ﬁ

Revista

ARACE

ISSN: 2358-2472

MACHINE LEARNING IN CORONARY ARTERY DISEASE DETECTION: A
TECHNICAL-SCIENTIFIC REVIEW

APRENDIZADO DE MAQUINA NA DETECC_‘,,AO DE DOENCA ARTERIAL
CORONARIANA: UMA REVISAO TECNICO-CIENTIFICA

APRENDIZAJE AUTOMATICO EN LA pETECCION DE ENFERMEDADES
CORONARIAS: UNA REVISION TECNICO-CIENTIFICA

d https://doi.org/10.56238/arev7n10-039
Submission date: 09/03/2025 Publication Date: 10/03/2025
Helio de Araujo Ribeiro?!, Fabiano Bezerra Menegidio?, Robson Rodrigues da Silva®

ABSTRACT

Cardiovascular diseases remain the leading cause of death worldwide, making advances in
prevention essential. This review summarizes recent work on machine learning (ML) applied
to structured clinical data for detecting or predicting coronary artery disease (CAD). This
narrative review was conducted under the PRISMA 2020 framework. Searches in PubMed,
IEEE Xplore, and SciELO (Jan 2020 to Apr 2025) yielded 3,780 records. After screening and
full-text appraisal, 10 papers were included: seven primary studies and three reviews. Sample
sizes ranged from 303 to 70,000 individuals. Tree based algorithms and ensembles posted
the best scores, with accuracy between 0.82 and 0.99 and AUROC from 0.86 to 0.96.
Explainability with SHAP was applied in four studies, and one paired SHAP with LIME. One
paper added a cardiologist’s input to the decision loop, raising accuracy from 0.7829 to
0.8302. Only one article evaluated their models on external datasets and noted performance
drops. Calibration was rarely addressed. Just one investigation reported a Brier score of 0.14
and a slope of 0.93. ML models trained solely on routinely collected demographic, laboratory,
and clinical variables show strong classification ability for CAD, supporting use as a non-
invasive screening aid and decision support. Prospective trials, external validation, and
detailed calibration reports are required before clinical adoption.

Keywords: Machine Learning. Coronary Artery Disease. Atherosclerosis.

RESUMO

As doencas cardiovasculares continuam sendo a principal causa de morte em todo o mundo,
tornando os avangos na prevengao essenciais. Esta revisdo resume o trabalho recente sobre
aprendizado de maquina (ML) aplicado a dados clinicos estruturados para detectar ou prever
doencga arterial coronariana (DAC). Esta revisdo narrativa foi conduzida sob a estrutura
PRISMA 2020. Buscas no PubMed, IEEE Xplore e SciELO (janeiro de 2020 a abril de 2025)
renderam 3.780 registros. Apds triagem e avaliagdo do texto completo, 10 artigos foram
incluidos: sete estudos primarios e trés revisdes. Os tamanhos das amostras variaram de
303 a 70.000 individuos. Algoritmos e conjuntos baseados em arvore apresentaram as
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melhores pontuagdes, com precisao entre 0,82 e 0,99 e AUROC de 0,86 a 0,96. A
explicabilidade com SHAP foi aplicada em quatro estudos, e um emparelhou SHAP com
LIME. Um artigo adicionou a contribuicdo de um cardiologista ao ciclo de deciséo,
aumentando a precisdo de 0,7829 para 0,8302. Apenas um artigo avaliou seus modelos em
conjuntos de dados externos e observou quedas de desempenho. A calibragdo raramente
foi abordada. Apenas uma investigacédo relatou uma pontuagédo de Brier de 0,14 e uma
inclinagao de 0,93. Modelos de ML treinados exclusivamente com variaveis demograficas,
laboratoriais e clinicas coletadas rotineiramente demonstram forte capacidade de
classificagao para DAC, apoiando seu uso como auxiliar de triagem nao invasiva e suporte
a decisao. Ensaios prospectivos, validacido externa e relatérios detalhados de calibragao séo
necessarios antes da adocao clinica.

Palavras-chave: Aprendizado de Maquina. Doenga Arterial Coronariana. Aterosclerose.

RESUMEN

Las enfermedades cardiovasculares siguen siendo la principal causa de muerte en todo el
mundo, lo que hace que los avances en la prevencidn sean esenciales. Esta revision resume
el trabajo reciente sobre aprendizaje automatico (ML) aplicado a datos clinicos estructurados
para detectar o predecir la enfermedad de la arteria coronaria (EAC). Esta revision narrativa
se realiz6 bajo el marco PRISMA 2020. Las busquedas en PubMed, IEEE Xplore y SciELO
(enero de 2020 a abril de 2025) arrojaron 3780 registros. Después de la seleccién y la
evaluacion del texto completo, se incluyeron 10 articulos: siete estudios primarios y tres
revisiones. Los tamafos de muestra variaron de 303 a 70 000 individuos. Los algoritmos y
conjuntos basados en arboles registraron las mejores puntuaciones, con una precision de
entre 0,82y 0,99 y un AUROC de 0,86 a 0,96. La explicabilidad con SHAP se aplicé en cuatro
estudios, y uno emparejo SHAP con LIME. Un articulo anadié la aportacion de un cardiélogo
al ciclo de decision, lo que aumenté la precision de 0,7829 a 0,8302. Solo un articulo evalué
sus modelos con conjuntos de datos externos y observé descensos en el rendimiento. La
calibracion se abordo en raras ocasiones. Tan solo una investigacion informé una puntuacion
Brier de 0,14 y una pendiente de 0,93. Los modelos de aprendizaje automatico (ML)
entrenados uUnicamente con variables demograficas, de laboratorio y clinicas recopiladas
rutinariamente muestran una sélida capacidad de clasificacién para la enfermedad coronaria
(CAD), lo que respalda su uso como herramienta de cribado no invasiva y de apoyo a la
toma de decisiones. Se requieren ensayos prospectivos, validacion externa e informes de
calibracion detallados antes de su adopcidn clinica.

Palabras clave: Aprendizaje Automatico. Enfermedad Coronaria. Aterosclerosis.
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1 INTRODUCTION

Cardiovascular diseases remain the leading cause of death worldwide, accounting for
approximately 17.9 million deaths each year, according to the World Health Organization
(WHO) [1]. Coronary artery disease (CAD) alone caused 8.9 million deaths, about 16% of all
global deaths in 2019 [1]. CAD involves the progressive buildup of atherosclerotic plaques in
the coronary arteries, reducing myocardial blood flow and culminating in angina, acute
myocardial infarction, and sudden death. According to Liu [2], although multiple genetic
factors contribute to its pathophysiology, the disease is largely influenced by modifiable
variables such as hypercholesterolemia, hypertension, diabetes, smoking, dietary habits, and
physical inactivity. Early interventions targeting lifestyle and metabolic risk can delay or even
prevent atherosclerotic progression, underscoring the need for sensitive diagnostic methods
before clinical manifestations appear.

Initial risk assessment typically uses linear models developed in large cohorts, that is,
groups of individuals monitored because they share a common characteristic, such as the
Framingham Risk Score (FRS) derived from the Framingham Heart Study in Framingham,
Massachusetts, United States of America (USA). This score estimates the ten-year
probability of coronary events based on age, sex, blood pressure, lipid profile, smoking, and
diabetes [3]. The Pooled Cohort Equations (PCE), published by the American College of
Cardiology/American Heart Association (ACC/AHA), calculate the risk of atherosclerotic
cardiovascular disease (ASCVD) in U.S. populations, incorporating ethnicity, statin therapy
aimed at lowering LDL-cholesterol levels, and systolic blood pressure [4]. Although useful in
specific settings, these scores may overestimate or underestimate risk in multiethnic
populations and fail to capture non-linear interactions among variables, as demonstrated by
Kakadiaris [5]. Moreover, confirmatory invasive exams (for example, coronary angiography)
involve high costs, iodinated contrast exposure, and radiation exposure [6]. This scenario
drives the search for computational solutions capable of integrating demographic, laboratory,
and behavioral variables routinely available in electronic health records, generating more
accurate and personalized predictions.

Machine learning (ML) has emerged as a promising technology for this purpose, using
algorithms to learn complex relationships from data and then produce predictive models. ML
model performance is assessed with metrics that capture different aspects of predictive
ability, such as accuracy and the area under the receiver operating characteristic curve

(AUROC). One of the most recent advances is Automated Machine Learning (AutoML), which
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automates model selection, tuning, and validation. According to Wang, the open-source
ensemble AutoML framework AutoGluon ran dozens of models, selected the best ones, and
combined them to reach high accuracy with an AUROC of 0.95, considered excellent,
whereas optimized logistic regression was limited to 0.88 [7]. This example illustrates the
advantage of ensemble algorithms over traditional linear techniques. Ensemble algorithms
that do not use images already exceed 90% accuracy [8].

Despite their high performance, the clinical adoption of ML demands transparency.
Explanation techniques such as SHapley Additive exPlanations (SHAP) break down the
model prediction into the contribution of each variable, enabling specialists to understand
why, for example, age, LDL cholesterol, systolic blood pressure, or other factors influence an
individual's risk. Samaras showed that SHAP plots, within a human-in-the-loop (HITL)
approach, increased system acceptability and reinforced diagnostic confidence [9].

However, the literature remains heterogeneous regarding populations, metrics, and
external validation, hindering the incorporation of these models into international clinical
guidelines. A technical-scientific analysis that critically synthesizes recent literature, focused
exclusively on structured data (clinical, demographic, and behavioral) and excluding image
or electrophysiological signal-based approaches, is therefore indispensabile.

Accordingly, this systematic review aims to:

(i) map and evaluate the state of the art in ML applications to structured clinical data for

CAD detection and prediction;

(ii)compare the accuracy and robustness of different algorithms;
(iii) discuss interpretability and implementation aspects;

(iv) identify gaps to guide future research and clinical practice.

2 FUNDAMENTALS OF MACHINE LEARNING

Cardiovascular a ML is a branch of artificial intelligence (Al) that develops algorithms
capable of inferring mapping functions from data and generalizing this knowledge to unseen
observations [10]. Unlike linear statistical techniques, ML models do not impose a predefined
functional form on relationships among variables, which allows them to capture nonlinear
dependencies and high order interactions, features often present in clinical records of
patients with CAD. This section describes the most relevant paradigms, metrics, algorithms,
and interpretability techniques for medical applications, providing the conceptual basis for the

critical analysis of the included studies.
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2.1 PARADIGMS

Three ML paradigms are relevant:

2.1.1 Supervised Learning

Under the supervised learning paradigm, the algorithm receives pairs (X, y), where X
is the attribute vector (age, LDL, systolic pressure, and so on) and y is the label (CAD present
or absent). The goal is to learn a function that minimizes prediction error. Most studies on

CAD detection use this paradigm because the diagnosis is known in the training set [11].

2.1.2 Unsupervised Learning

Without labelled outcomes, unsupervised methods aim to discover structure without
labels using clustering (for example, clinical subphenotypes) and dimensionality reduction for
variable selection or visualization. Although less common, clustering methods help uncover
hidden risk profiles [12].

2.1.3 Reinforcement Learning
Through reinforcement, an adaptive agent learns action policies by maximizing
rewards. In clinical cardiology it is still incipient, but there are proposals to optimize

therapeutic regimens in real time [13].

2.2 EVALUATION METRICS

Choosing the metric that quantifies ML model performance is decisive for interpreting
results in a clinically relevant way. In binary classification problems, such as distinguishing
patients with and without CAD, it is usual to distinguish threshold dependent metrics, which
are calculated at a predetermined cutoff, from threshold independent metrics, which evaluate

the entire spectrum of decision points [14].

2.2.1 Threshold dependent metrics

To discuss each indicator, it is essential to present some concepts:
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2.2.1.1 Confusion Matrix

The confusion matrix summarizes correct and incorrect classifier outcomes. Each
observation is classified according to two dimensions: the patient’s true condition and the
model’s prediction. Crossing these two pieces of information yields four possible situations,

shown in Table 1.

Table 1

Confusion Matrix

Comparison between a patient status and a ML model prediction.

Prediction Positive Negative

Positive (Sick) True Positive (TP)  False Negative (FN)

Negative (Healthy) False Positive (FP)  True Negative (TN)

TP = True Positive; TN = True Negative; FP = False Positive; FN = False Negative. Green cells
represent correct predictions (i.e., values that start with "True"), while orange cells represent
misclassifications (i.e., values that start with "False").

A true positive (TP) occurs when the algorithm classifies a patient as having CAD and
reference tests confirm the disease; this is the correct outcome one aims to maximize
because it leads to timely diagnosis and treatment.

A false positive (FP) arises when the model indicates CAD in a patient who is in fact
healthy; this “false alarm” is a type | error, with implications that include patient anxiety and
unnecessary invasive procedures.

A false negative (FN) happens when the system rules out CAD in someone who is
actually diseased. This type Il error is clinically the most dangerous because it delays
essential interventions and increases the risk of future coronary events.

A true negative (TN) represents a case in which the algorithm correctly recognizes the
absence of CAD in a healthy patient, avoiding superfluous tests or treatments.

In short, TP and TN are correctly predicted values, whereas FP and FN are errors.

These four values form the basis for calculating metrics such as accuracy, sensitivity,
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specificity, precision, and F1-score, allowing different kinds of success and error to be

weighed according to the clinical needs of the study.

2.2.1.2 Accuracy
Accuracy expresses the overall proportion of correct predictions and is given in

Equation 1.

TP+TN (1)

Accuracy = ———
Y = IPITN+FP+FN

When classes are balanced this metric summarizes overall performance well.
However, in CAD screening scenarios, where the prevalence of diseased patients is usually
low, accuracy can be misleading: a model that labeled everyone healthy would achieve high
accuracy while failing to detect the cases of interest. Therefore, it should always be
accompanied by metrics that separately describe performance on the positive and negative

classes.

2.2.1.3 Sensitivity (Recall)
Recall quantifies the model’s ability to capture patients who actually have CAD, as

defined in Equation 2.

Recall = L (2)
TP+FN

High values indicate few false negatives (FN), which is desirable when missing a
diseased patient (for example, progressing to infarction) is clinically severe. Screening
protocols often favor cutoffs that maximize recall, even if this lowers specificity, assuming

confirmatory exams will handle the false alarms.

2.2.1.4 Specificity
Specificity reflects the ability to correctly recognize individuals without the disease,
calculated in Equation 3.

Recall = L (3)
TP+FN
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Higher specificity means fewer false positives (FP), important when invasive or costly
investigations, such as catheterization, are triggered by a positive result. A balance between

sensitivity and specificity is essential to avoid overloading the health-care system.

2.2.1.5 Precision
Precision, the proportion of true positives among all positive predictions, complements

sensitivity when the cost of a false positive is significant, as shown in Equation 4.

Precision = ——— 4)
TP+FP
In practice it gives the probability that a patient truly has CAD after the algorithm flags
risk. This metric is strongly prevalence-dependent: in low-incidence populations precision

tends to drop even with high sensitivity and specificity.

2.2.1.6 F1-Score
The F1-score combines sensitivity and precision through their harmonic mean,

penalizing imbalances between the two. It is calculated in Equation 5.

Precision = TPTIFP (5)

It ranges from 0 to 1 and is particularly useful when a single compromise that considers
both false positives and false negatives is desired, a common situation with imbalanced data
sets. Cutoffs that maximize F1 usually offer a balanced operating point for CAD detection
models, that is, choosing the threshold that yields the highest F1 generally places the model
in a healthy middle ground: it neither misses many patients with CAD nor raises excessive

suspicions in healthy individuals.

2.2.2 Threshold independent metrics

Threshold-independent metrics evaluate a classifier's performance over all possible
cutoffs at once (0 < threshold < 1), avoiding the arbitrary choice of a single cutoff.

They are especially useful when the clinical threshold of use has not yet been defined,
when models trained on different data sets must be compared, or when the data set is

imbalanced, a frequent situation in CAD screening where most individuals are healthy.
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The two most used approaches are the ROC curve (and its area, AUROC) and the

Precision—Recall curve (and its area, AUPRC).

2.2.2.1 ROC Curve and AUROC

The Receiver Operating Characteristic (ROC) curve shows classifier behavior at
different thresholds. Most ML-based classifiers output the probability that the event is true or
false, in this study the probability that the patient has or does not have CAD. If the detection
threshold is very high, few cases will be labeled positive. If it is very low, most cases will be
labeled positive. To understand thresholds, we calculate the true positive rate (TPR) and the

false positive rate (FPR) with Equations 6 and 7.

_TP(Y)

TPR(t) = TP(t)+FN(t) (6)
_ ___FP()

FPR(t) = FP(t)+TN(t) (7)

The area under the ROC curve is called Area Under Receiver Operating Characteristic
(AUROC), represented by the integral in Equation 8, which expresses the probability that the
model assigns a higher score to a diseased patient than to a randomly chosen healthy one.
Values below 0.70 indicate poor discrimination, between 0.80 and 0.90 denote very good

performance, and above 0.90 indicate excellence [14].
AUROC = [ TPR(w) d[FPR(w)] (8)

If the positive class is < 5%, as is typical in CAD data sets, AUROC can look excellent
yet fail to reflect reality.

Figure 1 shows the visual representation of the ROC curve and AUROC.

2.2.2.2 Precision-Recall curve and AUPRC

When most patients are healthy and only a few have CAD, metrics such as the
Precision—Recall Curve (PRC) and Area Under Precision—Recall Curve (AUPRC) capture
small performance changes better than AUROC because they give more weight to the
minority of diseased patients [14]. Equations 9, 10, and 11 represent the AUPRC metrics.
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Precision(t) = #ﬂ?}m (9)
Recall(t) = TPR(t) (10)
AUPRC = [ Precision(r) dr (11)
Figure 1

AUC Curve and AUROC

The blue line depicts classifier performance.
ROC

Perfect
* classifier

AUROC

True Positive Rate (Sensitivity)

False Positive Rate (Specificitv)

Source: Author.

Figure 2 shows how to plot the AUPRC.

2.2.3 Calibration

Besides discrimination, strong predictive algorithms must be properly calibrated,
meaning the probabilities generated by the model must match the observed outcome
frequencies. Calibration can be examined visually with calibration plots or quantitatively with
the Brier Score, which computes the mean squared error between predicted probabilities and

actual results [14]. Equation 12 shows how to calculate the Brier Score.

BS = : thv=1(ft - Ot)z (12)

TN
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Figure 2
PR Curve and AUPRC

The blue line depicts classifier performance.

Precision

Source: Author.

Simply put, the closer to zero, the better the Brier Score. If the predicted and actual
outcomes are both true (1), the score is zero, the best possible result. If the predicted outcome
is true (1) and the actual outcome is false (0), the score is one, the worst possible result.

In clinical contexts a well-calibrated model allows a calculated risk to be used directly

for therapeutic decisions or patient stratification into low, intermediate, or high-risk
categories, something that discrimination metrics alone do not guarantee. Despite high AUC
values, only Saeedbakhsh reported Brier = 0.14 and slope = 0.93 [15], suggesting good
calibration; the other articles ignore this aspect.

In summary, no single indicator fully describes classifier quality. For CAD applications
the recommended practice is to report at least AUROC or AUPRC to frame overall
discriminative ability, sensitivity and specificity or F1-score to show practical usefulness at a

chosen threshold, and calibration metrics to ensure probabilities are clinically reliable.
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2.3 NOTABLE ALGORITHMS FOR CAD DETECTION
The studies included in this systematic review focus on five major families of
supervised algorithms, each with specific mathematical foundations and performance

profiles.

2.3.1 Decision Trees

The first group is based on decision trees. Among these methods, Random Forest
applies the bagging strategy: many trees are trained on data subsets, and their predictions
are aggregated by voting. By sampling both examples and attributes, Random Forest
reduces the variability seen with a single tree. In heterogeneous clinical sets, Random
Forests have reported AUROC values between 0.88 and 0.92 when classifying CAD [8].

Figure 3 below presents a Random Forest.

Figure 3

Random Forest Algorithm

Schematic representation of a single decision tree.

v v v

v v

Source: Author.

A refinement of the decision tree is Gradient Boosting, whose essence is to build

models sequentially that correct the residuals of previous ones. Modern implementations
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such as XGBoost, an open framework for Gradient Boosting, optimize the loss function and
integrate regularization, missing value handling, and parallelization. On combined public data
sets these boosters achieved AUROC higher than 0.95 when orchestrated by AutoML
platforms [7].

2.3.2 Support Vector Machines (SVM)

The second family comprises margin-maximizing algorithms, especially the Support
Vector Machine. SVM is a classifier based on a geometric idea. Imagine each patient
represented as a point in a space whose dimensions correspond to clinical variables such as
age, cholesterol, blood pressure. SVM searches for the plane that best separates the sick

points from the healthy ones. Figure 4 below shows the SVM algorithm.

Figure 4

Support Vector Machines (SVM) Algorithm

Conceptual illustration of a linear SVM classifier. The central red dashed line is the optimal separating
hyperplane. Parallel dashed lines indicate the margins, which are maximised to give the widest possible

gap between classes. Points that lie on the margin are the support vectors. Highlighted and labelled
accordingly.

Optimal Hyperplane

/
Support vector ’

Source: Author.
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When the two classes cannot be separated by a straight line, a common situation in
biomedical data, SVM uses a kernel function. The kernel projects points to a higher-
dimension space where separation becomes possible with a plane. A radial (RBF) kernel, for
example, acts as if placing a lens over the data, curving the space so that the groups move
apart. In clinical samples analyzed in this review, with 11 thousand patients, SVM showed
accuracy around 89% and specificity close to 98% for CAD detection [15]. The computational
cost, however, grows quadratically with the number of observations, limiting its use in very

large data sets.

2.3.3 Artificial Neural Networks (ANNSs)

Artificial Neural Networks are nonlinear layered models able to represent highly
complex functions. Conceptually three types of layers are distinguished: input, hidden, and
output.

The input layer receives the data, in this case the clinical vectors related to CAD, such
as cholesterol, age, family history, blood pressure.

The hidden layers extract and combine patterns. The first hidden layer might learn that
high cholesterol increases CAD chances and assign a weight to that variable. The next layer
combines patterns, for example high cholesterol together with age increases CAD chances.
As more layers are added, the network can reach richer concepts, producing risk profiles
derived from the input variables.

The output layer delivers the result, classifying whether the patient has CAD or

estimating the probability of developing it.
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Figure 5
Feed-forward Artificial Neural Network (ANN) Algorithm

Blue circles represent the input layer, green circles form two hidden layers (four neurons each), and
the orange circle is the single output neuron. Gray arrows indicate the weighted connections between
successive layers.

Input layer Hidden layer Output layer

Source: Author.

Even in shallow configurations of two or three fully connected layers, ANNs outperform
linear regressions on tabular clinical data, reaching AUROC 0.86 and accuracy 88% in
hospital cohorts [16]. Figure 5 below illustrates an ANN.

They require comparatively large samples to avoid overfitting and, in standard form,
offer limited interpretability.

2.3.4 Neighborhood-Based Algorithms

In contrast, neighborhood algorithms represented by k-Nearest Neighbors classify a
patient by the vote of the k records closest in attribute space. Similarity between the new
case and each stored record is measured with a distance metric, and the new case receives

the most frequent class among the k neighbors.
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Figure 6

k-nearest-neighbors (k-NN) classification process

Initial Data Calculate Distance
t N e Class A t Class A
O classity
* > Class B * Y Class B
Bl ok ox X P o* x x
> >
X k. AA X A AA
A A A N
A A A A A
X-Axis > X-Axis >

Finding Neighbors & Voting for Labels
1 Class A

Y-Axis
*
»*
N
/

Source: Author.

Figure 6 depicts k-NN behavior, showing how the nearest points are used to classify
a new point.

Simple to implement, k-NN often serves as a baseline; however, it suffers performance
loss in high dimensions and requires costly calculations at inference time, which is why it

seldom leads performance rankings [17].

2.3.5 Ensemble (Model Stacking)
The ensemble concept combines predictions from multiple models to mitigate
individual biases and reduce overall variance. This principle underlies both Random Forest

(voting) and Gradient Boosting (sequential weighted combination).
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Figure 7 illustrates stacking: neural networks are trained on three independent
bootstrap samples, and their outputs serve as input for a meta-classifier that delivers the final
prediction. Although the diagram uses ANNs, any algorithm such as a tree or SVM can take

the role of base learner or meta-learner.

Figure 7
Stacking ensemble workflow

The original data set (green) is resampled into multiple bootstrap subsets (red), each used to train an
independent base classifier (blue neural networks). The base-model outputs are then fed to a meta-
classifier (orange neural network), which aggregates them to generate the final prediction (green).

Classifier-1

Bootstrap Data-1
Meta-Classifier

Bootstrap Data-2

Bootstrap Data-3

Source: Author.

At the frontier, AutoML systems such as AutoGluon Tabular automate algorithm
selection, hyper-parameter search, and stacked ensemble construction, providing the
researcher with an optimized solution according to predefined metrics. Wang showed that
AutoGluon produced a stacked ensemble built from Gradient Boosting, neural networks, and
SVM, able to reach AUROC 0.9562 and accuracy above 91%, surpassing logistic regressions
using the same variables [7].

In summary, tree-based algorithms, particularly Random Forest and Gradient
Boosting, have become the backbone of high-performance tabular models in cardiology,
while SVM and ANNs offer competitive alternatives in specific niches. The final choice must

balance discriminative ability, interpretability, computational cost, and ease of integration with
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clinical workflows, always checking calibration and external validation to ensure practical

relevance.

2.4 Cardiology Relevance

Adopting ML algorithms in cardiology, especially for detecting CAD and classifying
patient risk, has four decisive impacts.

First, tabular data models enable early noninvasive screening. Omkari showed that
processing routine clinical and laboratory variables with an ensemble doubled the sensitivity
obtained by linear scores, reaching AUROC above 0.90 without angiography or computed
tomography [8]. Performance like this brings diagnosis forward and reduces both hospital
costs and patient exposure to iodinated contrast and radiation.

Second, these techniques offer personalized risk stratification. Using explanation
methods such as SHAP, it is possible to break down the individual score and understand
why, for example, a slight increase in a variable or a family history of CAD substantially
changes patient risk. This granularity, reported by Samaras, facilitates counseling on lifestyle
changes or adjusting therapy intensity, moving toward personalized medicine [9].

Third, the automation provided by AutoML raises operational efficiency. Wang showed
that AutoGluon trained, validated, and stacked dozens of models in a few hours, delivering a
high-performance classifier without extensive programming [7]. This reduces the technical
barrier for health centers with limited IT teams to develop or update predictive models.

Finally, regulatory compliance gains support when high predictive power and
transparency are combined. The ability to audit each decision through SHAP explanations,
together with automatic calibration reports, aligns these systems with the requirements of the
European trustworthy Al legislation, the Al Act. Thus, ML algorithms not only improve
diagnostic sensitivity but also integrate into a regulated ecosystem, promoting safe and
reproducible clinical adoption.

In short, by integrating demographic, laboratory, and behavioral variables into
interpretable algorithms, ML consolidates itself as a strategic resource to anticipate and
mitigate the global burden of coronary artery disease, signaling the maturity of predictive
models aimed at daily clinical use.
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3 MACHINE LEARNING APPLICATIONS IN CAD DETECTION

Taken together, ML applied to structured clinical data offers tangible benefits: early
noninvasive screening, personalized therapeutic management, and more rational use of
diagnostic resources. The studies selected for this review reveal four major application areas
of ML in CAD.

3.1 ANALYSIS OF STRUCTURED CLINICAL DATA

The most mature line of work involves models that use variables readily available from
routine visits and tests: age, sex, lipid profile, blood pressure, diabetes, smoking, and
emerging laboratory markers such as HbA1c. An ensemble based on Random Forest and
Gradient Boosting, trained on seventy thousand electronic health-record entries, achieved an
AUROC of 0.90 and a sensitivity of 85% using fourteen attributes [8]. AutoGluon raised the
AUROC to 0.9562 across five public data sets, rivaling invasive methods without requiring
imaging [7]. Similarly, a neural model called Random Vector Functional Link (RVFL) reached
81.6% accuracy with thirteen classic clinical variables from the Cleveland CAD database,
showing that even simplified architectures can perform competitively when paired with
interpretability techniques such as LIME and SHAP [18].

3.2 PROGNOSIS PREDICTION

Beyond diagnosis, ML is being used to anticipate future events. A gradient-boosting
model developed in the MESA study to predict 10-year ASCVD events achieved a Net
Reclassification Improvement (NRI) of = 0.30 (categorical) to 0.47 (continuous) compared
with the ACC/AHA Pooled-Cohort Equations, which would translate to hundreds of correctly
reclassified cases in a cohort of 10 000 individuals [5]. Another study demonstrated ML'’s
ability to forecast CAD-related complications: a Light Gradient Boosting Machine (LightGBM)
model achieved AUROC 0.82 in predicting atrial fibrillation among patients with sleep apnea

and CAD, paving the way for preventive arrhythmia interventions [2].

3.3 CLINICAL DECISION-SUPPORT SYSTEMS

For predictions to translate into medical action they must be integrated into the care
workflow. Incorporating SHAP values in a human-in-the-loop panel that displays the most
influential variables for CAD detection allowed cardiologists to see for each patient how age,

LDL cholesterol, or systolic pressure contributed to the final decision. This led to threshold
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adjustments and a 5% gain in overall accuracy without loss of sensitivity [9]. AutoML platforms
can export models directly into the electronic record, triggering real-time alerts when
individual risk crosses a preset level. In hospital flow simulations this feature cut stratification

decision time by twenty minutes.

3.4 MEDICAL IMAGE PROCESSING

Although this review focuses on tabular data, it is worth noting that deep learning
applied to coronary angiography and coronary CT (topics covered by studies outside our
scope) reaches AUROC values around 0.91 for stenosis = 50% [19]. These results suggest
that multimodal models that combine imaging with clinical variables are likely to represent the

next innovation phase.

4 TECHNICAL SCIENTIFIC REVIEW METHODOLOGY

This narrative technical scientific review was carried out in line with the PRISMA 2020
recommendations, ensuring transparency in every stage of study identification, selection,
extraction, and synthesis.

The search strategy was executed on 14 May 2025 in the PubMed and IEEE Xplore
databases using the query:

(“machine learning” OR “artificial intelligence” OR “deep learning”) AND (“coronary
artery disease” OR “atherosclerosis” OR “coronary heart disease”) AND (diagnos* OR detect*
OR classif* OR predict®)

Equivalent Portuguese terms were also run in SciELO to widen national coverage.
Results were exported in RIS format and imported into Zotero, where duplicates were
removed automatically. This process identified 3 780 records, of which 1 609 remained after
excluding articles that were not open access. Deduplication eliminated 3 more records,
leaving 1 606, and a further 4 retracted articles were excluded, yielding 1 602 records.
Database totals may differ slightly from live searches because records are continuously
updated.

To ensure readers and researchers could access all included studies without paywalls,
we limited to open-access literature.

Inclusion criteria:

(i) original human studies published from January 2020 to April 2025;
(ii)English or Portuguese language;
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(iii) application of machine learning algorithms to clinical or demographic data for

detection, classification, or prediction of coronary artery disease.

Exclusion criteria:

(i) imaging-only studies;

(ii) pediatric populations;

(i)  data sets lacking performance metrics or internal validation;

(iv)  articles not available in open access.

After applying the exclusion criteria, 21 full texts were reviewed in depth, and 10
studies met all requirements and form the final synthesis. Because of heterogeneity in
populations, variables, and algorithmic approaches, a narrative synthesis was adopted, and

no meta-analysis was performed.

5 RESULTS

Complete search strings and supplementary material will be placed in a public
repository to ensure reproducibility. The PRISMA diagram in Figure 8 shows the number of
articles at each stage, identification, screening, eligibility, and inclusion, and Table 2 contains

a description of the evaluated studies.

5.1 SYNTHESIS OF THE INCLUDED STUDIES

The ten included studies comprise seven original investigations that develop predictive
models and three reviews. All focus on tabular structured clinical data for detecting or
predicting coronary artery disease (CAD), in line with the inclusion criteria; there are no
imaging or waveform studies.

Three papers are recent reviews: a narrative review on ML in CAD [16], a meta-
analysis of models based on electronic health records [2], and a scoping review on Al models
in primary care [21]. The other seven studies are original research from several countries
(Brazil, Colombia, Iran, Greece, India, and the United States), reflecting the global nature of
the topic. Sample sizes range widely, from small cohorts of about 300 to 600 patients [9] [18]
to population-level data sets with tens of thousands of individuals [8] [20]. This heterogeneity

highlights different strategies: some groups worked with limited yet homogeneous data from
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a single hospital, whereas others merged large multicenter sets or synthetic data to boost

statistical power.

Figure 8

PRISMA Diagram. The preferred reporting items for this systematic review
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Source: Author.

In terms of predictive performance, ML models yielded robust results. Reported
accuracies span roughly 81% to 99%, and AUROCSs lie between 0.86 and 0.96. The lowest
figure is the RVFL model by Muhammad, with accuracy 0.82 [18]. At the upper end, the k-NN
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model by Silva reaches 98% [20], and the TLV ensemble by Omkari 2024 scores 99% on one

data set and 88% on another [8].

Table 2

Articles assessed in this systematic review
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AUROC values are typically above 0.88, peaking at 0.956 in the AutoGluon model
reported by Wang [7]. In every study the ML algorithms match or exceed traditional methods.
Omkari showed the ensemble consistently outperforming linear risk scores [8], and Jose
notes optimized logistic regression at AUROC 0.88 while tree-based and ensemble methods
climb higher [6]. Across the body of work AUROCs of 0.88 to 0.96 for CAD detection are
common [6] [7] [8] [18] [20], compared with external AUROCs around 0.75 to 0.80 for
established clinical scores such as Framingham or ACC / AHA [3] [4].

A recurring limitation is scarce external validation. Most authors report performance
only on internal test sets, often via cross-validation or random train / test splits. Omkari is the
lone study that applies a model trained on the UCI repository to Kaggle data, where accuracy
falls from 99% to 88%, underscoring real-world performance drops when the domain changes
[8]. Fewer than one-third of the models undergo external validation, mirroring the concern
raised by Provost, who cites limited validation and lack of clinical-impact studies as barriers

to routine adoption [21].
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Most original papers primarily compare algorithms by classic metrics such as accuracy,
AUROC, sensitivity, and specificity. Only one explores deeper human interaction: Samaras
adds a cardiologist’s opinion as an extra feature in a Random Forest, boosting accuracy to
83% and sensitivity to 90.3% [9]. No other study embeds a human in the decision loop,
leaving a gap in doctor-machine collaboration research.

About half the articles employ post-hoc interpretability. Samaras, Muhammad, Omkari,
and Wang use SHAP, and Muhammad also applies LIME [7] [8] [9] [18]. Jose evaluates
variable importance in logistic regression [6]. These tools reveal that classic risk factors such
as age, exercise-induced angina, blood pressure, and family history remain key drivers in
model predictions, supporting clinical credibility [6] [9]. Nevertheless, no study tests whether
these explanations change physician behavior, an avenue for future work. In summary, ML
algorithms applied to structured clinical data achieve high performance in detecting and
predicting CAD, generally surpassing linear baselines. Remaining challenges include
consistent external validation and deeper exploration of interpretability and human-machine

integration.

6 DISCUSSION

The ability to capture interaction effects and nonlinear relationships is essential in
CAD, a multifactorial disease that involves metabolic, inflammatory, and behavioral factors at
the same time.

This systematic review shows that machine learning models built solely on structured
clinical data, meaning demographic, hemodynamic, biochemical, and behavioral variables
routinely collected in primary or outpatient care, can reach discriminative power that matches
or even surpasses that of invasive tests or well-known linear scores for CAD [2].

Models trained on samples ranging from a few hundred to many tens of thousands of
patients report AUROC values between 0.88 and 0.96 [5] to [9], consistently outperforming
optimized logistic regression, which reaches about 0.88 [6], and the Framingham or ACC
AHA scores, whose external risk estimates often sit near 0.75 to 0.80 [3] [4].

The strength of these algorithms supports the role of machine learning as a first line
screening tool, reserving invasive procedures for a more focused group of high-risk patients.
Even so, the application of machine learning for CAD detection and prevention, although
promising, faces technical and ethical regulatory barriers that must be addressed before

large-scale clinical deployment.
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A scoping review by Provost adds that a shortage of external validation and clinical
impact studies still limits routine adoption of these cardiovascular risk models in primary and

outpatient care [21].

6.1 INTERPRETATION OF THE FINDINGS

In line with this study’s goals, namely, to map the state of the art of machine learning
in CAD detection and prediction, compare performance, discuss interpretability, and identify
gaps, the selected articles show varied approaches with a focus on evaluating predictive
performance in structured data sets.

Most papers compare machine learning algorithms in terms of accuracy, AUROC, and
sensitivity, exploring their use in automated clinical decision support. Only a small share
examines model explainability or the integration of medical expertise in the prediction
process, as in human-in-the-loop approaches.

Although applying machine learning to tabular data is well documented, the papers
reviewed here confirm that familiar clinical risk factors such as age, exercise-induced angina,
blood pressure, and family history remain key determinants in supervised model predictions.
This supports the clinical validity of the algorithms and shows that traditional medical
knowledge is still essential in computational settings.

Machine learning also adds value by quantifying the relative weight of variables in
different populations, adapting to high-dimensional clinical contexts, and offering scalable
solutions that speed diagnosis, reduce expert workload, and optimize hospital resources.

However, comparing models in isolated studies does not yield generalizable
conclusions. Superior performance in one data set does not guarantee replication elsewhere
because databases vary in record counts, geographic origin, variable sets, and even use of
synthetic or poorly documented data. Data quality and representativeness therefore remain
central to safe clinical use.

Models that use AutoML and ensemble techniques, such as the one tested by Wang
[7], achieved the best metrics with accuracy 91.67% and AUROC 0.9562, but they lacked
external validation, raising legitimate concerns about overfitting and real-world applicability.

By contrast, the human-in-the-loop model by Samaras [9] showed that including
medical experience directly in the computation can raise confidence and acceptance. Adding
the specialist’s opinion as a predictor increased accuracy to 83% and sensitivity to 90.3%,

suggesting that hybrid strategies may ease effective adoption.
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The use of interpretability tools such as SHAP points to growing awareness of
transparency; local explanations improved clinical acceptance in the HITL study [9].

Comparisons with other cardiovascular areas show a similar trend. Areview by Esteva
highlighted comparable benefits in heart failure and atrial fibrillation [11]; replacing part of
diagnostic angiography makes the gain in CAD particularly notable.

Machine learning, combined with computing power, can also exploit behavioral
variables that were not used or even mentioned in the studies included here, thanks to the

ability to identify nonlinear relations in data sets.

6.2 CLINICAL IMPLICATIONS

Integrated into electronic health records, high-performance predictive models can
issue real-time risk alerts, allowing intensified statin use or lifestyle advice before clinical
manifestation. Expensive resources such as angiography can be allocated more rationally,
focusing on those at greater risk. These benefits depend on local calibration because a poorly

calibrated model can trigger overtreatment or leave high-risk cases without investigation [14].

6.3 TECHNICAL CHALLENGES

Data quality and quantity remain the main obstacle. Many studies use small public sets
with fewer than one thousand patients; limited samples cause unstable estimates and
overfitting risk [22]. Even in larger cohorts fewer than one third of models undergo multicenter
external validation, leading to optimistic performance that does not hold in real life [22].
AutoGluon illustrates the dilemma: despite AUROC 0.9562 in source data, performance can
drop sharply in other domains [7].

Complex models are still viewed as black boxes. SHAP eases that perception, but
local interpretation does not always translate into full clinical understanding, so active
specialist involvement is still required for clinical validation and adjustment [23].

Using machine learning on well-known data sets is important for validation, since prior

experience with that data supports applicability.

6.4 REGULATORY CHALLENGES
World Health Organization guidelines for Al in health stress the need for

anonymization, traceability, and data governance throughout the model life cycle [24].
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Algorithmic bias also matters because demographic imbalance in training sets can cause
systematic errors against minorities [23].

Mitigation protocols such as stratified resampling, post-training calibration, or threshold
adjustment are still rare. Convergence with the European Al Act, which demands
transparency and risk assessment for high-impact systems, is likely to accelerate adoption of
standardized performance and equity reporting [25].

Overcoming limited sample scope, reducing overfitting, making models more
transparent, and adopting strong ethical safeguards are essential steps to move machine

learning solutions from the lab to everyday preventive cardiology practice.

6.5 FUTURE PERSPECTIVES

Recent advances in machine learning signal a new phase in CAD prevention and
management. On the technology side, deep learning models are evolving, letting researchers
mine high-dimensional relationships in electronic health records and, when combined with
large multicenter data sets, already reaching AUROC above 0.90 for inflammatory
biomarkers and cytokine panels that traditional algorithms struggle to model [26].

Federated learning, where multiple centers train a model collaboratively without
sharing raw data, is emerging as a key strategy for cross-institutional knowledge sharing
while preserving privacy. The Federated Learning Benchmark for Cardiovascular Disease
Detection and studies in coronary computed tomography with more than eight thousand
exams show it is feasible to train robust models without transferring sensitive data [27].

Edge deployments with sensors and wearables complement this picture by enabling
continuous local inference, as illustrated by federated learning for coronary disease prognosis
on loT devices [29].

Clinically, AutoML platforms, explanatory dashboards that use SHAP, and human-in-
the-loop interfaces are converging, making adoption easier for physicians who are not data
science experts. Solutions that embed online validation and interpretability reports already
cut triage time by up to 30% without sensitivity loss while meeting transparency requirements
in the European Al Act [25]. This trend suggests the rise of user-friendly systems within
electronic records that generate real-time risk alerts and log decision rationale directly in the
clinical note.

In research and development, the tendency is to extend machine learning to

prevention and monitoring. Dynamic models that include time series in blood pressure, sleep
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patterns, and physical activity will allow continuous recalibration of individual CAD risk,
supporting personalized behavioral interventions before disease onset. Parallel studies will
need to measure clinical impact and cost effectiveness, closing the translational loop from

laboratory to daily practice [29].

7 CONCLUSION

The findings of this review show that machine learning models trained solely with
structured clinical data, that is, demographic, laboratory, and behavioral variables already
stored in the electronic health record, achieve high discriminative power (AUROC about 0.88
to 0.96). They outperform both traditional linear risk scores and optimized logistic regressions.
Ensembles that use tree techniques such as Random Forest and Gradient Boosting, along
with stacked systems like AutoGluon, provide noninvasive screening, personalized risk
stratification, and practical integration into clinical workflows through SHAP-based
explanatory panels, which reduces dependence on costly invasive tests.

Even so, routine clinical deployment still demands external validation, continuous
calibration, bias analysis, and full compliance with privacy policies. Advances in federated
learning, multimodal models, and interpretable AutoML platforms point toward a future in
which CAD risk stratification is written into cardiovascular guidelines. Consolidating that
future will require prospective studies that prove real-world impact on outcomes and cost
effectiveness, ensuring that predictive accuracy is converted into better care and lower
coronary mortality.

ACKNOWLEDGEMENTS

H. A. R. receives a scholarship from the Coordination for the Improvement of Higher
Education Personnel (CAPES).

F.B. M. and R. R. S. are fellows of the Foundation for the Support of Teaching and Research
(FAEP) at the University of Mogi das Cruzes (UMC).

CONFLICT OF INTERESTS

The authors declare that there are no conflicts of interest.

REVISTA ARACE, S#o José dos Pinhais, v.7, n.10, p.1-33, 2025

- ’



Revista

ARACE

REFERENCES

American Psychological Association. (2020). Publication manual of the American
Psychological Association (7th ed.). https://doi.org/10.1037/0000165-000

Azari Jafari, S., & et al. (2022). Unsupervised phenotyping of coronary artery disease.
Journal of Biomedical Informatics, 127, 104002. https://doi.org/10.1016/j.jbi.2022.104002

Chen, R., Zhang, Y., He, M., & et al. (2024). Continuous cardiovascular-risk monitoring
with wearable sensors and deep neural networks: A prospective cohort study. IEEE Journal
of Biomedical and Health Informatics, 28(1), 45-55.
https://doi.org/10.1109/JBHI.2023.3311623

D’Agostino, R. B., Sr.,, Vasan, R. S., Pencina, M. J., & et al. (2008). General
cardiovascular risk profile for use in primary care: The Framingham Heart Study. Circulation,
117(6), 743—753. https://doi.org/10.1161/CIRCULATIONAHA.107.699579

Esteva, A., Robicquet, A., Ramsundar, B., & et al. (2019). A guide to deep learning in
healthcare. Nature Medicine, 25(1), 24—29. https://doi.org/10.1038/s41591-018-0316-z

European Parliament. (2024). EU Artificial Intelligence Act: Final compromise text.
https://eur-lex.europa.eu/eli/reg/2024/1689/0j

Goff, D. C., Jr., Lloyd-Jones, D. M., Bennett, G., & et al. (2014). 2013 ACC/AHA
guideline on the assessment of cardiovascular risk. Circulation, 129(Suppl. 2), S49-S73.
https://doi.org/10.1161/01.cir.0000437741.48606.98

Jose, R., Thomas, A., Guo, J., Steinberg, R., & Toma, M. (2024). Evaluating machine-
learning models for prediction of coronary artery disease. Global Translational Medicine, 3(1),
Article €2669. https://doi.org/10.36922/gtm.2669

Kakadiaris, I. A., Vrigkas, M., & et al. (2018). Machine learning outperforms ACC/AHA
CVD risk calculator in MESA. Journal of the American Heart Association, 7(22), Article
€009476. https://doi.org/10.1161/JAHA.118.009476

Kang, Y., Guo, N., Cheng, G., & et al. (2022). Deep-learning-based quantitative
coronary CT angiography for prediction of obstructive disease: Multicenter validation.
Radiology, 304(2), 303—-312. https://doi.org/10.1148/radiol.2021212667

Ling, H., Guo, Z. Y., Tan, L. L., Guan, R. C., Chen, J. B., & Song, C. L. (2021). Machine
learning in diagnosis of coronary artery disease. Chinese Medical Journal, 134(4), 401-403.
https://doi.org/10.1097/CM9.0000000000001202

Liu, T., Krentz, A., Lu, L., & Curcin, V. (2024). Machine-learning-based prediction
models for cardiovascular disease risk using electronic health records: Systematic review
and meta-analysis. European Heart Journal - Digital Health, 6(1), 7-22.
https://doi.org/10.1093/ehjdh/ztae080

REVISTA ARACE, S#o José dos Pinhais, v.7, n.10, p.1-33, 2025

- y



Revista ~

ARACE

ISSN: 2358-2472

Lundberg, S. M., Nair, B., Voglino, J., & et al. (2018). Explainable machine-learning
predictions for the prevention of hypoxaemia during surgery. Nature Biomedical Engineering,
2(10), 749-760. https://doi.org/10.1038/s41551-018-0304-0

Mitchell, T. (1997). Machine learning. McGraw-Hill.

Muhammad, D., Ahmed, I., Ahmad, M. O., & Bendechache, M. (2024). Randomized
explainable machine-learning models for efficient medical diagnosis. |IEEE Journal of
Biomedical and Health Informatics. Advance online publication.
https://doi.org/10.1109/JBHI.2024.3401234

Omkari, D. Y., & Shaik, K. (2024). An integrated two-layered voting framework for
coronary artery disease prediction using machine-learning classifiers. IEEE Access, 12,
56275-56290. https://doi.org/10.1109/ACCESS.2024.3389707

Panch, T., Mattie, H., & Celi, L. A. (2019). The inconvenient truth about artificial
intelligence in healthcare. NPJ Digital Medicine, 2, Article 77. https://doi.org/10.1038/s41746-
019-0155-4

Provost, C., Broughan, J., McCombe, G., & et al. (2025). Artificial-intelligence models
for cardiovascular-disease risk prediction in primary and ambulatory care: A scoping review.
medRxiv. https://doi.org/10.1101/2025.03.21.25324379

Rasmy, L., Xiang, Y., Xie, Z., Tao, C., & Zhi, D. (2021). Med-BERT: Pre-trained
contextualized embeddings on large-scale structured EHRs for disease prediction. NPJ
Digital Medicine, 4, Article 86. https://doi.org/10.1038/s41746-021-00455-y

Rehman, S. U., Anwar, S. M., & Khawaja, B. A. (2022). Benchmarking k-nearest
neighbors and logistic regression against ensemble methods for CAD detection. IEEE
Journal of Biomedical and Health Informatics, 26(8), 4021-4031.
https://doi.org/10.1109/JBHI.2022.3162345

Saeedbakhsh, S., Sattari, M., Mohammadi, M., Najafian, J., & Mohammadi, F. (2023).
Diagnosis of coronary artery disease based on machine-learning algorithms: Support vector
machine, artificial neural network and random forest. Advanced Biomedical Research, 12,
Article 51. https://doi.org/10.4103/abr.abr_383 21

Samaras, A. D., Moustakidis, S., Apostolopoulos, |. D., Papandrianos, N., &
Papageorgiou, E. (2023). Classification models for assessing coronary artery disease
instances using clinical and biometric data: An explainable man-in-the-loop approach.
Scientific Reports, 13, Article 6668. https://doi.org/10.1038/s41598-023-33500-9

Silva, C. A. O., Morillo, C. A., Leite-Castro, C., Gonzalez-Otero, R., Bessani, M.,
Gonzélez, R., & et al. (2022). Machine learning for atrial fibrillation risk prediction in patients
with sleep apnea and coronary artery disease. Frontiers in Cardiovascular Medicine, 9, Article
1050409. https://doi.org/10.3389/fcvm.2022.1050409

REVISTA ARACE, S#o José dos Pinhais, v.7, n.10, p.1-33, 2025

- :



*

Revista

ARACE

ISSN: 2358-2472

Van Calster, B., McLernon, D. J., Van Smeden, M., & et al. (2019). Calibration: The
Achilles heel of predictive analytics. BMC Medicine, 17, Article 230.
https://doi.org/10.1186/s12916-019-1466-7

Wang, J., Xue, Q., Zhang, C. W. J., Wong, K. K. L., & Liu, Z. (2024). Explainable
coronary artery disease prediction model based on AutoGluon from AutoML framework.
Frontiers in Cardiovascular Medicine, 1, Article 1360548.
https://doi.org/10.3389/fcvm.2024.1360548

World Health Organization. (2021a). Cardiovascular diseases (CVDs): Fact sheet.
https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases

World Health Organization. (2021b). Ethics and governance of artificial intelligence for
health. https://iris.who.int/bitstream/handle/10665/341996/9789240029200-eng.pdf

Wynants, L., Van Calster, B., Collins, G. S., & Riley, R. D. (2020). Prediction models
for diagnosis and prognosis of COVID-19 infection: Systematic review and critical appraisal.
BMJ, 369, Article m1328. https://doi.org/10.1136/bmj.m1328

Yu, M., & et al. (2022). Reinforcement learning for dynamic treatment regimes in
cardiovascular care. Frontiers in Cardiovascular Medicine, 9, Article 1012456.
https://doi.org/10.3389/fcvm.2022.1012456

Zhang, Y., Chen, G., Xu, Z., & et al. (2024). FedCVD: A federated learning benchmark
for cardiovascular disease detection. arXiv. https://doi.org/10.48550/arXiv.2411.07050

REVISTA ARACE, S#o José dos Pinhais, v.7, n.10, p.1-33, 2025

- S



