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ABSTRACT  
Cardiovascular diseases remain the leading cause of death worldwide, making advances in 
prevention essential. This review summarizes recent work on machine learning (ML) applied 
to structured clinical data for detecting or predicting coronary artery disease (CAD). This 
narrative review was conducted under the PRISMA 2020 framework. Searches in PubMed, 
IEEE Xplore, and SciELO (Jan 2020 to Apr 2025) yielded 3,780 records. After screening and 
full-text appraisal, 10 papers were included: seven primary studies and three reviews. Sample 
sizes ranged from 303 to 70,000 individuals. Tree based algorithms and ensembles posted 
the best scores, with accuracy between 0.82 and 0.99 and AUROC from 0.86 to 0.96. 
Explainability with SHAP was applied in four studies, and one paired SHAP with LIME. One 
paper added a cardiologist’s input to the decision loop, raising accuracy from 0.7829 to 
0.8302. Only one article evaluated their models on external datasets and noted performance 
drops. Calibration was rarely addressed. Just one investigation reported a Brier score of 0.14 
and a slope of 0.93. ML models trained solely on routinely collected demographic, laboratory, 
and clinical variables show strong classification ability for CAD, supporting use as a non-
invasive screening aid and decision support. Prospective trials, external validation, and 
detailed calibration reports are required before clinical adoption. 
 
Keywords: Machine Learning. Coronary Artery Disease. Atherosclerosis. 
 
RESUMO  
As doenças cardiovasculares continuam sendo a principal causa de morte em todo o mundo, 
tornando os avanços na prevenção essenciais. Esta revisão resume o trabalho recente sobre 
aprendizado de máquina (ML) aplicado a dados clínicos estruturados para detectar ou prever 
doença arterial coronariana (DAC). Esta revisão narrativa foi conduzida sob a estrutura 
PRISMA 2020. Buscas no PubMed, IEEE Xplore e SciELO (janeiro de 2020 a abril de 2025) 
renderam 3.780 registros. Após triagem e avaliação do texto completo, 10 artigos foram 
incluídos: sete estudos primários e três revisões. Os tamanhos das amostras variaram de 
303 a 70.000 indivíduos. Algoritmos e conjuntos baseados em árvore apresentaram as 
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melhores pontuações, com precisão entre 0,82 e 0,99 e AUROC de 0,86 a 0,96. A 
explicabilidade com SHAP foi aplicada em quatro estudos, e um emparelhou SHAP com 
LIME. Um artigo adicionou a contribuição de um cardiologista ao ciclo de decisão, 
aumentando a precisão de 0,7829 para 0,8302. Apenas um artigo avaliou seus modelos em 
conjuntos de dados externos e observou quedas de desempenho. A calibração raramente 
foi abordada. Apenas uma investigação relatou uma pontuação de Brier de 0,14 e uma 
inclinação de 0,93. Modelos de ML treinados exclusivamente com variáveis demográficas, 
laboratoriais e clínicas coletadas rotineiramente demonstram forte capacidade de 
classificação para DAC, apoiando seu uso como auxiliar de triagem não invasiva e suporte 
à decisão. Ensaios prospectivos, validação externa e relatórios detalhados de calibração são 
necessários antes da adoção clínica. 
 
Palavras-chave: Aprendizado de Máquina. Doença Arterial Coronariana. Aterosclerose. 
 
RESUMEN  
Las enfermedades cardiovasculares siguen siendo la principal causa de muerte en todo el 
mundo, lo que hace que los avances en la prevención sean esenciales. Esta revisión resume 
el trabajo reciente sobre aprendizaje automático (ML) aplicado a datos clínicos estructurados 
para detectar o predecir la enfermedad de la arteria coronaria (EAC). Esta revisión narrativa 
se realizó bajo el marco PRISMA 2020. Las búsquedas en PubMed, IEEE Xplore y SciELO 
(enero de 2020 a abril de 2025) arrojaron 3780 registros. Después de la selección y la 
evaluación del texto completo, se incluyeron 10 artículos: siete estudios primarios y tres 
revisiones. Los tamaños de muestra variaron de 303 a 70 000 individuos. Los algoritmos y 
conjuntos basados en árboles registraron las mejores puntuaciones, con una precisión de 
entre 0,82 y 0,99 y un AUROC de 0,86 a 0,96. La explicabilidad con SHAP se aplicó en cuatro 
estudios, y uno emparejó SHAP con LIME. Un artículo añadió la aportación de un cardiólogo 
al ciclo de decisión, lo que aumentó la precisión de 0,7829 a 0,8302. Solo un artículo evaluó 
sus modelos con conjuntos de datos externos y observó descensos en el rendimiento. La 
calibración se abordó en raras ocasiones. Tan solo una investigación informó una puntuación 
Brier de 0,14 y una pendiente de 0,93. Los modelos de aprendizaje automático (ML) 
entrenados únicamente con variables demográficas, de laboratorio y clínicas recopiladas 
rutinariamente muestran una sólida capacidad de clasificación para la enfermedad coronaria 
(CAD), lo que respalda su uso como herramienta de cribado no invasiva y de apoyo a la 
toma de decisiones. Se requieren ensayos prospectivos, validación externa e informes de 
calibración detallados antes de su adopción clínica. 
 
Palabras clave: Aprendizaje Automático. Enfermedad Coronaria. Aterosclerosis. 
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1 INTRODUCTION  

Cardiovascular diseases remain the leading cause of death worldwide, accounting for 

approximately 17.9 million deaths each year, according to the World Health Organization 

(WHO) [1]. Coronary artery disease (CAD) alone caused 8.9 million deaths, about 16% of all 

global deaths in 2019 [1]. CAD involves the progressive buildup of atherosclerotic plaques in 

the coronary arteries, reducing myocardial blood flow and culminating in angina, acute 

myocardial infarction, and sudden death. According to Liu [2], although multiple genetic 

factors contribute to its pathophysiology, the disease is largely influenced by modifiable 

variables such as hypercholesterolemia, hypertension, diabetes, smoking, dietary habits, and 

physical inactivity. Early interventions targeting lifestyle and metabolic risk can delay or even 

prevent atherosclerotic progression, underscoring the need for sensitive diagnostic methods 

before clinical manifestations appear.  

Initial risk assessment typically uses linear models developed in large cohorts, that is, 

groups of individuals monitored because they share a common characteristic, such as the 

Framingham Risk Score (FRS) derived from the Framingham Heart Study in Framingham, 

Massachusetts, United States of America (USA). This score estimates the ten-year 

probability of coronary events based on age, sex, blood pressure, lipid profile, smoking, and 

diabetes [3]. The Pooled Cohort Equations (PCE), published by the American College of 

Cardiology/American Heart Association (ACC/AHA), calculate the risk of atherosclerotic 

cardiovascular disease (ASCVD) in U.S. populations, incorporating ethnicity, statin therapy 

aimed at lowering LDL-cholesterol levels, and systolic blood pressure [4]. Although useful in 

specific settings, these scores may overestimate or underestimate risk in multiethnic 

populations and fail to capture non-linear interactions among variables, as demonstrated by 

Kakadiaris [5]. Moreover, confirmatory invasive exams (for example, coronary angiography) 

involve high costs, iodinated contrast exposure, and radiation exposure [6]. This scenario 

drives the search for computational solutions capable of integrating demographic, laboratory, 

and behavioral variables routinely available in electronic health records, generating more 

accurate and personalized predictions. 

Machine learning (ML) has emerged as a promising technology for this purpose, using 

algorithms to learn complex relationships from data and then produce predictive models. ML 

model performance is assessed with metrics that capture different aspects of predictive 

ability, such as accuracy and the area under the receiver operating characteristic curve 

(AUROC). One of the most recent advances is Automated Machine Learning (AutoML), which 
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automates model selection, tuning, and validation. According to Wang, the open-source 

ensemble AutoML framework AutoGluon ran dozens of models, selected the best ones, and 

combined them to reach high accuracy with an AUROC of 0.95, considered excellent, 

whereas optimized logistic regression was limited to 0.88 [7]. This example illustrates the 

advantage of ensemble algorithms over traditional linear techniques. Ensemble algorithms 

that do not use images already exceed 90% accuracy [8]. 

Despite their high performance, the clinical adoption of ML demands transparency. 

Explanation techniques such as SHapley Additive exPlanations (SHAP) break down the 

model prediction into the contribution of each variable, enabling specialists to understand 

why, for example, age, LDL cholesterol, systolic blood pressure, or other factors influence an 

individual’s risk. Samaras showed that SHAP plots, within a human-in-the-loop (HITL) 

approach, increased system acceptability and reinforced diagnostic confidence [9]. 

However, the literature remains heterogeneous regarding populations, metrics, and 

external validation, hindering the incorporation of these models into international clinical 

guidelines. A technical-scientific analysis that critically synthesizes recent literature, focused 

exclusively on structured data (clinical, demographic, and behavioral) and excluding image 

or electrophysiological signal-based approaches, is therefore indispensable. 

Accordingly, this systematic review aims to: 

(i) map and evaluate the state of the art in ML applications to structured clinical data for 

CAD detection and prediction; 

(ii) compare the accuracy and robustness of different algorithms; 

(iii) discuss interpretability and implementation aspects; 

(iv) identify gaps to guide future research and clinical practice.  

 

2 FUNDAMENTALS OF MACHINE LEARNING 

Cardiovascular a ML is a branch of artificial intelligence (AI) that develops algorithms 

capable of inferring mapping functions from data and generalizing this knowledge to unseen 

observations [10]. Unlike linear statistical techniques, ML models do not impose a predefined 

functional form on relationships among variables, which allows them to capture nonlinear 

dependencies and high order interactions, features often present in clinical records of 

patients with CAD. This section describes the most relevant paradigms, metrics, algorithms, 

and interpretability techniques for medical applications, providing the conceptual basis for the 

critical analysis of the included studies. 
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2.1 PARADIGMS 

Three ML paradigms are relevant: 

 

2.1.1 Supervised Learning 

Under the supervised learning paradigm, the algorithm receives pairs (X, y), where X 

is the attribute vector (age, LDL, systolic pressure, and so on) and y is the label (CAD present 

or absent). The goal is to learn a function that minimizes prediction error. Most studies on 

CAD detection use this paradigm because the diagnosis is known in the training set [11]. 

 

2.1.2 Unsupervised Learning 

Without labelled outcomes, unsupervised methods aim to discover structure without 

labels using clustering (for example, clinical subphenotypes) and dimensionality reduction for 

variable selection or visualization. Although less common, clustering methods help uncover 

hidden risk profiles [12]. 

 

2.1.3 Reinforcement Learning 

Through reinforcement, an adaptive agent learns action policies by maximizing 

rewards. In clinical cardiology it is still incipient, but there are proposals to optimize 

therapeutic regimens in real time [13]. 

 

2.2 EVALUATION METRICS 

Choosing the metric that quantifies ML model performance is decisive for interpreting 

results in a clinically relevant way. In binary classification problems, such as distinguishing 

patients with and without CAD, it is usual to distinguish threshold dependent metrics, which 

are calculated at a predetermined cutoff, from threshold independent metrics, which evaluate 

the entire spectrum of decision points [14]. 

 

2.2.1 Threshold dependent metrics 

To discuss each indicator, it is essential to present some concepts: 
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2.2.1.1 Confusion Matrix 

The confusion matrix summarizes correct and incorrect classifier outcomes. Each 

observation is classified according to two dimensions: the patient’s true condition and the 

model’s prediction. Crossing these two pieces of information yields four possible situations, 

shown in Table 1. 

 

Table 1 

Confusion Matrix 

 

A true positive (TP) occurs when the algorithm classifies a patient as having CAD and 

reference tests confirm the disease; this is the correct outcome one aims to maximize 

because it leads to timely diagnosis and treatment. 

A false positive (FP) arises when the model indicates CAD in a patient who is in fact 

healthy; this “false alarm” is a type I error, with implications that include patient anxiety and 

unnecessary invasive procedures. 

A false negative (FN) happens when the system rules out CAD in someone who is 

actually diseased. This type II error is clinically the most dangerous because it delays 

essential interventions and increases the risk of future coronary events. 

A true negative (TN) represents a case in which the algorithm correctly recognizes the 

absence of CAD in a healthy patient, avoiding superfluous tests or treatments. 

In short, TP and TN are correctly predicted values, whereas FP and FN are errors. 

These four values form the basis for calculating metrics such as accuracy, sensitivity, 

Comparison between a patient status and a ML model prediction. 

Prediction Positive Negative 

Positive (Sick) True Positive (TP) False Negative (FN) 

Negative (Healthy) False Positive (FP) True Negative (TN) 

aTP = True Positive; TN = True Negative; FP = False Positive; FN = False Negative. Green cells 

represent correct predictions (i.e., values that start with "True"), while orange cells represent 

misclassifications (i.e., values that start with "False"). 
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specificity, precision, and F1-score, allowing different kinds of success and error to be 

weighed according to the clinical needs of the study. 

 

2.2.1.2 Accuracy 

Accuracy expresses the overall proportion of correct predictions and is given in 

Equation 1. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
              (1) 

 

When classes are balanced this metric summarizes overall performance well. 

However, in CAD screening scenarios, where the prevalence of diseased patients is usually 

low, accuracy can be misleading: a model that labeled everyone healthy would achieve high 

accuracy while failing to detect the cases of interest. Therefore, it should always be 

accompanied by metrics that separately describe performance on the positive and negative 

classes. 

 

2.2.1.3 Sensitivity (Recall) 

Recall quantifies the model’s ability to capture patients who actually have CAD, as 

defined in Equation 2. 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
      (2) 

 

High values indicate few false negatives (FN), which is desirable when missing a 

diseased patient (for example, progressing to infarction) is clinically severe. Screening 

protocols often favor cutoffs that maximize recall, even if this lowers specificity, assuming 

confirmatory exams will handle the false alarms. 

 

2.2.1.4 Specificity 

Specificity reflects the ability to correctly recognize individuals without the disease, 

calculated in Equation 3. 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                  (3) 
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Higher specificity means fewer false positives (FP), important when invasive or costly 

investigations, such as catheterization, are triggered by a positive result. A balance between 

sensitivity and specificity is essential to avoid overloading the health-care system. 

 

2.2.1.5 Precision 

Precision, the proportion of true positives among all positive predictions, complements 

sensitivity when the cost of a false positive is significant, as shown in Equation 4. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
               (4) 

 

In practice it gives the probability that a patient truly has CAD after the algorithm flags 

risk. This metric is strongly prevalence-dependent: in low-incidence populations precision 

tends to drop even with high sensitivity and specificity. 

 

2.2.1.6 F1-Score 

The F1-score combines sensitivity and precision through their harmonic mean, 

penalizing imbalances between the two. It is calculated in Equation 5. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
            (5) 

 

It ranges from 0 to 1 and is particularly useful when a single compromise that considers 

both false positives and false negatives is desired, a common situation with imbalanced data 

sets. Cutoffs that maximize F1 usually offer a balanced operating point for CAD detection 

models, that is, choosing the threshold that yields the highest F1 generally places the model 

in a healthy middle ground: it neither misses many patients with CAD nor raises excessive 

suspicions in healthy individuals. 

 

2.2.2 Threshold independent metrics 

Threshold-independent metrics evaluate a classifier’s performance over all possible 

cutoffs at once (0 ≤ threshold ≤ 1), avoiding the arbitrary choice of a single cutoff. 

They are especially useful when the clinical threshold of use has not yet been defined, 

when models trained on different data sets must be compared, or when the data set is 

imbalanced, a frequent situation in CAD screening where most individuals are healthy. 
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The two most used approaches are the ROC curve (and its area, AUROC) and the 

Precision–Recall curve (and its area, AUPRC). 

 

2.2.2.1 ROC Curve and AUROC 

The Receiver Operating Characteristic (ROC) curve shows classifier behavior at 

different thresholds. Most ML-based classifiers output the probability that the event is true or 

false, in this study the probability that the patient has or does not have CAD. If the detection 

threshold is very high, few cases will be labeled positive. If it is very low, most cases will be 

labeled positive. To understand thresholds, we calculate the true positive rate (TPR) and the 

false positive rate (FPR) with Equations 6 and 7. 

 

𝑇𝑃𝑅(𝑡) =
𝑇𝑃(𝑡)

𝑇𝑃(𝑡)+𝐹𝑁(𝑡)
          (6) 

𝐹𝑃𝑅(𝑡) =
𝐹𝑃(𝑡)

𝐹𝑃(𝑡)+𝑇𝑁(𝑡)
           (7) 

 

The area under the ROC curve is called Area Under Receiver Operating Characteristic 

(AUROC), represented by the integral in Equation 8, which expresses the probability that the 

model assigns a higher score to a diseased patient than to a randomly chosen healthy one. 

Values below 0.70 indicate poor discrimination, between 0.80 and 0.90 denote very good 

performance, and above 0.90 indicate excellence [14]. 

 

𝐴𝑈𝑅𝑂𝐶 = ∫ 𝑇𝑃𝑅(𝑢) 𝑑[𝐹𝑃𝑅(𝑢)]
1

0
              (8) 

 

If the positive class is ≤ 5%, as is typical in CAD data sets, AUROC can look excellent 

yet fail to reflect reality. 

Figure 1 shows the visual representation of the ROC curve and AUROC. 

 

2.2.2.2 Precision-Recall curve and AUPRC 

When most patients are healthy and only a few have CAD, metrics such as the 

Precision–Recall Curve (PRC) and Area Under Precision–Recall Curve (AUPRC) capture 

small performance changes better than AUROC because they give more weight to the 

minority of diseased patients [14]. Equations 9, 10, and 11 represent the AUPRC metrics. 
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑡) =
𝑇𝑃(𝑡)

𝑇𝑃(𝑡)+𝐹𝑃(𝑡)
            (9) 

 

𝑅𝑒𝑐𝑎𝑙𝑙(𝑡) = 𝑇𝑃𝑅(𝑡)           (10) 

 

𝐴𝑈𝑃𝑅𝐶 = ∫ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑟) 𝑑𝑟
1

0
          (11) 

 

Figure 1 

AUC Curve and AUROC 

 

Source: Author. 

 

 

Figure 2 shows how to plot the AUPRC. 

 

2.2.3 Calibration 

Besides discrimination, strong predictive algorithms must be properly calibrated, 

meaning the probabilities generated by the model must match the observed outcome 

frequencies. Calibration can be examined visually with calibration plots or quantitatively with 

the Brier Score, which computes the mean squared error between predicted probabilities and 

actual results [14]. Equation 12 shows how to calculate the Brier Score. 

 

𝐵𝑆 =  
1

𝑁
 ∑ (𝑓𝑡 −  𝑜𝑡)2𝑁

𝑡=1          (12) 

The blue line depicts classifier performance. 
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Figure 2 

PR Curve and AUPRC 

 

Source: Author. 

 

Simply put, the closer to zero, the better the Brier Score. If the predicted and actual 

outcomes are both true (1), the score is zero, the best possible result. If the predicted outcome 

is true (1) and the actual outcome is false (0), the score is one, the worst possible result. 

In clinical contexts a well-calibrated model allows a calculated risk to be used directly  

for therapeutic decisions or patient stratification into low, intermediate, or high-risk 

categories, something that discrimination metrics alone do not guarantee. Despite high AUC 

values, only Saeedbakhsh reported Brier = 0.14 and slope = 0.93 [15], suggesting good 

calibration; the other articles ignore this aspect. 

In summary, no single indicator fully describes classifier quality. For CAD applications 

the recommended practice is to report at least AUROC or AUPRC to frame overall 

discriminative ability, sensitivity and specificity or F1-score to show practical usefulness at a 

chosen threshold, and calibration metrics to ensure probabilities are clinically reliable. 

 

 

 

 

The blue line depicts classifier performance. 
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2.3 NOTABLE ALGORITHMS FOR CAD DETECTION 

The studies included in this systematic review focus on five major families of 

supervised algorithms, each with specific mathematical foundations and performance 

profiles. 

 

2.3.1 Decision Trees 

The first group is based on decision trees. Among these methods, Random Forest 

applies the bagging strategy: many trees are trained on data subsets, and their predictions 

are aggregated by voting. By sampling both examples and attributes, Random Forest 

reduces the variability seen with a single tree. In heterogeneous clinical sets, Random 

Forests have reported AUROC values between 0.88 and 0.92 when classifying CAD [8]. 

Figure 3 below presents a Random Forest. 

 

Figure 3 

Random Forest Algorithm 

 

Source: Author. 

 

A refinement of the decision tree is Gradient Boosting, whose essence is to build 

models sequentially that correct the residuals of previous ones. Modern implementations 

 

Schematic representation of a single decision tree. 
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such as XGBoost, an open framework for Gradient Boosting, optimize the loss function and 

integrate regularization, missing value handling, and parallelization. On combined public data 

sets these boosters achieved AUROC higher than 0.95 when orchestrated by AutoML 

platforms [7]. 

 

2.3.2 Support Vector Machines (SVM) 

The second family comprises margin-maximizing algorithms, especially the Support 

Vector Machine. SVM is a classifier based on a geometric idea. Imagine each patient 

represented as a point in a space whose dimensions correspond to clinical variables such as 

age, cholesterol, blood pressure. SVM searches for the plane that best separates the sick 

points from the healthy ones. Figure 4 below shows the SVM algorithm. 

 

Figure 4 

Support Vector Machines (SVM) Algorithm 

 

Source: Author. 

Conceptual illustration of a linear SVM classifier. The central red dashed line is the optimal separating 

hyperplane. Parallel dashed lines indicate the margins, which are maximised to give the widest possible 

gap between classes. Points that lie on the margin are the support vectors. Highlighted and labelled 

accordingly. 
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When the two classes cannot be separated by a straight line, a common situation in 

biomedical data, SVM uses a kernel function. The kernel projects points to a higher-

dimension space where separation becomes possible with a plane. A radial (RBF) kernel, for 

example, acts as if placing a lens over the data, curving the space so that the groups move 

apart. In clinical samples analyzed in this review, with 11 thousand patients, SVM showed 

accuracy around 89% and specificity close to 98% for CAD detection [15]. The computational 

cost, however, grows quadratically with the number of observations, limiting its use in very 

large data sets. 

 

2.3.3 Artificial Neural Networks (ANNs) 

Artificial Neural Networks are nonlinear layered models able to represent highly 

complex functions. Conceptually three types of layers are distinguished: input, hidden, and 

output. 

The input layer receives the data, in this case the clinical vectors related to CAD, such 

as cholesterol, age, family history, blood pressure. 

The hidden layers extract and combine patterns. The first hidden layer might learn that 

high cholesterol increases CAD chances and assign a weight to that variable. The next layer 

combines patterns, for example high cholesterol together with age increases CAD chances. 

As more layers are added, the network can reach richer concepts, producing risk profiles 

derived from the input variables. 

The output layer delivers the result, classifying whether the patient has CAD or 

estimating the probability of developing it. 

 

 

 

 

 

 

 

 

 

 

 



 

 
REVISTA ARACÊ, São José dos Pinhais, v.7, n.10, p.1-33, 2025  

 15 

Figure 5 

Feed-forward Artificial Neural Network (ANN) Algorithm 

 

Source: Author. 

 

Even in shallow configurations of two or three fully connected layers, ANNs outperform 

linear regressions on tabular clinical data, reaching AUROC 0.86 and accuracy 88% in 

hospital cohorts [16]. Figure 5 below illustrates an ANN. 

 

They require comparatively large samples to avoid overfitting and, in standard form, 

offer limited interpretability. 

 

2.3.4 Neighborhood-Based Algorithms 

In contrast, neighborhood algorithms represented by k-Nearest Neighbors classify a 

patient by the vote of the k records closest in attribute space. Similarity between the new 

case and each stored record is measured with a distance metric, and the new case receives 

the most frequent class among the k neighbors. 

 

 

Blue circles represent the input layer, green circles form two hidden layers (four neurons each), and 

the orange circle is the single output neuron. Gray arrows indicate the weighted connections between 

successive layers. 
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Figure 6 

k-nearest-neighbors (k-NN) classification process 

 

Source: Author. 

 

Figure 6 depicts k-NN behavior, showing how the nearest points are used to classify 

a new point. 

Simple to implement, k-NN often serves as a baseline; however, it suffers performance 

loss in high dimensions and requires costly calculations at inference time, which is why it 

seldom leads performance rankings [17]. 

 

2.3.5 Ensemble (Model Stacking) 

The ensemble concept combines predictions from multiple models to mitigate 

individual biases and reduce overall variance. This principle underlies both Random Forest 

(voting) and Gradient Boosting (sequential weighted combination). 
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Figure 7 illustrates stacking: neural networks are trained on three independent 

bootstrap samples, and their outputs serve as input for a meta-classifier that delivers the final 

prediction. Although the diagram uses ANNs, any algorithm such as a tree or SVM can take 

the role of base learner or meta-learner. 

 

Figure 7 

Stacking ensemble workflow 

 

Source: Author. 

 

At the frontier, AutoML systems such as AutoGluon Tabular automate algorithm 

selection, hyper-parameter search, and stacked ensemble construction, providing the 

researcher with an optimized solution according to predefined metrics. Wang showed that 

AutoGluon produced a stacked ensemble built from Gradient Boosting, neural networks, and 

SVM, able to reach AUROC 0.9562 and accuracy above 91%, surpassing logistic regressions 

using the same variables [7]. 

In summary, tree-based algorithms, particularly Random Forest and Gradient 

Boosting, have become the backbone of high-performance tabular models in cardiology, 

while SVM and ANNs offer competitive alternatives in specific niches. The final choice must 

balance discriminative ability, interpretability, computational cost, and ease of integration with 

 

The original data set (green) is resampled into multiple bootstrap subsets (red), each used to train an 

independent base classifier (blue neural networks). The base-model outputs are then fed to a meta-

classifier (orange neural network), which aggregates them to generate the final prediction (green). 
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clinical workflows, always checking calibration and external validation to ensure practical 

relevance. 

 

2.4 Cardiology Relevance 

Adopting ML algorithms in cardiology, especially for detecting CAD and classifying 

patient risk, has four decisive impacts. 

First, tabular data models enable early noninvasive screening. Omkari showed that 

processing routine clinical and laboratory variables with an ensemble doubled the sensitivity 

obtained by linear scores, reaching AUROC above 0.90 without angiography or computed 

tomography [8]. Performance like this brings diagnosis forward and reduces both hospital 

costs and patient exposure to iodinated contrast and radiation. 

Second, these techniques offer personalized risk stratification. Using explanation 

methods such as SHAP, it is possible to break down the individual score and understand 

why, for example, a slight increase in a variable or a family history of CAD substantially 

changes patient risk. This granularity, reported by Samaras, facilitates counseling on lifestyle 

changes or adjusting therapy intensity, moving toward personalized medicine [9]. 

Third, the automation provided by AutoML raises operational efficiency. Wang showed 

that AutoGluon trained, validated, and stacked dozens of models in a few hours, delivering a 

high-performance classifier without extensive programming [7]. This reduces the technical 

barrier for health centers with limited IT teams to develop or update predictive models. 

Finally, regulatory compliance gains support when high predictive power and 

transparency are combined. The ability to audit each decision through SHAP explanations, 

together with automatic calibration reports, aligns these systems with the requirements of the 

European trustworthy AI legislation, the AI Act. Thus, ML algorithms not only improve 

diagnostic sensitivity but also integrate into a regulated ecosystem, promoting safe and 

reproducible clinical adoption. 

In short, by integrating demographic, laboratory, and behavioral variables into 

interpretable algorithms, ML consolidates itself as a strategic resource to anticipate and 

mitigate the global burden of coronary artery disease, signaling the maturity of predictive 

models aimed at daily clinical use. 
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3 MACHINE LEARNING APPLICATIONS IN CAD DETECTION 

Taken together, ML applied to structured clinical data offers tangible benefits: early 

noninvasive screening, personalized therapeutic management, and more rational use of 

diagnostic resources. The studies selected for this review reveal four major application areas 

of ML in CAD. 

 

3.1 ANALYSIS OF STRUCTURED CLINICAL DATA 

The most mature line of work involves models that use variables readily available from 

routine visits and tests: age, sex, lipid profile, blood pressure, diabetes, smoking, and 

emerging laboratory markers such as HbA1c. An ensemble based on Random Forest and 

Gradient Boosting, trained on seventy thousand electronic health-record entries, achieved an 

AUROC of 0.90 and a sensitivity of 85% using fourteen attributes [8]. AutoGluon raised the 

AUROC to 0.9562 across five public data sets, rivaling invasive methods without requiring 

imaging [7]. Similarly, a neural model called Random Vector Functional Link (RVFL) reached 

81.6% accuracy with thirteen classic clinical variables from the Cleveland CAD database, 

showing that even simplified architectures can perform competitively when paired with 

interpretability techniques such as LIME and SHAP [18]. 

 

3.2 PROGNOSIS PREDICTION 

Beyond diagnosis, ML is being used to anticipate future events. A gradient-boosting 

model developed in the MESA study to predict 10-year ASCVD events achieved a Net 

Reclassification Improvement (NRI) of ≈ 0.30 (categorical) to 0.47 (continuous) compared 

with the ACC/AHA Pooled-Cohort Equations, which would translate to hundreds of correctly 

reclassified cases in a cohort of 10 000 individuals [5]. Another study demonstrated ML’s 

ability to forecast CAD-related complications: a Light Gradient Boosting Machine (LightGBM) 

model achieved AUROC 0.82 in predicting atrial fibrillation among patients with sleep apnea 

and CAD, paving the way for preventive arrhythmia interventions [2]. 

 

3.3 CLINICAL DECISION-SUPPORT SYSTEMS 

For predictions to translate into medical action they must be integrated into the care 

workflow. Incorporating SHAP values in a human-in-the-loop panel that displays the most 

influential variables for CAD detection allowed cardiologists to see for each patient how age, 

LDL cholesterol, or systolic pressure contributed to the final decision. This led to threshold 
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adjustments and a 5% gain in overall accuracy without loss of sensitivity [9]. AutoML platforms 

can export models directly into the electronic record, triggering real-time alerts when 

individual risk crosses a preset level. In hospital flow simulations this feature cut stratification 

decision time by twenty minutes. 

 

3.4 MEDICAL IMAGE PROCESSING 

Although this review focuses on tabular data, it is worth noting that deep learning 

applied to coronary angiography and coronary CT (topics covered by studies outside our 

scope) reaches AUROC values around 0.91 for stenosis ≥ 50% [19]. These results suggest 

that multimodal models that combine imaging with clinical variables are likely to represent the 

next innovation phase. 

 

4 TECHNICAL SCIENTIFIC REVIEW METHODOLOGY 

This narrative technical scientific review was carried out in line with the PRISMA 2020 

recommendations, ensuring transparency in every stage of study identification, selection, 

extraction, and synthesis. 

The search strategy was executed on 14 May 2025 in the PubMed and IEEE Xplore 

databases using the query: 

(“machine learning” OR “artificial intelligence” OR “deep learning”) AND (“coronary 

artery disease” OR “atherosclerosis” OR “coronary heart disease”) AND (diagnos* OR detect* 

OR classif* OR predict*) 

Equivalent Portuguese terms were also run in SciELO to widen national coverage. 

Results were exported in RIS format and imported into Zotero, where duplicates were 

removed automatically. This process identified 3 780 records, of which 1 609 remained after 

excluding articles that were not open access. Deduplication eliminated 3 more records, 

leaving 1 606, and a further 4 retracted articles were excluded, yielding 1 602 records. 

Database totals may differ slightly from live searches because records are continuously 

updated. 

To ensure readers and researchers could access all included studies without paywalls, 

we limited to open-access literature. 

Inclusion criteria: 

(i) original human studies published from January 2020 to April 2025; 

(ii) English or Portuguese language; 



 

 
REVISTA ARACÊ, São José dos Pinhais, v.7, n.10, p.1-33, 2025  

 21 

(iii) application of machine learning algorithms to clinical or demographic data for 

detection, classification, or prediction of coronary artery disease. 

 

Exclusion criteria: 

(i) imaging-only studies; 

(ii) pediatric populations; 

(iii) data sets lacking performance metrics or internal validation; 

(iv) articles not available in open access. 

 

After applying the exclusion criteria, 21 full texts were reviewed in depth, and 10 

studies met all requirements and form the final synthesis. Because of heterogeneity in 

populations, variables, and algorithmic approaches, a narrative synthesis was adopted, and 

no meta-analysis was performed. 

 

5 RESULTS 

Complete search strings and supplementary material will be placed in a public 

repository to ensure reproducibility. The PRISMA diagram in Figure 8 shows the number of 

articles at each stage, identification, screening, eligibility, and inclusion, and Table 2 contains 

a description of the evaluated studies. 

 

5.1 SYNTHESIS OF THE INCLUDED STUDIES 

The ten included studies comprise seven original investigations that develop predictive 

models and three reviews. All focus on tabular structured clinical data for detecting or 

predicting coronary artery disease (CAD), in line with the inclusion criteria; there are no 

imaging or waveform studies.  

Three papers are recent reviews: a narrative review on ML in CAD [16], a meta-

analysis of models based on electronic health records [2], and a scoping review on AI models 

in primary care [21]. The other seven studies are original research from several countries 

(Brazil, Colombia, Iran, Greece, India, and the United States), reflecting the global nature of 

the topic. Sample sizes range widely, from small cohorts of about 300 to 600 patients [9] [18] 

to population-level data sets with tens of thousands of individuals [8] [20]. This heterogeneity 

highlights different strategies: some groups worked with limited yet homogeneous data from 
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a single hospital, whereas others merged large multicenter sets or synthetic data to boost 

statistical power. 

 

Figure 8 

PRISMA Diagram. The preferred reporting items for this systematic review 

 

Source: Author. 

 

In terms of predictive performance, ML models yielded robust results. Reported 

accuracies span roughly 81% to 99%, and AUROCs lie between 0.86 and 0.96. The lowest 

figure is the RVFL model by Muhammad, with accuracy 0.82 [18]. At the upper end, the k-NN 
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model by Silva reaches 98% [20], and the TLV ensemble by Omkari 2024 scores 99% on one 

data set and 88% on another [8].  

 

Table 2 

Articles assessed in this systematic review 

Year 1st Autor Full title Data 
source / 
Country 

n Main 
variables 
examples 

Best 
performin

g 
algorithm 

Key 
Metric 

Declared 
interpretability 

2021 Hao Ling 

Machine 
learning in 
diagnosis 

of coronary 
artery 

disease 

Narrativ
e review 
/ China 

N/A - - - - 

2022 
Carlos A. 
O. Silva 

Machine 
learning for 

atrial 
fibrillation 

risk 
prediction 
in patients 
with sleep 
apnea and 
coronary 

artery 
disease 

Hospital 
Medical 
Records 
/ Brazil + 
Greece 

22,30
2 

Age, sex, 
CAD, 
blood 

pressure, 
obsctructi
ve sleep 
apnea, 
chronic 
kidney 

disease, 
etc.. 

KNN 
Accura

cy 
0.98 

- 

2023 
Saeed 

Saeedbak
hsh 

Diagnosis 
of coronary 

artery 
disease 

based on 
machine-
learning 

algorithms: 
Support 
Vector 

Machine, 
Artificial 
Neural 

Network 
and 

Random 
Forest 

Isfahan 
Cohort 
Study / 

Iran 

11,49
5 

Age, sex, 
sleep, 

previous, 
stroke, 

palpitation
s, 

smoking, 
etc. 

SVM 
Accura

cy 
0.897 

- 

2023 
Agorastos
-Dimitrios 
Samaras 

Classificati
on models 

for 
assessing 
coronary 

artery 

Universit
y 

Hospital 
/ Greece 

571 

26 clinical 
and 

biometric 
variables 
(cholester

Random 
Forest + 

Specialist’s 
opinion 

Accura
cy 

0.83 

SHAP + 
man-in-the-loop 
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disease 
instances 

using 
clinical and 
biometric 
data: an 

explainable 
man-in-the-

loop 
approach 

ol, BMI, 
etc.) 

2024 
Dost 

Muhamm
ad 

Randomize
d 

explainable 
machine-
learning 

models for 
efficient 
medical 

diagnosis 

Clevelan
d CAD 
dataset 
(UCI) / 
USA 

303 

14 
standard 

UCI 
variables 
(age, sex, 
cholestero

l, etc.) 

RVFL 
Accura

cy 
0.816 

LIME + SHAP 

2024 
Rejath 
Jose 

Evaluating 
machine 
learning 

models for 
prediction 

of coronary 
artery 

disease 

UCI 
heart-

disease / 
USA 

1,049 

11 
classical 

predictors 
(age, sex, 

blood 
pressure, 
angina, 

etc.) 

Logistic 
Regression 

AURO
C 0.88 

Feature 
importance 

Year 1st Autor Full title Data 
source / 
Country 

n Main 
variables 
examples 

Best 
performin

g 
algorithm 

Key 
Metric 

Declared 
interpretability 

2024 D. Yaso 
Omkari 

An 
integrated 

two-layered 
voting 
(TLV) 

framework 
for 

coronary 
artery 

disease 
prediction 

using 
machine-
learning 

classifiers 

UCI 
1025 + 
Kaggle 
70,000 / 

India 

1,025 
+ 

70,00
0 

12 + 14 
variables 

Ensemble Accura
cy 

0.99 
(UCI) / 
0.881 
(Kaggl

e) 

SHAP 

2024 Jianghong 
Wang 

Explainable 
coronary 

artery 
disease 

prediction 
model 

based on 
AutoGluon 

from 

5 
combine
d public 
datasets 

/ USA 

918 11 
variables 

AutoGluon 
Ensemble 

Accura
cy 

0.917 / 
AURO

C 
0.956 

SHAP 
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AutoML 
framework 

2024 Tianyi Liu Machine-
learning-

based 
prediction 
models for 
cardiovasc

ular 
disease 

risk using 
electronic 

health-
records 

data: 
systematic 
review and 

meta-
analysis 

EHR 
meta-

analysis 
(20 

studies) 
/ UK 

20 
studi
es, 
32 

mode
ls 

Age, sex, 
blood 

pressure, 
etc. 

Random 
Forest 

AURO
C 

0.865 

- 

2025 Caoimhe 
Provost 

Artificial 
intelligence 
models for 
cardiovasc

ular 
disease 

risk 
prediction 
in primary 

and 
ambulatory 

care: a 
scoping 
review 

Scoping 
review 

(25 
studies) 
/ Ireland 

25 
studi
es 

Outpatient 
risk 

predictors 

- - - 

 

AUROC values are typically above 0.88, peaking at 0.956 in the AutoGluon model 

reported by Wang [7]. In every study the ML algorithms match or exceed traditional methods. 

Omkari showed the ensemble consistently outperforming linear risk scores [8], and Jose 

notes optimized logistic regression at AUROC 0.88 while tree-based and ensemble methods 

climb higher [6]. Across the body of work AUROCs of 0.88 to 0.96 for CAD detection are 

common [6] [7] [8] [18] [20], compared with external AUROCs around 0.75 to 0.80 for 

established clinical scores such as Framingham or ACC / AHA [3] [4]. 

A recurring limitation is scarce external validation. Most authors report performance 

only on internal test sets, often via cross-validation or random train / test splits. Omkari is the 

lone study that applies a model trained on the UCI repository to Kaggle data, where accuracy 

falls from 99% to 88%, underscoring real-world performance drops when the domain changes 

[8]. Fewer than one-third of the models undergo external validation, mirroring the concern 

raised by Provost, who cites limited validation and lack of clinical-impact studies as barriers 

to routine adoption [21]. 
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Most original papers primarily compare algorithms by classic metrics such as accuracy, 

AUROC, sensitivity, and specificity. Only one explores deeper human interaction: Samaras 

adds a cardiologist’s opinion as an extra feature in a Random Forest, boosting accuracy to 

83% and sensitivity to 90.3% [9]. No other study embeds a human in the decision loop, 

leaving a gap in doctor-machine collaboration research. 

About half the articles employ post-hoc interpretability. Samaras, Muhammad, Omkari, 

and Wang use SHAP, and Muhammad also applies LIME [7] [8] [9] [18]. Jose evaluates 

variable importance in logistic regression [6]. These tools reveal that classic risk factors such 

as age, exercise-induced angina, blood pressure, and family history remain key drivers in 

model predictions, supporting clinical credibility [6] [9]. Nevertheless, no study tests whether 

these explanations change physician behavior, an avenue for future work. In summary, ML 

algorithms applied to structured clinical data achieve high performance in detecting and 

predicting CAD, generally surpassing linear baselines. Remaining challenges include 

consistent external validation and deeper exploration of interpretability and human-machine 

integration. 

 

6 DISCUSSION 

The ability to capture interaction effects and nonlinear relationships is essential in 

CAD, a multifactorial disease that involves metabolic, inflammatory, and behavioral factors at 

the same time. 

This systematic review shows that machine learning models built solely on structured 

clinical data, meaning demographic, hemodynamic, biochemical, and behavioral variables 

routinely collected in primary or outpatient care, can reach discriminative power that matches 

or even surpasses that of invasive tests or well-known linear scores for CAD [2]. 

Models trained on samples ranging from a few hundred to many tens of thousands of 

patients report AUROC values between 0.88 and 0.96 [5] to [9], consistently outperforming 

optimized logistic regression, which reaches about 0.88 [6], and the Framingham or ACC 

AHA scores, whose external risk estimates often sit near 0.75 to 0.80 [3] [4]. 

The strength of these algorithms supports the role of machine learning as a first line 

screening tool, reserving invasive procedures for a more focused group of high-risk patients. 

Even so, the application of machine learning for CAD detection and prevention, although 

promising, faces technical and ethical regulatory barriers that must be addressed before 

large-scale clinical deployment. 
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A scoping review by Provost adds that a shortage of external validation and clinical 

impact studies still limits routine adoption of these cardiovascular risk models in primary and 

outpatient care [21]. 

 

6.1 INTERPRETATION OF THE FINDINGS 

In line with this study’s goals, namely, to map the state of the art of machine learning 

in CAD detection and prediction, compare performance, discuss interpretability, and identify 

gaps, the selected articles show varied approaches with a focus on evaluating predictive 

performance in structured data sets. 

Most papers compare machine learning algorithms in terms of accuracy, AUROC, and 

sensitivity, exploring their use in automated clinical decision support. Only a small share 

examines model explainability or the integration of medical expertise in the prediction 

process, as in human-in-the-loop approaches. 

Although applying machine learning to tabular data is well documented, the papers 

reviewed here confirm that familiar clinical risk factors such as age, exercise-induced angina, 

blood pressure, and family history remain key determinants in supervised model predictions. 

This supports the clinical validity of the algorithms and shows that traditional medical 

knowledge is still essential in computational settings. 

Machine learning also adds value by quantifying the relative weight of variables in 

different populations, adapting to high-dimensional clinical contexts, and offering scalable 

solutions that speed diagnosis, reduce expert workload, and optimize hospital resources. 

However, comparing models in isolated studies does not yield generalizable 

conclusions. Superior performance in one data set does not guarantee replication elsewhere 

because databases vary in record counts, geographic origin, variable sets, and even use of 

synthetic or poorly documented data. Data quality and representativeness therefore remain 

central to safe clinical use. 

Models that use AutoML and ensemble techniques, such as the one tested by Wang 

[7], achieved the best metrics with accuracy 91.67% and AUROC 0.9562, but they lacked 

external validation, raising legitimate concerns about overfitting and real-world applicability. 

By contrast, the human-in-the-loop model by Samaras [9] showed that including 

medical experience directly in the computation can raise confidence and acceptance. Adding 

the specialist’s opinion as a predictor increased accuracy to 83% and sensitivity to 90.3%, 

suggesting that hybrid strategies may ease effective adoption. 
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The use of interpretability tools such as SHAP points to growing awareness of 

transparency; local explanations improved clinical acceptance in the HITL study [9]. 

Comparisons with other cardiovascular areas show a similar trend. A review by Esteva 

highlighted comparable benefits in heart failure and atrial fibrillation [11]; replacing part of 

diagnostic angiography makes the gain in CAD particularly notable. 

Machine learning, combined with computing power, can also exploit behavioral 

variables that were not used or even mentioned in the studies included here, thanks to the 

ability to identify nonlinear relations in data sets. 

 

6.2 CLINICAL IMPLICATIONS 

Integrated into electronic health records, high-performance predictive models can 

issue real-time risk alerts, allowing intensified statin use or lifestyle advice before clinical 

manifestation. Expensive resources such as angiography can be allocated more rationally, 

focusing on those at greater risk. These benefits depend on local calibration because a poorly 

calibrated model can trigger overtreatment or leave high-risk cases without investigation [14]. 

 

6.3 TECHNICAL CHALLENGES 

Data quality and quantity remain the main obstacle. Many studies use small public sets 

with fewer than one thousand patients; limited samples cause unstable estimates and 

overfitting risk [22]. Even in larger cohorts fewer than one third of models undergo multicenter 

external validation, leading to optimistic performance that does not hold in real life [22]. 

AutoGluon illustrates the dilemma: despite AUROC 0.9562 in source data, performance can 

drop sharply in other domains [7]. 

Complex models are still viewed as black boxes. SHAP eases that perception, but 

local interpretation does not always translate into full clinical understanding, so active 

specialist involvement is still required for clinical validation and adjustment [23]. 

Using machine learning on well-known data sets is important for validation, since prior 

experience with that data supports applicability. 

 

6.4 REGULATORY CHALLENGES 

World Health Organization guidelines for AI in health stress the need for 

anonymization, traceability, and data governance throughout the model life cycle [24]. 
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Algorithmic bias also matters because demographic imbalance in training sets can cause 

systematic errors against minorities [23]. 

Mitigation protocols such as stratified resampling, post-training calibration, or threshold 

adjustment are still rare. Convergence with the European AI Act, which demands 

transparency and risk assessment for high-impact systems, is likely to accelerate adoption of 

standardized performance and equity reporting [25]. 

Overcoming limited sample scope, reducing overfitting, making models more 

transparent, and adopting strong ethical safeguards are essential steps to move machine 

learning solutions from the lab to everyday preventive cardiology practice. 

 

6.5 FUTURE PERSPECTIVES 

Recent advances in machine learning signal a new phase in CAD prevention and 

management. On the technology side, deep learning models are evolving, letting researchers 

mine high-dimensional relationships in electronic health records and, when combined with 

large multicenter data sets, already reaching AUROC above 0.90 for inflammatory 

biomarkers and cytokine panels that traditional algorithms struggle to model [26]. 

Federated learning, where multiple centers train a model collaboratively without 

sharing raw data, is emerging as a key strategy for cross-institutional knowledge sharing 

while preserving privacy. The Federated Learning Benchmark for Cardiovascular Disease 

Detection and studies in coronary computed tomography with more than eight thousand 

exams show it is feasible to train robust models without transferring sensitive data [27]. 

Edge deployments with sensors and wearables complement this picture by enabling 

continuous local inference, as illustrated by federated learning for coronary disease prognosis 

on IoT devices [29]. 

Clinically, AutoML platforms, explanatory dashboards that use SHAP, and human-in-

the-loop interfaces are converging, making adoption easier for physicians who are not data 

science experts. Solutions that embed online validation and interpretability reports already 

cut triage time by up to 30% without sensitivity loss while meeting transparency requirements 

in the European AI Act [25]. This trend suggests the rise of user-friendly systems within 

electronic records that generate real-time risk alerts and log decision rationale directly in the 

clinical note. 

In research and development, the tendency is to extend machine learning to 

prevention and monitoring. Dynamic models that include time series in blood pressure, sleep 
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patterns, and physical activity will allow continuous recalibration of individual CAD risk, 

supporting personalized behavioral interventions before disease onset. Parallel studies will 

need to measure clinical impact and cost effectiveness, closing the translational loop from 

laboratory to daily practice [29]. 

 

7 CONCLUSION 

The findings of this review show that machine learning models trained solely with 

structured clinical data, that is, demographic, laboratory, and behavioral variables already 

stored in the electronic health record, achieve high discriminative power (AUROC about 0.88 

to 0.96). They outperform both traditional linear risk scores and optimized logistic regressions. 

Ensembles that use tree techniques such as Random Forest and Gradient Boosting, along 

with stacked systems like AutoGluon, provide noninvasive screening, personalized risk 

stratification, and practical integration into clinical workflows through SHAP-based 

explanatory panels, which reduces dependence on costly invasive tests. 

Even so, routine clinical deployment still demands external validation, continuous 

calibration, bias analysis, and full compliance with privacy policies. Advances in federated 

learning, multimodal models, and interpretable AutoML platforms point toward a future in 

which CAD risk stratification is written into cardiovascular guidelines. Consolidating that 

future will require prospective studies that prove real-world impact on outcomes and cost 

effectiveness, ensuring that predictive accuracy is converted into better care and lower 

coronary mortality. 
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