricultura 4.0 orientados al manejo eficiente de los 
recursos hídricos y nitrogenados. 
 
Palabras clave: Eficiencia Productiva. Manejo de Recursos Agrícolas. Funciones de 
Producción. Agricultura Inteligente. Optimización Bioinspirada. Sistemas de Apoyo a la 
Decisión. 
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1 INTRODUCTION 

The continuous increase in global demand for food, driven by population growth and 

the expansion of markets, imposes on agriculture the challenge of producing more using less 

water and inputs. Agriculture consumes about 70% of the available fresh water, but only 0.3% 

of terrestrial reserves are effectively accessible for human consumption. The water crisis 

already affects a large part of the world's population (FAO, 2011). This scenario reinforces 

the need for decisions on water use that increase productivity with efficiency and 

sustainability. In addition to the limited volume, there is great temporal and spatial variation 

in water availability; More frequent droughts and competition with urban and industrial uses 

increase the pressure on irrigation. Traditional methods still generate waste through 

evaporation, leaks and uneven distribution, causing part of the water not to be used by plants. 

In summary, the central problem is to define how much, when and where to apply water to 

sustain productivity without aggravating the water situation. 

Within the scope of Agriculture 4.0, Artificial Intelligence (AI) techniques, especially 

nature-based metaheuristics, have been explored to support irrigation and fertilization 

decisions. Ant Colony Optimization (ACO) is a collective search approach inspired by the 

self-organized behavior of social ants, in which agents cooperate indirectly through 

pheromone. This mechanism combines exploration and intensification of solutions through 

the reinforcement of successful trajectories and evaporation, which preserves the system's 

exploratory capacity. ACO has been shown to be efficient in continuous and discrete 

problems, being applicable to multivariable decision agricultural scenarios, such as the 

simultaneous allocation of water and nitrogen under cost constraints. 

The production functions used in this work derive from widely recognized agronomic 

studies: Silva et al. (2008) for the culture of iceberg lettuce (Lactuca sativa L.) and Monteiro 

et al. (2006) for melon (Cucumis melo L.)element. "In both cases, second-order polynomial 

models were obtained experimentally" by varying irrigation depths and nitrogen doses, 

generating continuous productivity models with high explanatory power. These models allow 

to mathematically represent the joint effect of inputs in specific decision domains, serving as 

a reliable basis for investigating optimization procedures in a controlled and reproducible 

environment.(𝑤)(𝑛)(𝑦) 

In this study, ACO is applied directly to these production functions with the goal of 

maximizing net revenue under a defined pricing and cost scenario. To this end, the two-

dimensional decision space is discretized, the performance of each candidate is evaluated 

by the economic objective function and the pheromone is updated according to the quality 

obtained, with global evaporation to prevent stagnation. In this configuration, it is sought to 
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verify the feasibility of the ACO, to characterize its convergence behavior in the proposed 

framework and to observe, in a controlled manner, the effects of relevant parameters, 

preserving comparability with the original empirical functions and avoiding extrapolations 

beyond the experimental scope.(𝑤, 𝑛) 

 

2 DEVELOPMENT 

2.1 LITERATURE REVIEW 

Ant Colony Optimization (ACO) emerged as a metaheuristic inspired by the 

cooperative behavior of social ants, in which pheromone reinforcement and evaporation 

regulate, respectively, intensification and exploration throughout the search. The inaugural 

formulation was presented by Dorigo (1992), who introduced the idea of indirect learning 

(stigmergy) as a central mechanism for building solutions. 

The formalization of the method and its variants, including transition rules, pheromone 

deposit schemes and the role of parameters , and , was systematized by (𝛼)(𝛽)(𝜌)Dorigo 

and Stützle (2004). In this synthesis, the selection of movements is driven by probabilities 

proportional to the historical influence (pheromone) and the heuristic visibility of the problem, 

mediated by exponents that adjust the balance between memory and instantaneous 

evidence. 

For problems of a continuous nature, it is common to represent the domain by a 

controlled discretization (mesh), which provides transparency about computational resolution 

and cost, and facilitates the enforcement of constraints. Although the classic literature on 

population metaheuristics (such as Particle Swarm Optimization) deals with continuous 

space directly, Kennedy and Eberhart's (1995) and Clerc's (2006) discussions  of stability, 

parameterization, and search sensitivity highlight the challenges of this domain. The 

discretization strategy can be seen as an analogous approach to the use of ACO when one 

wants to preserve dependencies between decision variables, offering control over resolution 

and computational cost. 

In recent applications of Agriculture 4.0, ACO has been combined with sensors and 

learning models to support resource allocation and energy efficiency in connected 

environments. An example is the Bi-LSTM–ACO arrangement proposed by Rathi and 

Gomathy (2025), which integrates prediction (bidirectional recurrent neural network) and ant 

colony optimization for irrigation/energy decisions, illustrating the relevance of ACO in 

intelligent and automated system scenarios. 

In the present study, we adopted the canonical transition rule according to Dorigo and 

Stützle, 2004. Given a state and the viable set, the probability of choosing is(𝑟)(𝑀𝑘)(𝑠 ∈ 𝑀𝑘) 
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𝑃(𝑟, 𝑠) =
𝜏(𝑟,𝑠)𝛼𝜂(𝑟,𝑠)𝛽

∑𝑢∈𝑀𝑘
𝜏(𝑟,𝑢)𝛼𝜂(𝑟,𝑢)𝛽

,  𝑠 ∈ 𝑀𝑘.                          (1) 

 

After each iteration, a deposit proportional to the quality and overall evaporation is 

applied, balancing exploitation-intensification:(1 − 𝜌) 

 

𝛥𝜏ᵢⱼᵏ = {
𝑄

𝐿
ₖ, 𝑠𝑒 (𝑖, 𝑗) 𝑖𝑠 𝑝𝑎𝑟𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑎𝑛𝑡′𝑠 𝑝𝑎𝑡ℎ 𝑘 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                       (2) 

𝜏𝑖,𝑗 ← (1 −  𝜌) 𝜏𝑖,𝑗;   ∀(𝑖, 𝑗) ∈ 𝐴                                                                    (3) 

 

The combination of e-guided probabilistic choice and deposit-evaporation refresh 

produces a procedure that is simple to reproduce and flexible enough to incorporate penalty 

constraints, adjust the resolution of the discretization, and test different configurations. 

𝜏𝜂(𝛼, 𝛽, 𝜌) 

From a conceptual point of view, ACO exemplifies the view of metaheuristics as 

general search strategies, with simple but effective mechanisms to guide exploration and 

intensification, as discussed by Sørensen (2015) in his critical analysis of the "metaphor" in 

metaheuristics. 

 

2.2 PROBLEM MODELING 

2.2.1 Production functions and domains 

The production functions used reproduce, without change in shape or coefficients, the 

quadratic adjustments published for the crops in reference agronomic studies: iceberg lettuce 

in Silva et al. (2008) and melon in Monteiro et al. (2006), both obtained from experiments 

with variation of irrigation depth (water, mm) and nitrogen dose (nitrogen,  ), with domains for 

lettuce and melon. The equations and coefficients (with their ) are:𝑤𝑛𝑘𝑔 · ℎ𝑎−1([100,250] ×

[0,250])([0,700] × [0,350])𝑟2 

 

● Iceberg lettuce 

 

𝑦𝑎𝑙𝑓(𝑤, 𝑛) = −12,490 + 388,1 𝑤 − 6,02 𝑛 − 1,042 𝑤2 − 0,04563 𝑛2 + 0,1564 𝑤𝑛 

𝑟2 = 0,8311 

(𝑤, 𝑛) ∈ [0,250] × [100,240]                           (4) 

Source: SILVA et al., 2008. 
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● Melon Tree 

𝑦𝑚𝑒𝑙(𝑤, 𝑛) = 34,16737 𝑛 + 70,77509 𝑤 − 0,05781 𝑤2 − 0,07612 𝑛2 

𝑟2 = 0,9962 

(𝑤, 𝑛) ∈ [0,700] × [0,350]                                        (5) 

Source: MONTEIRO et al., 2006. 

 

2.2.2 Objective function (economic fitness) 

We defined the fitness function as the net revenue per hectare for each crop in which 

it is the price of the product (R$/kg), the cost of water and the cost of nitrogen (R$/kg). The 

option to optimize revenue, and not only, aligns the solution with the producer's economic 

criterion. When useful for analysis, we also report productivity as a supporting 

metric.(𝑐 ∈ 𝑎𝑙𝑓, 𝑚𝑒𝑙)(𝑝𝑦)(𝑐𝑤)𝑅$ · (𝑚𝑚 · ℎ𝑎−1)(𝑐𝑛)(𝑦)(𝑦) 

 

𝑅(𝑤, 𝑛) = 𝑝𝑦
(𝑐)

𝑦(𝑤, 𝑛) − 𝑐𝑤
(𝑐)

𝑤 − 𝑐𝑛
(𝑐)

𝑛                             (6) 

 

     Where is the price of the product (R$/kg), is the cost of water (R$/) and is the cost 

of N. We used the same costs for each study:(𝑝𝑦)(𝑐𝑤)𝑚𝑚 · ℎ𝑎−1(𝑐𝑛)(𝑅$/ℎ𝑎) 

 

● Iceberg lettuce: , , 

 

 (𝑝𝑦 = 0,80)
𝑅$

𝑘𝑔
(𝑐𝑤 = 0,44)

𝑅$

(𝑚𝑚·ℎ𝑎−1)
(𝑐𝑛 = 2,09)

𝑅$

𝑘𝑔
                       (7) 

Source: SILVA et al., 2008. 

 

● Meloeiro: , 

●  

(𝑝𝑦 = 0,40)
𝑅$

𝑘𝑔
(𝑐𝑤 = 0,134)

𝑅$

(𝑚𝑚·ℎ𝑎−1)
(𝑐𝑛 = 2,33)

𝑅$

𝑘𝑔
                      (8) 

Source: MONTEIRO et al., 2006. 

 

This framework is consistent with the literature on economic optimization of 

irrigation/fertilization (Frizzone, 1986). 

 

2.2.3 Economic concepts (summary) 

Based on Frizzone et al. (2005), key points of economic calculation: 

● Gross revenue: .𝑅𝐵(𝑤, 𝑛) = 𝑝𝑦  𝑦(𝑤, 𝑛)              (8) 

● Variable costs: .𝐶𝑉(𝑤, 𝑛) = 𝑐𝑤  𝑤 + 𝑐𝑛 𝑛             (9) 
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● Total cost: .𝐶𝑇(𝑤, 𝑛) = 𝐶𝑉(𝑤, 𝑛) + 𝐶𝐹               (10) 

● Objective function (net revenue): .  𝑅(𝑤, 𝑛) = 𝑅𝐵(𝑤, 𝑛) − 𝐶𝑇(𝑤, 𝑛) = 𝑝𝑦  𝑦(𝑤, 𝑛) −

𝑐𝑤  𝑤 − 𝑐𝑛 𝑛 − 𝐶𝐹                                               (11) 

 

Figure 1  

Cost, gross revenue and break-even point functions  

 

Source: FRIZZONE, J.A., 2005. 

 

Note: it is constant and does not change where the net revenue is maximized in the 

decision plan, it only displaces the plan, so it uses .𝐶𝐹𝑅(𝑤, 𝑛) = 𝑝𝑦  𝑦(𝑤, 𝑛) − 𝑐𝑤  𝑤 − 𝑐𝑛 𝑛         

(12) 

Interior Optimum (marginal criterion): When the Optimum is interior and without 

active constraints:  

 

𝑝𝑦  
𝜕𝑦

𝜕𝑤
= 𝑐𝑤,  𝑝𝑦  

𝜕𝑦

𝜕𝑛
= 𝑐𝑛                                (13) 

 

If the conditions point outside the experimental domain, the optimum occurs at the 

edge. 

Break-even points and maximum profit: Break-even points (PE) satisfy (can exist 

and ). The maximum profit point maximizes.𝑅 = 0𝑃𝐸1𝑃𝐸2𝐷∗𝑅𝐵 − 𝐶𝑇 

 

2.3 EXPERIMENTAL PROCEDURE 

The implementation of ACO is simple and reproducible: (i) uniform discretization of the 

continuous domain (w x n); (ii) generation of solutions by sampling proportional to the entire 

network; (iii) global evaporation and top-k deposit proportional to performance, with elitist 

reinforcement in the global best; (iv) analysis of the convergence trajectory and sensitivity of 

and of the resolution of the mesh; (v) history logging and automatic generation of artifacts 

(CSV, graphs, and metadata JSON)𝜏𝛼𝜂𝛽(1 − 𝜌)(𝛼, 𝛽, 𝜌) 
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Table 1 

Hyperparameters used 

Parameter Standard Variations (ablation) 

(𝜶, 𝜷) (0,1;  0,3) [0,1 ≤ 𝛼, 𝛽 ≤ 1,0] 

𝝆 0,10 [0,05; 0,20] 

Ants / iteration 200 [20; 200] 

Iterations 500 — 

Top-k deposit topk_fraction ,= 0,05𝑞 = 1,0 — 

Elitist reinforcement elitist_weight= 1,05 — 

Early stop Patience, tol = 100 = 1𝑒 − 6 — 

Resolution (melon/lettuce) [701 × 351]/[251 × 241] — 

Source: authors (2025). 

 

3 RESULTS 

3.1 MATERIALS AND TOOLS USED 

The experiments were carried out in a local environment, using a Dell Vostro 15 3000 

notebook, Intel® Core™ i7 processor and 32 GB of RAM. The codes were developed in 

Python 3.11, using the standard libraries ('numpy', 'matplotlib', 'argparse', among others).   

The implementation of the ACO and the generation of the figures were carried out by 

the author. The convergence graphs and three-dimensional surfaces were produced with 

'matplotlib', based on the numerical results of the execution. Source code and artifacts from 

this study are available at: [GitHub — (https://github.com/RafaelBahiense/aco-resource-

optimization)] 

 

3.2 MELOEIRO — RESULTS (NET REVENUE)     

   The melon evaluation used the production function and the objective function and 

the economic parameters described in Section 2.2. ACO showed a smooth and progressive 

convergence trajectory, with gradual improvement in net revenue over the iterations. The 

estimated optimum is around:𝑅𝑚𝑒𝑙(𝑤, 𝑛) 

 

(𝑤∗, 𝑛∗) ≈ (612 𝑚𝑚,  225 𝑘𝑔. ℎ𝑎−1)                             (14) 

 

"The probability of choice combines pheromone and visibility, normalized by viable 
movements, ensuring valid distribution and control of the exploration-intensification 
balance." (DORIGO; STÜTZLE, 2004, p. 3). 
 

In sensitivity, the evaporation parameter ) proved to be adequate, preserving the 

exploratory capacity without loss of intensification. More values induced premature 
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convergence, while high values increased the variability of the results. Values for how they 

maintained a good balance between history and heuristics. Thinner meshes raised the quality 

ceiling of , although with higher computational cost.(𝜌 = 0,10(𝜌 < 0,05)(𝜌 >

0,20)(𝛼, 𝛽)(0,1; 0,3)𝑅 

 

Figure 2  

Convergence in Meloeiro 

 

Source: authors (2025). 

 

Figure 3  

Convergence on Meloeiro on 3D surface 

 

Source: authors (2025). 
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Table 2  

Optimum point and metrics (ACO – melon tree) 

Metric Value 

(𝒘∗)(𝒎𝒎) 611,00 

(𝒏∗)(𝒌𝒈 · 𝒉𝒂−𝟏) 185,00 

𝒚(𝒘∗, 𝒏∗)(𝒕 · 𝒉𝒂−𝟏) 25.386,06 

𝑹(𝒘∗, 𝒏∗)(𝑹$ · 𝒉𝒂−𝟏) 9.638.13 

Source: authors (2025). 

 

3.3 ICEBERG LETTUCE — ACO RESULTS (NET INCOME) 

The analysis for iceberg lettuce used the production function and the objective function 

defined in Section 2.2. ACO showed stable convergence, with gradual improvement in net 

revenue over the iterations.𝑅𝑎𝑙𝑓(𝑤, 𝑛) 

Marginal conditions indicate inland optimum in , however, as it exceeds the domain 

boundary, the optimum occurs at the active boundary:(𝑤, 𝑛) ≈ (204,240)(𝑛) 

 

(𝑤, 𝑛) ≈ (204 𝑚𝑚,  240 𝑘𝑔 · ℎ𝑎−1)                        (15) 

 

Figure 4  

Convergence in iceberg lettuce 

 

Source: authors (2025). 

 

 

 

 



 

 
Precision Agronomy: Innovations and Impact in the Field 

ARTIFICIAL INTELLIGENCE IN AGRICULTURE 4.0: ANT COLONY APPLIED TO WATER AND NITROGEN 

OPTIMIZATION 

Figure 5  

Convergence in iceberg lettuce on 3D surface 

 

Source: authors (2025). 

 

Table 3  

Optimum point and metrics (ACO – lettuce) 

Metric Value 

(𝒘∗)(𝒎𝒎) 206,00 

(𝒏∗)(𝒌𝒈 · 𝒉𝒂−𝟏) 240.00 (active restriction) 

𝒚(𝒘∗, 𝒏∗)(𝒕 · 𝒉𝒂−𝟏) 26.894,90 

𝑹(𝒘∗, 𝒏∗)(𝑹$ · 𝒉𝒂−𝟏) 20.927,45 

Source: authors (2025). 

 

3.4 COMPARISON WITH LITERATURE METHODS (OTIMAGRI, INTELIAGRI, MBL, PS, 

PBIL) 

Maintaining the production functions and domains, we compared our great ACO to 

published results for different AI and optimization approaches (applications/systems and 

methods): OTIMAGRI – PSO and PS - Pattern Search (VILLAS BÔAS JÚNIOR et al., 2023), 

INTELIAGRI - decision support system (Cavalcante Junior, 2013), MBL - Logarithmic Barrier 

Method (Ventura, Sanchez Delgado and Carvalho,  2009). The values below are reported in 

the literature and allow us to verify the consistency of the excellent results obtained: 
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Table 4  

Comparison of melon productivity with literature methods 

Method (𝒘∗)(𝒎𝒎) (𝒏∗)(𝒌𝒈 ⋅ 𝒉𝒂−𝟏) (𝒚(𝒘∗, 𝒏∗)) (𝒕 · 𝒉𝒂−𝟏) 

INTELIAGRI 630,11 234,97 25.467,00 

MBL 612,30 234,97 25.469,00 

PS 609,20 186,23 25.384,30 

PSO (OTIMAGRI) 612,12 224,44 25.496,08 

ACO (this study) 612,00 224,00 25.496,06 

Source: authors (2025). 

 

Table 5 

Comparative yield of iceberg lettuce with literature methods 

Method (𝒘∗)(𝒎𝒎) (𝒏∗)(𝒌𝒈 ⋅ 𝒉𝒂−𝟏) (𝒚(𝒘∗, 𝒏∗)) (𝒕 · 𝒉𝒂−𝟏) 

INTELIAGRI 199,55 234,96 26.903,00 

MBL 204,99 249,99 26.903,00 

PS 205,26 257,14 26.959,93 

PSO (OTIMAGRI) 204,35 239,97 26.902,71 

ACO (this study) 207,00 240,00 26.894,90 

Source: authors (2025). 

 

In melon, the ACO optimums reproduce, within the mesh step, the values of , and 

reported by approaches in the literature (INTELIAGRI, MBL, PS, PBIL). In iceberg lettuce, 

the economic optimum is located in the active frontier of , and the ACO solution coincides 

with the references within the tolerance of discretization. In all comparisons, the fitness 

function adopted was the net revenue, recalculated in the same scenario of prices and costs 

to ensure uniformity between methods. In summary, ACO achieves performance equivalent 

to the revised alternatives, preserving control transparency (parameters and mesh resolution) 

and numerical robustness.(𝑤∗)(𝑛∗)(𝑦(𝑤∗, 𝑛∗))(𝑛) 

 

4 CONCLUSIONS 

This study showed that a relatively simple formulation of Ant Colony Optimization 

(ACO), based on a two-dimensional grid with reinforcement proportional to performance and 

global evaporation, is not only feasible, but competitive for the joint optimization of water and 

nitrogen in iceberg lettuce and melon crops. The economic optimums obtained reproduce, 

within the discretization step adopted, the results reported by systems and methods 

consolidated in the literature (INTELIAGRI, MBL, PS), including in the scenario in which the 
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optimum is located on the active frontier of the domain (iceberg lettuce). The choice of net 

revenue as the objective function is shown to adhere to the producer's decision criterion, 

while the mesh formulation provides transparency to the precision-computational cost 

commitment, a relevant aspect for applications in Agriculture 4.0. 

From the applied point of view, the results allow us to derive objective configuration 

recommendations. In practical terms, it is suggested to start with evaporation values around 

ρ ≈ 0.5 and exponents of pheromone and heuristic influence (α, β) in moderate ranges, 

adjusting them incrementally according to the observed convergence behavior. The 

resolution of the mesh must be compatible with the available computational budget, and it is 

recommended to refine the discretization only in regions close to the estimated optimum. 

When marginal conditions indicate a solution close to domain boundaries, it is critical to 

explicitly inspect boundary points to avoid mistaken conclusions as to the location of the 

economic optimum. 

In terms of the research agenda, the results open space to deepen and sophisticate 

the use of ACO in agricultural management problems. As natural developments, the following 

stand out: (i) the investigation of elitist pheromone and adaptive discretization schemes, 

capable of concentrating computational effort in promising regions; (ii) the evaluation of 

continuous variants of ACO and hybrid approaches (e.g., combining ACO with pattern search 

strategies or interior point methods); and (iii) the development of multiobjective formulations 

that incorporate, in addition to revenue, risk and sustainability metrics. In addition, the 

integration of predictive productivity models — in particular sequential models — as heuristic 

components of ACO configures a promising line for decision support systems in Agriculture 

4.0 operational environments, in which the efficient allocation of water and nitrogen is a critical 

condition for competitiveness and productive resilience. 
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