DITORA

IGUANA MAC INTERPRETER: AN INTERPRETER FOR THE MAC LANGUAGE BY
ANDREW S. TANENBAUM

IGUANA MAC INTERPRETER: UM INTERPRETADOR PARA A LINGUAGEM MAC DE
ANDREW S. TANENBAUM

IGUANA MAC INTERPRETER: UN INTERPRETE PARA EL LENGUAJE MAC DE
ANDREW S. TANENBAUM

d- https://doi.org/10.56238/edimpacto2025.065-004

Jodo Gabriel Freitas Cavalcante', lvan Saraiva Silva2, Maryane Francisca Araujo de
Freitas Cavalcante?®

ABSTRACT

The article presents the Iguana MAC Interpreter, an educational interpreter for the MAC
assembly language proposed by Andrew S. Tanenbaum, developed with the aim of
supporting the teaching of Computer Architecture and low-level programming. The interpreter
executes MAC code interactively on a 16-bit stack-based architecture, offering support for
memory manipulation operations, arithmetic, control flow, bitwise operations, and debugging.
Implemented in the Rust programming language, the system adopts a two-pass algorithm for
label resolution and incorporates explicit runtime error-handling mechanisms. The tool
enables visualization of the machine’s internal operation and practical experimentation
through classic examples, such as the Hello, World! program. The results indicate that the
Iguana MAC Interpreter constitutes a relevant didactic resource for promoting active learning
and conceptual understanding of the fundamentals of computer architecture.

Keywords: Assembly Language. Computer Architecture. Educational Interpreter. Active
Learning. Computer Science Education.

RESUMO

O artigo apresenta o Iguana MAC Interpreter, um interpretador educacional para a linguagem
assembly MAC proposta por Andrew S. Tanenbaum, desenvolvido com o objetivo de apoiar
o ensino de Arquitetura de Computadores e programacgao de baixo nivel. O interpretador
executa cédigo MAC de forma interativa em uma arquitetura de 16 bits baseada em pilha,
oferecendo suporte a operagdes de manipulacao de memoaria, aritmética, controle de fluxo,
operacoes bitwise e depuracdo. Implementado na linguagem Rust, o sistema adota um
algoritmo de duas passagens para resolugéo de rétulos e incorpora mecanismos explicitos
de tratamento de erros em tempo de execucgao. A ferramenta possibilita a visualizacdo do
funcionamento interno da maquina e a experimentacdo pratica por meio de exemplos
classicos, como o programa Hello, World!. Os resultados indicam que o Iguana MAC
Interpreter constitui um recurso didatico relevante para promover a aprendizagem ativa e a
compreensao conceitual de fundamentos de arquitetura de computadores.

1 Undergraduated student in Computer Science.
2 Dr. in Informatics.

3 Master's student in Intellectual Property.

Fundamentals and Advances in Computer Science
IGUANA MAC INTERPRETER: AN INTERPRETER FOR THE MAC LANGUAGE BY ANDREW S. TANENBAUM


https://doi.org/10.56238/arev7n7-112

Palavras-chave: Linguagem Assembly. Arquitetura de Computadores. Interpretador
Educacional. Aprendizagem Ativa. Ensino de Computacgao.

RESUMEN

El articulo presenta el Iguana MAC Interpreter, un intérprete educativo para el lenguaje
ensamblador MAC propuesto por Andrew S. Tanenbaum, desarrollado con el objetivo de
apoyar la ensefanza de Arquitectura de Computadores y programacion de bajo nivel. El
intérprete ejecuta codigo MAC de forma interactiva en una arquitectura de 16 bits basada en
pila, ofreciendo soporte para operaciones de manipulacion de memoria, aritmética, control
de flujo, operaciones bit a bit y depuracion. Implementado en el lenguaje de programacion
Rust, el sistema adopta un algoritmo de dos pasadas para la resolucion de etiquetas e
incorpora mecanismos explicitos de manejo de errores en tiempo de ejecucion. La
herramienta permite la visualizacién del funcionamiento interno de la maquina y la
experimentacion practica mediante ejemplos clasicos, como el programa Hello, World!. Los
resultados indican que el Iguana MAC Interpreter constituye un recurso didactico relevante
para promover el aprendizaje activo y la comprension conceptual de los fundamentos de la
arquitectura de computadores.

Palabras clave: Lenguaje Ensamblador. Arquitectura de Computadores. Intérprete
Educativo. Aprendizaje Activo. Ensefianza de la Computacion.

T T ———— e ————D

Fundamentals and Advances in Computer Science
IGUANA MAC INTERPRETER: AN INTERPRETER FOR THE MAC LANGUAGE BY ANDREW S. TANENBAUM




AN

1 INTRODUCTION

Assembly language is a symbolic representation of machine instructions, allowing low-
level operations to be expressed in a more intelligible way to humans. The emergence of
mnemonic assembly languages in the early 1950s represented a significant advance in the
history of programming, by reducing the complexity of direct coding in binary and expanding
the accessibility to software development. For this reason, such languages are classified as
second-generation languages, falling between machine languages, considered first-
generation, and the more abstract levels of programming that would be consolidated later
(Patterson; Hennessy, 2005; Aho et al., 2007).

Although the assembly language allows a direct interaction with the hardware, its
programming requires the developer to reason in terms close to the operation of the machine,
which makes it a laborious, slow and error-prone activity. With the advancement of modern
compilers, capable of generating assembly code with performance comparable to that
produced by specialists, manual writing in this language has become widely discouraged,
mainly due to the longer coding and debugging time, the loss of portability and the difficulties
of maintaining the software. Even so, it is noteworthy that the compiled code, resulting from
this automated process, tends to present superior performance when compared to the
interpreted execution of the same program (Patterson; Hennessy, 2005).

The MAC macro assembly language, also called MAC-1, was conceived by Andrew
S. Tanenbaum as a didactic tool for teaching Computer Architecture, characterized by its
simplicity and focus on low-level operations. In the context of the Computer Architecture
course at the Federal University of Piaui, this language was used as a pedagogical resource
for understanding the fundamentals of assembly. However, the lack of a practical tool that
would allow the execution and testing of MAC programs evidenced a limitation in the learning
process, by restricting the experimentation of the concepts addressed.

In view of this gap, the motivation arose for the development of an interpreter capable
of facilitating interaction with the MAC language and expanding its educational applicability.
The Iguana MAC Interpreter was designed precisely to meet this need, enabling the direct
execution of MAC programs and promoting a more practical and interactive approach to
teaching low-level programming.

Implemented in the Rust language, the Iguana MAC Interpreter executes the MAC
source code incrementally, without the need for prior compilation. The system operates on a

stack-based 16-bit architecture, with a fixed capacity of 32,768 items, and supports an

(— & X e
Fundamentals and Advances in Computer Science

IGUANA MAC INTERPRETER: AN INTERPRETER FOR THE MAC LANGUAGE BY ANDREW S. TANENBAUM



AN

extended set of instructions, covering constant load operations, memory manipulation,
arithmetic, flow control, bitwise operations, debugging, and custom functionality. In addition,
the interpreter extends the original format of the MAC instructions from 16 to 24 bits,
assigning 8 bits to the operation code and 16 bits to the argument, which gives greater
flexibility and expressiveness to the language.

Thus, this work aims to present the Iguana MAC Interpreter as an educational tool,
describing in a synthetic way its conception, implementation and practical use in the teaching
of assembly programming. Through classic examples, such as the printing of the message
“Hello, World!", seeks to highlight its pedagogical applicability. In addition, the introduction
delimits the scope of the subsequent sections, in which the interpreter architecture, its set of
instructions, examples of use and educational benefits are addressed, emphasizing its

relevance as a resource to support learning in Computer Architecture.

2 THEORETICAL FRAMEWORK
2.1 ASSEMBLY LANGUAGES, COMPUTER ARCHITECTURE, AND INTERPRETERS

Assembly languages play a central role in understanding the hardware-software
interface, since they symbolically represent the instructions executed directly by the
processor. As discussed by Patterson and Hennessy, the study of this level of abstraction
makes it possible to understand the inner workings of computer architecture, including the
execution model, memory organization, and instruction flow control.

In this context, didactic languages such as MAC play a relevant role in enabling the
conceptual exploration of simplified architectures, making the internal mechanisms of
operation of computer systems more accessible. By reducing the complexity inherent to real
architectures, these languages favor the understanding of the fundamental principles that
govern the interaction between software and hardware, as well as the processes of
translation and execution of instructions, contributing to the conceptual formation in computer
architecture and low-level programming.

The hardware-software interface is a fundamental axis in studies of computer
organization and design, by examining the interaction between physical components, such
as CPU and memory, and the software executed in the system. As presented by Patterson
and Hennessy in Computer Organization and Design: The Hardware/Software Interface,

understanding this interaction is essential to analyze the performance, efficiency, and

Fundamentals and Advances in Computer Science

IGUANA MAC INTERPRETER: AN INTERPRETER FOR THE MAC LANGUAGE BY ANDREW S. TANENBAUM



AN

behavior of programs, since the way software exploits hardware resources directly influences
the execution and optimization of computer systems (Patterson; Hennessy, 2005).

Assembly language is a symbolic representation of machine instructions, classified as
second-generation, succeeding machine language. The development of assembly
mnemonics has made programming easier, making it more accessible, but it still requires the
programmer to "think like the machine". Although it is essential for computer architecture, the
sources consulted do not mention the didactic language "MAC" in the context of language
processing (Aho et al., 2007).

From the point of view of language processing, interpreters stand out as pedagogical
tools for enabling the incremental execution of the code, allowing the explicit observation of
the internal state of the machine during execution. Unlike compilers, which perform the
complete translation of the program before its execution, interpreters make the computational
process more transparent, by highlighting steps such as the evaluation of instructions, stack
manipulation, and label resolution, fundamental aspects for understanding low-level
programming and computer architecture.

Compilers and interpreters therefore adopt different execution strategies. While
compilers translate the source program into a target language, usually producing machine
code with higher execution efficiency, interpreters appear to directly execute the operations
specified in the source code, processing them instruction by instruction. That difference
entails specific advantages and limitations, in particular as regards the performance and
clarity of the enforcement process.

From this perspective, the pedagogical relevance of interpreters lies mainly in their
diagnostic capacity, since the step-by-step execution of the program allows for a more
accurate identification of errors and an understanding of their impact on the state of the
machine. In addition, contemporary compilation approaches often adopt hybrid models, such
as the generation of intermediate code (e.g., bytecodes), which is then interpreted by a virtual
machine, reconciling the benefits of translation with portability and reinforcing the conceptual

importance of interpretation in the teaching of programming languages (Aho et al., 2007).

2.2 EDUCATIONAL TOOLS, SYSTEMS LANGUAGES AND ACTIVE LEARNING
The development of educational tools aimed at teaching computing requires the
adoption of programming languages that reconcile low-level control, performance and

reliability. In this context, the Rust language has stood out for offering guarantees of memory

Fundamentals and Advances in Computer Science

IGUANA MAC INTERPRETER: AN INTERPRETER FOR THE MAC LANGUAGE BY ANDREW S. TANENBAUM



AN

security and concurrency without compromising efficiency, characteristics especially relevant
for the implementation of interpreters and robust educational systems. In addition, its use
contributes to bringing students closer to contemporary practices of systems programming,
aligning teaching with technologies widely used in the area.

At the same time, the design of these tools is associated with the adoption of
pedagogical approaches that favor active learning, in which students participate directly in
the process of knowledge construction. The combination of languages suitable for the
development of low-level systems and active educational methodologies enhances the
understanding of complex concepts, by transforming abstract content into practical and
interactive experiences in the teaching of computing (Freeman et al., 2014).

The use of interactive educational tools is aligned with the principles of active learning,
a pedagogical approach that is opposed to the traditional model centered on the passive
transmission of content. From this perspective, the student assumes a more participatory role
in the learning process, through experimentation, problem solving and direct interaction with
the objects of study, which favors a more meaningful understanding of the concepts.

Empirical evidence from meta-analysis studies indicates that active learning produces
consistent positive impacts on academic performance in science, technology, engineering,
and mathematics (STEM) courses. Among the main results observed are the average
increase in student performance in assessments, as well as the reduction in failure rates
when compared to classes submitted exclusively to traditional lectures (Freeman et al.,
2014).

Thus, it is highlighted that the benefits of active learning are manifested in a broad
way, reaching different disciplines and educational contexts, with particularly expressive
effects in smaller classes. In this sense, the adoption of interactive tools in the teaching of
computing reinforces pedagogical practices that promote greater student engagement and
better academic performance, contributing to the consolidation of a more effective and
participatory education.

From this perspective, the Rust language has consolidated itself as a relevant option
in the context of education and systems development, by meeting the demand for
programming languages that combine performance, reliability, and low-level control. As an
open-source language for systems programming, Rust enables the construction of efficient
and robust software, fundamental characteristics for both real applications and educational
tools (Patterson; Hennessy, 2005; Klabnik; Nichols, 2018).

[— § T e ————— e ————D

Fundamentals and Advances in Computer Science
IGUANA MAC INTERPRETER: AN INTERPRETER FOR THE MAC LANGUAGE BY ANDREW S. TANENBAUM



AN

Klabnik and Nichols (2018) cite that Rust's suitability for low-level educational and
programming systems stems, to a large extent, from its balance between control and
ergonomics. The language provides direct access to critical aspects such as memory
management, while incorporating high-level abstractions that reduce the complexity
traditionally associated with systems languages. This balance makes the development
process safer and more understandable, especially in teaching contexts.

Another central aspect of Rust refers to the memory and concurrency security
guarantees provided by the compiler, through the ownership and borrowing mechanisms.
These features make it possible to prevent common errors, such as invalid memory accesses
and race conditions, without resorting to a garbage collector. In addition, the use of zero-cost
abstractions ensures that the generated code maintains high performance, reinforcing the
idea that security and efficiency can coexist in modern systems languages.

In addition, the adoption of Rust in educational environments contributes to bringing
students closer to contemporary system programming practices, while favoring the
understanding of fundamental concepts, such as memory management, concurrency, and
computational efficiency. In this way, the use of Rust not only supports the development of
robust educational tools but also prepares students for real challenges in the field of systems
computing (Freeman et al., 2014).

Therefore, in core disciplines of Computer Science and Engineering, such as
Computer Architecture and Computer Organization and Design, the use of interactive tools,
such as educational interpreters, is particularly relevant because it enables the direct
exploration of the interaction between hardware and software. By making visible the
mechanisms that sustain the efficient execution of programs, these tools contribute to the
conceptual consolidation of the contents and to a more integrated understanding of the

computational foundations (Patterson; Hennessy, 2005).

3 METHODOLOGY

The study is characterized as a research of applied nature, with a qualitative and
descriptive approach, aimed at the development and analysis of an educational
computational tool. The work focused on the design, implementation and functional
evaluation of the Iguana MAC Interpreter, an interpreter for the MAC assembly language,
with emphasis on its applicability in the teaching of computer architecture and low-level

programming.

Fundamentals and Advances in Computer Science
IGUANA MAC INTERPRETER: AN INTERPRETER FOR THE MAC LANGUAGE BY ANDREW S. TANENBAUM



AN

The methodology adopted initially comprised a conceptual and technical review of
assembly languages, interpreters and computer architecture, based on classical and
contemporary literature, especially the work of Andrew S. Tanenbaum, which underlies the
MAC language used in this study. This stage subsidized the definition of the functional
requirements of the interpreter and the preservation of the didactic principles of the original
language.

Then, the Interpreter was developed, implemented in the Rust language, following an
incremental approach. The system architecture was defined based on a 16-bit stack-oriented
machine, including data memory, instruction memory, accumulator, stack pointer, and
program counter. The interpretation process adopted a two-pass algorithm, the first being
intended for the construction of the table of symbols and the second for the execution of the
instructions, with label resolution and flow control.

The validation of the tool occurred through functional tests, using programs written in
the MAC language, with emphasis on the classic example of printing the string "Hello,
World!". These tests made it possible to verify the correct functioning of the instructions, the
management of the stack, the memory manipulation and the handling of errors at runtime,
ensuring the conformity of the interpreter with the proposed specification.

Finally, the analysis of the interpreter was carried out from an educational perspective,
considering its operational clarity, ability to visualize low-level concepts and potential to
support the teaching-learning process in Computer Architecture disciplines. No quantitative
experiments were carried out with users, since the objective of the study is the presentation
and technical discussion of the tool, and not the statistical measurement of pedagogical

performance.

4 RESULTS
4.1 INTERPRETER ARCHITECTURE

Iguana MAC Interpreter is designed with an architecture that reflects the principles of
simplicity and efficiency, adapting Andrew S. Tanenbaum's MAC language for interactive
execution in a 16-bit environment. One of the central aspects of this architecture is its modular
approach, divided into distinct components that manage data memory, instruction memory,
and runtime processing, all implemented in the Rust language to ensure robustness and

security.

Fundamentals and Advances in Computer Science

IGUANA MAC INTERPRETER: AN INTERPRETER FOR THE MAC LANGUAGE BY ANDREW S. TANENBAUM



AN

The instruction memory is organized as a dynamic vector, where each position
represents an instruction composed of an 8-bit operation code (CODOP) and a 16-bit
argument, totaling a 24-bit format. This choice differs from the original 16-bit format of MAC
and allows for the inclusion of additional instructions and a wider range of arguments, such
as memory addresses or constant values. In each position, there are also two auxiliary fields,
both 32-bit, called row and column, which store the position of each token of the source code
and can be later used for debugging errors at runtime. During execution, the interpreter
traverses this dynamic vector, using a Program Counter (PC) to track the current instruction,
which provides flexibility in manipulating control flows, such as jumps and subroutine calls.

Another key element is the use of a two-pass algorithm to resolve references to labels.
In the first pass, the source code is parsed to construct a table of symbols, implemented as
a HashMap in Rust, which associates each /label with a memory address (in the .data
segment) or an instruction line (in the .text segment). On the second pass, the statements
are processed, replacing the references to labels with the corresponding addresses. This
approach allows the interpreter to efficiently resolve references, even in cases where
statements can be reordered or where labels appear before they are defined.

The interaction between the accumulator (ac) and the stack is managed by a Stack
Pointer (sp) that operates in a top-down manner, decrementing when stacking values and
incrementing when unstacking them. The stack, with a fixed capacity of 32,768 16-bit items,
is allocated in a contiguous region of memory, and its downward growth direction is
complemented by specific instructions, such as INSP (increments sp by subtracting) and
DESP (decrements sp by adding), which adjust the pointer with respect to its mathematical
behavior. This design reflects a didactic adaptation that makes it easier to visualize the
behavior of the stack in an educational context.

Finally, the architecture incorporates a runtime error handling system, such as the
detection of values outside the allowed range (e.g. [ERROR] Value range exceeded (-
32768...32767) [LINE: 6, COL: 5]), which is triggered when the accumulator tries to store a
value outside the 16-bit range. This approach not only improves the robustness of the
interpreter but also serves as a valuable educational tool, allowing students to better
understand the limits and characteristics of the 16-bit architecture.

[— § T e ————— e ————D

Fundamentals and Advances in Computer Science
IGUANA MAC INTERPRETER: AN INTERPRETER FOR THE MAC LANGUAGE BY ANDREW S. TANENBAUM



AN

4.2 SET OF INSTRUCTIONS

The Iguana MAC Interpreter instruction set is an extension of the original MAC
language proposed by Andrew S. Tanenbaum, being developed to meet the demands of an
interactive educational environment. While the traditional MAC language focuses on the basic
operations of a 16-bit architecture, Iguana incorporates additional instructions that extend its
functionality, especially in terms of debugging and usability, without compromising the
conceptual simplicity of the original language.

This expansion is designed to balance didactic rigor and functional features, allowing
users to explore the fundamental concepts of assembly programming while more
transparently tracking the program's behavior during execution. Direct interaction with the
interpreter favors the understanding of the machine's internal mechanisms, contributing to a
more active and meaningful learning.

The format adopted by Iguana allows the inclusion of operations that do not exist in
the base language, such as PRINTLNAC and SLEEPI, which support viewing the state of the
program and controlling the temporal flow of execution. These instructions are designed to
operate in a manner consistent with the stack-based architecture of the interpreter, ensuring
consistency between the execution model and the set of operations available.

The Iguana MAC Interpreter instruction set covers the following main categories:
loading constants (e.g. LOCO, to initialize values in the accumulator), memory operations
(e.g. LODD, to load values from memory), arithmetic operations (e.g. ADDD, to sum values),
flow control (e.g. JUMP, to divert execution), bitwise operations (e.g. ANDI, to perform logical
AND), debugging (e.g. PRINTLNAC, to display the accumulator value) and miscellaneous
operations (e.g. HALT, to stop execution). These instructions expand on the functionalities of
the original MAC language, making it easier to manipulate data, control execution, and debug.

Iguana's instruction set not only preserves the essence of the original MAC language,
but also enriches it with features that make learning more dynamic and accessible.
Debugging operations, for example, allow users to inspect the internal state of the interpreter
in real time, while custom instructions, such as SLEEPD and SLEEPI, introduce temporal

control, useful in simulations or interactive demonstrations.

4.3 USAGE EXAMPLE: HELLO, WORLD!
To illustrate how the Iguana MAC Interpreter works, a classic example of programming

is presented: the printing of the string "Hello, World!" on the screen. This program

[— § T e ————— e ————D

Fundamentals and Advances in Computer Science
IGUANA MAC INTERPRETER: AN INTERPRETER FOR THE MAC LANGUAGE BY ANDREW S. TANENBAUM



AN

demonstrates the use of memory manipulation, flow control, and debugging operations in a
practical context, making it an ideal use case for beginners in assembly study. The code,
written in the MAC language adapted by Iguana, is divided into two main sections: the data
declaration (.data) and the executable code (.text). Below, the program is presented and

analyzed in detail.

Figure 1

.data
STRING: .asciiz "Hello, World!" # initializes the string
text

LOCO STRING # ac = STRING as a pointer
SWAP #ac<->sp
LOOP:
LODLO #ac=*sp
JZER END #if ac == 0 goto END
PRINTACCHAR # print ac as a char
INSP 1 #sp=sp-1
JUMP LOOP # goto LOOP
END:
HALT # finishes the program

4.4 CODE ANALYSIS

In the .data section, a label is defined: STRING, which uses the .asciiz directive to
allocate the string "Hello, World!" in memory with a null terminator (value 0). This declaration
is processed by the interpreter, which associates the /abel with a memory address in the
symbol table.

The program starts with the LOCO STRING instruction, which loads the base address
of the STRING string into the accumulator (ac). SWAP then swaps the accumulator value
with the top of the stack, stored on the Stack Pointer (sp), initializing sp as a pointer to the
string. This step is crucial because it allows the stack to point to the beginning of the string to
be printed.

The main block of the program is a loop identified by the LOOP label. The LODL 0
instruction loads into the accumulator the value pointed to by sp (the current character of the
string). The JZER END statement checks to see if this value is zero, i.e., the null terminator
of the string, and if so, diverts execution to the END label, terminating the loop. Otherwise,
PRINTACCHAR prints the accumulator value as an ASCII character, displaying it on the

screen. The INSP 1 instruction decrements the Stack Pointer by 1 (subtracting

Fundamentals and Advances in Computer Science
IGUANA MAC INTERPRETER: AN INTERPRETER FOR THE MAC LANGUAGE BY ANDREW S. TANENBAUM



AN

mathematically, due to the downward growth of the stack), advancing to the next character.
Finally, JUMP LOORP returns to the beginning of the loop, repeating the process until the null
terminator is found. Upon reaching END, the HALT statement terminates the execution of the

program.

4.5 EXECUTION AND RESULT

When run with the runiguana program.asm command, the interpreter processes the
code and prints "Hello, World!" in the standard output, character by character, with no
additional line breaks, as specified by PRINTACCHAR. This result demonstrates the Iguana's
ability to manipulate strings in memory and use flow control and debugging instructions
efficiently. The use of the null terminator as a stop condition reflects a common practice in
low-level languages, while the stack-based operation highlights the interpreter architecture.

This example is particularly valuable in an educational context, as it introduces
fundamental assembly concepts such as the use of pointers (sp), conditional loops (JZER,

JUMP), and memory manipulation (LODL).

4.6 EDUCATIONAL BENEFITS

The Iguana MAC Interpreter was conceived as an educational tool to make up for the
absence of practical resources in Andrew S. Tanenbaum's MAC language teaching, and its
pedagogical benefits are evident both for beginner students and for those who seek to
deepen their knowledge at a low level. The interpreter converts abstract theoretical concepts
into practical experiences by allowing you to write, test, and debug programs in assembly,
promoting a more solid understanding of low-level fundamentals. The expanded set of
instructions also plays a crucial role in enriching the educational process.

The inclusion of custom operations broadens the scope of hands-on exercises
students can undertake. In addition, Iguana fosters active learning by encouraging students
to develop their own programs and test hypotheses. The stack-based architecture, with its
simplicity and well-defined limitations, serves as a teaching model that reflects actual
hardware constraints, helping students internalize memory management concepts. The run-
time error handling system, which flags conditions as out-of-range values, reinforces this
learning by providing immediate, contextualized feedback, turning errors into teaching

opportunities.

Fundamentals and Advances in Computer Science

IGUANA MAC INTERPRETER: AN INTERPRETER FOR THE MAC LANGUAGE BY ANDREW S. TANENBAUM



AN

In short, the Iguana MAC Interpreter stands out as a valuable pedagogical resource
for its ability to connect theory and practice, promote experimentation, and adapt to the needs
of a modern educational environment. Whether you're introducing the fundamentals of
assembly programming or exploring more advanced topics, the interpreter provides a solid
foundation that fosters students' interest and proficiency in computer architecture, aligning

with Tanenbaum's original goal of creating an accessible language for teaching.

5 CONCLUSION

This work presented the Iguana MAC Interpreter, an educational interpreter for the
MAC assembly language proposed by Andrew S. Tanenbaum, designed with the objective
of making up for the absence of practical tools for the execution and experimentation of this
language in the teaching of Computer Architecture. Throughout the article, the theoretical
context that underlies the use of low-level languages in the training process was detailed, the
methodology adopted for the development of the interpreter and the description of its
architecture, set of instructions and operation, evidencing the adherence of the tool to the
didactic principles of the original language.

The results demonstrate that the Iguana MAC Interpreter enables the interactive
execution of MAC programs in a stack-based 16-bit architecture, offering additional features
that extend its educational utility, such as debugging instructions, temporal control, and
runtime error messages. The use of a two-pass algorithm for label resolution, combined with
an explicit error handling system, contributes to making visible central aspects of the
machine's internal workings, favoring the understanding of concepts such as memory
manipulation, flow control and architectural limits.

From a pedagogical point of view, the interpreter stands out for promoting active
learning, by allowing students to write, execute and debug programs in assembly,
transforming abstract theoretical concepts into practical experiences. The simplicity of the
adopted architecture, combined with the operational clarity of the interpreter, enables the
gradual exploration of fundamental low-level programming content, aligning with the
educational purpose that motivated the creation of the MAC language.

As limitations, it is noteworthy that this study did not carry out quantitative empirical
evaluations with users, focusing on the presentation and technical analysis of the tool. Future
works may contemplate the application of the Iguana MAC Interpreter in classroom contexts,

the expansion of its set of instructions and the integration with graphic resources or interactive

[— § T e ————— e ————D

Fundamentals and Advances in Computer Science
IGUANA MAC INTERPRETER: AN INTERPRETER FOR THE MAC LANGUAGE BY ANDREW S. TANENBAUM



AN

educational environments, deepening its contribution to the teaching of Computer
Architecture and low-level languages.
REFERENCES

Aho, A. V., Lam, M. S., Sethi, R., & Ullman, J. D. (2007). Compilers: Principles, techniques,
and tools (2nd ed.). Pearson Addison-Wesley.

Ball, T. (2018). Writing an interpreter in Go. Leanpub.

Freeman, S., Eddy, S. L., McDonough, M., Smith, M. K., Okoroafor, N., Jordt, H., &
Wenderoth, M. P. (2014). Active learning increases student performance in science,
engineering, and mathematics. Proceedings of the National Academy of Sciences of the
United States of America, 111(23), 8410-8415. https://doi.org/10.1073/pnas.1319030111

Klabnik, S., & Nichols, C. (2018). The Rust programming language. No Starch Press.

Nystrom, R. (2021). Crafting interpreters. https://craftinginterpreters.com/

Patterson, D. A., & Hennessy, J. L. (2005). Computer organization and design: The
hardware/software interface (3rd ed.). Morgan Kaufmann.

Tanenbaum, A. S. (1992). Organizacéao estruturada de computadores (32 ed.). LTC.

SRR 21

Fundamentals and Advances in Computer Science
IGUANA MAC INTERPRETER: AN INTERPRETER FOR THE MAC LANGUAGE BY ANDREW S. TANENBAUM



