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ABSTRACT 
This study proposes a strategy to optimize data compression in embedded devices based on 
the STM32WBA microcontroller. The main objective was to reduce the volume of data 
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transmitted in NB-IoT networks, with the aim of reducing the volume of this data without 
compromising the integrity of the information, while at the same time while respecting the 
memory and computing capacity constraints of these systems. The research used the 
HEATSHRINK library, based on the LZSS algorithm, adjusting parameters such as the size 
of the compression window (window_size) and the size of the lookahead (lookahead_sz2) 
integrated with the BZ2 algorithm based on the Burrows-Wheeler Transform (BWT) 
technique, to achieve a balance between compression rate, processing time and memory 
consumption. The experiments revealed that intermediate configurations, such as 
HSWB06_HSLB04 and HSWB06_HSLB05, achieved compression rates of up to 46.93% for 
sets of 96 samples. Combined with a 21.15% reduction in the DLMS header, these 
configurations resulted in a total compression gain of 68.08%. These parameters also had 
moderate processing times, in the range of 525 ms, and a memory consumption of 200 bytes, 
making them suitable for devices with limited resources. On the other hand, more extreme 
configurations, such as HSWB10_HSLB09, showed inferior performance, with compression 
rates below 40% and processing times of over 7,900 ms, making them unfeasible for systems 
that require low latency. A strategic approach to allocating microcontroller resources was also 
implemented. Original data was stored in FLASH memory, compressed data in RAM and 
temporary buffers were managed by STACK, ensuring operational stability even under high 
load conditions. The viability of these configurations was confirmed through memory analyses 
carried out with the Build Analyzer tool integrated into STM32CubeIDE, which showed 
minimal impact on the device's operations. The results obtained highlight the potential of the 
HEATSHRINK library as an efficient solution for data compression in embedded devices, 
provided it is properly adjusted to the specifics of the application. In addition, the study opens 
up avenues for future advances, such as the integration of hybrid compression techniques 
with machine learning, validations in real environments and adaptations for intermittent 
transmission systems, such as NB-IoT and LoRaWAN networks. These improvements have 
the potential to significantly expand compression applications in diverse sectors, including 
energy, health and transport, promoting greater energy efficiency, robustness and reliability. 
 
Keywords: Data compression. Embedded devices. IoT networks. STM32WBA52CE. 
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INTRODUCTION 

This study was conducted by the Evolução Institute of Science and Technology, in 

collaboration with the North and Northeast Studies and Research Centre (NEPEN) and the 

Federal Institute of Education, Science and Technology of Rondônia - IFRO, with the aim of 

investigating and implementing more effective solutions for data compression in embedded 

device networks.  

The research focused on the use of the STM32WBA microcontroller, used in a NIC 

with NB-IoT technology adapted for the WASION aMeter. The main purpose is to minimize 

the volume of data transmitted on a daily basis without compromising the integrity of the 

information, promoting less use of the frequency spectrum and savings in data usage, the 

main parameter used by telephony operators to charge tariffs. 

Wasion Group is a leader in advanced metering, smart distribution and energy 

efficiency management solutions, operating in more than 50 countries. Founded in 2000 and 

listed on the Hong Kong Stock Exchange since 2005, the company employs more than 6,000 

people and invests around 9.4\% of its revenue in R&D, standing out for its technological 

innovation. Its portfolio covers electricity, water and gas meters, telecoms systems, 

renewable energy and smart distribution, with more than 100 million devices delivered 

globally. Wasion has factories in strategic locations such as Mexico, Brazil and Hungary, 

guaranteeing close service and 24-hour technical support. Recognized for its quality and 

certifications such as CE and KEMA, the company collaborates with renowned brands such 

as Siemens and ABB, reinforcing its commitment to energy efficiency and sustainable 

innovation on a global scale.  

The project proposes an innovative approach for the significant and lossless reduction 

of data traffic, using the concept of energy mass memory. This involves the application of pre-

processing techniques to reduce the volume of information before compression, the adoption 

of specific libraries for data compression and decompression, and integration with a web 

application for transmitting and retrieving the information.  

The structure of the paper is organized into six main sections.  Section 2 presents a 

literature review, exploring relevant studies that underpin the techniques and solutions 

discussed. Section 3 describes the characteristics of the embedded hardware used in the 

meters, their limitations and the specifics of the data collected and transmitted.   

Section 4 details the technical developments carried out, including the algorithms and 

libraries used, as well as the modelling and implementation of the experiments. Section 5 
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discusses the results obtained, analyzing the effectiveness of the proposed solutions. Finally, 

Section 6 presents the study's conclusions, highlighting its contributions and suggesting 

possible directions for future work. 

 

LITERATURE REVIEW 

Data compression for embedded devices has been widely investigated in different 

contexts, with a focus on improving energy efficiency, reducing the consumption of computing 

resources and optimising the transmission of information. Ketshabetswe et al. (2021) carried 

out a comparative analysis of compression algorithms aimed at wireless sensor networks 

(WSN), highlighting ALDC (Adaptive Lossless Data Compression) and distributed 

compression and data aggregation methods. This study resulted in the development of an 

algorithm capable of reducing energy consumption by up to 76.8%. 

In the field of textual data compression, Kodituwakku and Amarasinghe (2010) 

evaluated lossless algorithms, identifying the limitations of LZW in large files and the robust 

performance of the Huffman and Adaptive Huffman methods. In parallel, Sandoval et al. 

(2020) introduced tensor decomposition to identify patterns and anomalies in power systems, 

contributing to the efficient operation of these systems. Zhang et al. (2023) and Zhang (2023) 

presented RSDC (Real-Time Synchrophasor Data Compression), a real-time technique that 

has increased compression rates and reduced delays in power grids.  

Smart meter studies highlight practical approaches. Santos et al. (2023) investigated 

NB-IoT meters to reduce fraud in urban and rural areas, recording an increase of 134 kWh 

per unit after installing protections, with 99% efficiency in data transmission. Meffe et al. 

(2023) implemented a low-cost solution for remote monitoring with LoRaWAN, providing 

improved coverage in hard-to-reach locations and greater effectiveness in detecting fraud. 

Other contributions explored specific solutions for compression in embedded devices. 

Lee et al. (2016) proposed a lossless method for mobile data tables, reducing file size without 

jeopardizing accuracy. Moon et al. (2018) analysed lossy compression in spatio-temporal IoT 

data, examining the trade-offs between data reduction and information integrity. Qin et al. 

(2020) introduced the CZ-Array algorithm for long data streams on sensors with limited 

resources, outperforming gzip and bzip2 in compression rates.   

The adaptation of classic algorithms for IoT networks was also explored in Júnior and 

Oyamada (2023) and Júnior et al. (2023) where they applied methods such as LZ77, LZ78 
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and Huffman, achieving reductions of up to 22% in energy consumption and 70% in data 

compression. 

Finally, Malandrino et al. (2024) contributed approaches to smart cities and deep 

neural networks. Gomes applied machine learning to sensor compression, improving energy 

efficiency by 22% and reducing latency. Malandrino developed PACT (Predictive Adaptive 

Compression Technique), dynamically adjusting compression in DNNs and significantly 

reducing energy consumption. 

While this research makes progress in optimizing data compression and energy 

efficiency, it does not fully address memory constraints, a critical aspect for embedded 

devices. Based on these studies, this work proposes an innovative solution to reduce the size 

of files transmitted by controller boards, ensuring that memory consumption and storage 

capacity remain compatible with hardware limitations during data compression and 

transmission. 

 

INFRASTRUCTURE 

ABOUT HARDWARE 

The STM32WBA is a 32-bit wireless microcontroller developed by STMicroelectronics, 

designed to meet the needs of applications that demand Bluetooth® Low Energy (BLE) 

connectivity and high energy efficiency. Equipped with the Arm® Cortex®-M33 core, 

operating at up to 100 MHz, the device combines robust computing performance with 

advanced security features such as TrustZone® and the Memory Protection Unit (MPU). In 

addition, it supports DSP instructions and incorporates a Floating Point Unit (FPU), features 

that make it suitable for digital signal processing, see figure 01: 

 

Figure 01: Wasion meters: On the left is the complete meter, in the centre is the top of the STM32WBA 
microcontroller, on the top right is the front of the microcontroller and on the bottom right is the back side 
microcontroller. 

 
Source: Author's own 
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In the field of connectivity, the STM32WBA integrates a 2.4 GHz radio transceiver 

compatible with BLE 5.4 and additional protocols such as Thread, Matter, Zigbee® and 

proprietary solutions. The device's reception sensitivity is -96 dBm for BLE at 1 Mbps and -

97.5 dBm for IEEE 802.15.4 at 250 kbps, while the output power is programmable up to +10 

dBm, in 1 dB increments, offering flexibility for various operating conditions. 

As far as memory is concerned, the STM32WBA offers up to 1 Mbyte of flash memory 

with error correction (ECC), 256 Kbytes of which can support 100,000 write cycles. It also 

has 128 Kbytes of SRAM, 64 Kbytes of which are parity-checked. The version implemented 

in smart meters, however, has a simplified configuration, with 512 Kbytes of flash memory 

and 96 Kbytes of RAM, suitable for more restrictive applications. 

The microcontroller is designed to operate in low power consumption environments. 

In Standby mode, it consumes just 160 nA with 16 wake-up pins, and 6.5  A in Stop mode 

with 64 Kbytes of SRAM, making it ideal for battery-powered devices.  

In addition to low power consumption, the STM32WBA is equipped with a wide range 

of peripherals. This includes a 12-bit ADC with a sampling rate of up to 2.5 Msps, low-power 

comparators, 16- and 32-bit timers, and communication interfaces such as I2C, SPI, USART 

and SAI. In addition, the device has a capacitive touch controller that supports up to 20 

sensors, extending its versatility for touch-sensitive interface applications. 

These specifications make the STM32WBA a highly adaptable and reliable solution, 

ideal for applications ranging from the Internet of Things (IoT) to industrial systems. Its 

combination of robust connectivity, energy efficiency and support for a variety of protocols 

positions it as a strategic choice for projects that require high performance and efficient 

operation in embedded devices. 

 

ABOUT DATA 

The study was based on the Wasion three-phase meter, in which data is transmitted 

via a Network Interface Card (NIC) to a Data Collection Module (MDC). During this process, 

the data relating to the meter's measurements is sent in the form of a mass memory frame, 

structured as an array of bytes. This array encapsulates the information related to the 

measurements taken by the device. 

The DTSD341 three-phase energy meter, developed by Wasion, is a solution for 

residential consumers and small commercial establishments, offering accurate and reliable 

measurements, see figure 01. Certified with class 1.0 accuracy for active energy and class 
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2.0 for reactive energy, the device supports voltage ranges of 3x120/240 V and 3x127/220 V, 

with a tolerance of -20% to +20%. 

Equipped with an integrated RF module for wireless communication and an optical 

port option, the DTSD341 facilitates remote reading and parameter configuration, 

guaranteeing operational efficiency. Its features include support for up to four different tariffs, 

detailed load profile recording with data storage for 60 days (at 15-minute intervals), and 

detection of events such as cover opening, current reversal and phase failures. Its large, 

easy-to-read LCD display, with optional internal battery or supercapacitor support, ensures 

data visibility even in the absence of power. In addition, data security is enhanced by 

password-protected communication, while its compatibility with the IEC62056-21 protocol 

guarantees adherence to international standards.  

 

Table 01:  Read mass memory hash 

Read mass memory 

0F0000000000010109290C6748E7E0000000000000000000000000000000000000000000000000308C00
00308A0000308B0000 

Source: Author's own 

 

For better understanding, the table 01 provides a detailed overview of the readings 

captured, while the table 02 provides a detailed explanation of how this data is organized 

and structured in the frame. These tables help visualize the format and interpretation of the 

information transmitted by the three-phase meter, providing a clear overview of how the data 

is generated, structured and sent for processing. 

 

Table 02:  Table of the mass memory read by the Wasion three-phase meter 

Bytes Description 

0F00000000000101 DLMS PDU header (fixed number of bytes and information) 

09 Data type: Indicates that the data type contained in the frame is ‘octet-
string’ 

2A Indicates the size of the information 

0C Mass Memory Template 

6748E7E0 UNIX timestamp 

00000000 totalizer general direct active energy A 

00000000 totalizer reverse active energy general A 

00000000 totalizer direct inductive reactive energy general qi 

00000000 general reverse capacitive reactive energy totalizer qii 

00000000 totalizer general reverse inductive reactive energy qiii 

00000000 totalizer capacitive reactive energy direct general qiv 

308C voltage a 

0000 current a 

308A voltage b 

0000 current b 

308B voltage c 



 

 
REVISTA ARACÊ, São José dos Pinhais, v.7, n.3, p.14833-14857, 2025  

14840 

0000 current c 

Source: Author's own 

 

As the first bytes of the frame correspond to the DLMS header, which has a fixed 

format, they can be discarded before the compression stage. This simplification reduces the 

initial size of a read from 52 bytes to 41 bytes, resulting in a 21.15% reduction in the size of 

the file to be transmitted. 

With this initial implementation, the next step is to apply compression techniques to 

the rest of the hash captured at each predefined time interval. This process aims to further 

increase the gain obtained in reducing the volume of bytes transmitted, optimizing 

transmission efficiency and ensuring greater savings in the use of system resources. 

 

DEVELOPMENT 

In order to evaluate and improve the performance of this work, an extensive literature 

search was carried out in renowned sources, including the Data Compression Conference 

(DCC), the IEEE (Institute of Electrical and Electronics Engineers) database, the CAPES 

(Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) journal portal and the 

proceedings of the 2024 SENDI (Seminário Nacional de Distribuição de Energia Elétrica). 

The research focused exclusively on topics related to data compression in embedded 

systems. 

Based on the studies identified, algorithms were selected for the initial tests, prioritizing 

those with the potential to meet the system's needs in terms of efficiency and performance. 

Based on this selection, a detailed analysis of the compression applied to mass storage was 

carried out, varying the amount of data processed. The aim was to find the best balance 

between data volume, compression rate and algorithm performance. The results obtained for 

each configuration tested are shown in figure 02. 

 

Figure 02: Compression rate of the algorithms researched 

 
Source: Author's own 
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The analysis revealed a reduction in the volume of data transmitted ranging from 75% 

to 80%, highlighting the relevance of the proposed implementation. It was also observed that 

an increase in the number of files accumulated results in incremental gains in the 

compression rate. However, the time interval needed to send the files proved to be a 

determining factor in this process. 

According to the system data, accumulating 100 readings in the mass memory 

requires a period of approximately 24 hours. As the additional percentage gain in 

compression does not justify the additional time needed to accumulate more data, it was 

decided to standardize on a 24-hour interval as the basis for sending. This decision seeks to 

balance compression efficiency and processing time, while maintaining the practical viability 

of the system. 

 

ABOUT THE BZ2 ALGORITHM 

The BZ2 compression algorithm is widely recognized for its efficiency in lossless data 

compression and is a frequent choice on Unix/Linux systems. Developed in the 1990s, it is 

based on the Burrows-Wheeler Transform (BWT) technique, which reorganizes substrings to 

facilitate compression. Compared to traditional methods such as ZIP and GZIP, BZ2 has 

higher compression rates in many cases, making it an effective solution for storing and 

transmitting data \cite{burrows1994bwt}. Its effectiveness comes from the combination of 

advanced techniques, such as BWT, Move-to-Front (MTF), Run-Length encoding (RLE) and 

Huffman encoding, which optimize the compression process Seward (2024). 

How BZ2 works is made up of structured stages that maximize compression. Firstly, 

the Burrows-Wheeler Transform (BWT) rearranges the characters in the text, grouping 

repetitive patterns and preparing the data for the subsequent phases. Next, Move-to-Front 

(MTF) converts characters into indices based on their frequency, maximizing symbol 

repetition Cleary and Witten (1984). Run-Length Encoding (RLE) then compresses repetitive 

sequences, such as turning ‘aaaaa’ into ‘5a’. Finally, Huffman Coding assigns shorter 

sequences to the most frequent characters, further reducing the size of the data Knuth (1998). 

Despite these advantages, BZ2 requires more memory and processing power, limiting its 

application in systems with limited resources. 

BZ2 is widely used in practices that require efficient compression. On Unix/Linux 

systems, it is the standard choice for creating compressed files with a .bz2 extension, 

especially in backups and logs, due to its ability to reduce the size of large files and facilitate 
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their transfer Python Software Foundation (2024). In addition, BZ2 is ideal for compressing 

large volumes of data before transmission, reducing costs and optimizing processes. Tools 

such as tar offer native support for BZ2, integrating it efficiently into workflows. 

In this study, BZ2 was assessed for its viability in embedded systems, analyzing the 

use of ROM and RAM memory, as well as the operating cost. However, the nature of the data 

to be compressed, stored in byte format, presented significant challenges. Many compression 

algorithms are optimized to work with strings, hexadecimal values or floating point numbers, 

while the data in this project required a specific approach. This limitation led to 

experimentation with different libraries, looking for solutions that met the system's constraints. 

After careful analysis, the decision was made to adopt the HEATSHRINK library, 

available in the https://github.com/atomicobject/heatshrink repository. Developed for 

embedded devices, HEATSHRINK is lightweight and efficient, designed to operate with data 

formats such as bytes, meeting the specific needs of this project. The choice of HEATSHRINK 

allowed the challenges posed by the original data to be circumvented and made it possible 

to implement efficient compression in line with the limitations and demands of the system. 

 

ABOUT HEATSHRINK 

The Heatshrink library is a solution designed specifically for data compression and 

decompression in embedded systems and real-time environments. Its main feature is its low 

memory consumption, with minimum requirements of just 50 bytes, as well as its ability to 

process data incrementally, optimizing CPU usage in a controlled and efficient manner. This 

flexibility makes Heatshrink ideal for devices with limited resources, allowing static or dynamic 

memory allocations according to the project's needs. The settings can be customized directly 

in the heatshrink_config.h file, providing precise adjustments for different applications. 

The library offers two forms of integration. The developer can directly incorporate the 

encoding and decoding functions into the project or use the stand-alone command-line 

programmed for independent operations. Operation follows a simple model based on a state 

machine. The input data is supplied using the sink method, processed and retrieved using 

the poll method, and finally the input is closed with the finish method. This cycle can be 

repeated as many times as necessary, allowing incremental manipulation of the data. 

With its efficiency and ease of use, Heatshrink stands out as a dynamic tool with a low 

computational cost, making it a popular choice for embedded systems that require data 

compression without compromising the device's limited resources. 

https://github.com/atomicobject/heatshrink


 

 
REVISTA ARACÊ, São José dos Pinhais, v.7, n.3, p.14833-14857, 2025  

14843 

ABOUT CODE 

To begin implementing the tests, we structured our algorithms in such a way as to 

integrate the coding of the BZ2 algorithm with the libraries provided by Heatshrink. This 

combined approach aims to leverage the advantages of both methods, optimizing data 

compression in embedded systems. 

The Table 03 presents the pseudocode that describes the logic used to implement the 

data compression process. This structure details the fundamental stages of the algorithm, 

demonstrating how the data is initially processed by BZ2 and then refined using Heatshrink. 

This integration was designed to maximize efficiency while respecting the memory and CPU 

limitations typical of embedded devices. 

 

Table 03: Compression pseudo code 

01  Use stdio.h 
02  Use string.h 
03  Use heatshrink_encoder 
04 Use data_compress_app_layer.h 
 
05 Define max_compressed_data 
06 Create  mass_memory_samples 

07 Create compressed_data  0xff 
 
08 Function compress_data (p_from*, from_size, p_to*, p_to_size*): 
09       Initialize  p_from* 
10       Initialize  from_size 
11       Initialize  p_to* 
12       Wile  (𝑥𝑖 ≤ 𝑥𝑛): 

13            p_to*  𝑥𝑖 
14           If  p_to*  ≥ max_compressed_data 
15               Print(Error) 
16               Break 
17       Update p_to_size* 
18  Return:  p_to_size* 

 
19  Function compress_data_test(): 
20       Initialize compressed_data 
21       compressed_data ⟵  compress_data(mass_memory_samples) 
22       Print compressed_data 

 

Source: Author's own 

 

The process seeks to detail the implementation of the data compression system using 

the Heatshrink library, with an emphasis on simplicity and efficiency. Initially, fundamental 

constants are defined, such as the maximum size allowed for the compressed data, as well 

as basic structures, including the array mass_memory_samples to store the memory samples 
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that will be compressed and the array compressed_data to contain the compressed results, 

initially filled with default values. 

The main function, compress_data, is responsible for performing the compression 

iteratively. It takes as input the original data, pointers to store the compressed results and a 

variable to record the final compression size. The flow of this function involves initializing the 

encoder, processing the original data in blocks, and continuously extracting the compressed 

data until all the content has been processed. In the event of errors during execution, specific 

messages are displayed to ensure transparency and facilitate debugging. Once compression 

is complete, the final size is updated, and the function returns the index of the last data 

processed. 

For validation and testing, the compress_data_test function uses the 

mass_memory_samples array as input, displaying the returned index and the compressed 

data in hexadecimal format directly on the console. This visualization makes it easier to 

analyze and verify the results obtained. 

The implementation also includes auxiliary functions based on the library components, 

such as heatshrink_encoder and heatshrink_decoder, which are used for data compression 

and decompression. In addition, robust error handling mechanisms have been integrated to 

ensure that the process is reliable and secure, even in adverse scenarios. 

With its modular and well-defined structure, this approach is highly suitable for 

embedded applications that require efficiency and reliability in data compression, aligning 

performance with simplicity of implementation. 

The decompress_data table 04 function is responsible for decompressing the 

previously processed data, ensuring that the compressed content is restored within the 

specified limits. It takes as input the compressed data, the size of that data, a pointer to store 

the decompressed data, the final size of the decompressed data and the maximum size 

allowed for the output, ensuring that the process remains within the memory restrictions. 

 

Table 04: Decompression pseudo-code 

01 Use stdio.h 
02 Use string.h 
03 Use heatshrink_decoder 
04 Use datacompressapplayer.h 
 
05  Define 𝑚𝑎𝑥_𝑑𝑒𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠_𝑠𝑖𝑧𝑒 
06 Function decompress_data(p_from*, from_size, p_to_size*, max_decompress_size ): 
07       Initialize p_from* 
08       Initialize from_size 
09       Initialize p_to* 
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10       Initialize p_to_size* 
11       Wile xi ≤ xn: 
12             p_to* ⟵ xi 

13             If p_to∗ ≥ max_decompress_size 
14                  Print(Error) 
15                  Break.  
16             Update  p_to∗ 
17       Update  𝑝_𝑡𝑜_𝑠𝑖𝑧𝑒∗ 

             18       Return: 0 

Source: Author's own 

 

The function starts by configuring the decoder and initializing the control variables, 

such as the processing rate and the size intended for the decompressed data. To ensure a 

consistent state, the decoder is restarted before receiving the compressed data, which is 

gradually fed into smaller chunks. This split-into-fragments approach reduces the risk of 

overloading memory, ensuring efficient processing that is compatible with the system's 

limitations. 

During each processing stage, the function carries out rigorous checks to identify 

possible errors. If a fault is detected, error messages are displayed, facilitating diagnosis and 

correction. At the same time, the processing index is continuously updated, keeping pace 

with the progress of data handling. As the flow progresses, the decompressed data is 

extracted in each iteration until all the compressed content has been completely processed. 

At the end of the decompression process, the final size of the decompressed data is 

recorded in the pointer provided, ensuring that the memory allocated corresponds to the 

amount of information recovered. Finally, the function returns the value 0, signaling that the 

operation has been successfully completed and that the original content has been restored 

without errors or interruptions. 

 

IMPLEMENTATION 

The HEATSHRINK library uses a set of configurable parameters that directly impact 

its efficiency in terms of compression and resource use. As described in the documentation, 

the window_size parameter defines the size of the window, expressed as 2W bytes , and has a 

direct influence on both memory consumption and the efficiency of the compression 

algorithm. Another relevant parameter is lookahead_sz2, which specifies the maximum 

length of repeated patterns, also defined as 2W bytes, with ideal values between 3 and  

windowsize − 1. In addition, the input_buffer_size parameter determines the size of the input 

buffer in the decoder, influencing the amount of data processed at each stage. 
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In the experiments carried out, the initial setting for the 

HEATSHRINK_STATIC_WINDO_BITS-(W) parameter was set to 4, gradually increasing to 

10. Similarly, the HEATSHRINK_STATIC_LOOKAHEAD_BITS-(L) parameter was adjusted 

from 3 to n-1, taking the maximum window_size value into account. Each experimental 

battery included 30 different combinations of parameters. The test scenario was designed to 

assess performance in two data collection contexts: the first with 96 measurements, 

equivalent to 24 hours of readings taken at 15-minute intervals; the second with 144 

measurements, corresponding to readings every 10 minutes over the same 24-hour interval. 

This last scenario was called Collection Time (Tc). 

The main objective of the experiments was to identify the configuration that would 

provide the best balance between the time needed to send the data and the compression 

efficiency, maximizing the cost-benefit ratio. The mathematical structure used to model the 

configurations and analyse the results is formalized in equation 01,  which describes the 

methodological approach applied during the tests. 

 

𝑇𝑖𝑗 = 𝑊𝑖𝐿j,                (1) 

 

where: 

• 𝑖 =  {4, 5, 6, ⋯ , 15}   

• 𝑗 = {3, ⋯ , 𝑖 − 1} 𝑗 ∈ 𝑍. 

• 𝑇 represents the Test 

 

EXPERIMENTS 

To organize the experiments, a factorial test design was adopted, represented by: 

   

𝑇30 × 𝑇𝑐2, 
 

resulting in 60 different tests, covering all possible combinations of configurations.  

The HEATSHRINK library was used to evaluate its effectiveness in compressing mass 

memory frames from a three-phase meter. Each frame contains 52 bytes, of which 41 bytes 

are made up of useful data after removing the DLMS header, resulting in an initial reduction 

of 21.42% in the volume of data transmitted. These frames include critical information such 
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as the UNIX timestamp, active and reactive energy totalizers under different operating 

conditions, as well as the voltages and currents corresponding to phases A, B and C. 

The implementation of the HEATSHRINK library, based on the LZSS algorithm, made 

it possible to adjust parameters that balance compression efficiency with system resource 

consumption. The maximum value for the window_size parameter was limited to 10, due to 

the device's memory restrictions, which is equivalent to a buffer of 2,048 bytes. The 

experiment was designed to test various combinations of parameters, evaluating their impact 

on memory usage, compression rate and execution time. 

The embedded device used has significant memory limitations: 4,096 bytes available 

for STACK, 2,048 bytes allocated for HEAP and 4,102 bytes free. In FLASH memory, the 

device has 24,316 bytes. These resources were strategically allocated to ensure system 

stability during the tests. The original data was stored in FLASH memory (.rodata section), 

the compressed data was allocated in RAM (.noinit section), and the buffer required for library 

operation was allocated locally in STACK. 

The memory usage analysis, conducted with the help of STM32CubeIDE's Build 

Analyzer, revealed that the inclusion of the HEATSHRINK library implied an increase in the 

size of the .text section. Before the library was incorporated, this section occupied 146,204 

bytes. After inclusion, usage increased to 148,912 bytes, representing an increase of 2,708 

bytes. Of this total, 494 bytes were attributed to the functions created specifically for the tests, 

while 2,214 bytes corresponded to the library itself. In addition, a variation in memory 

consumption was identified as the window_size parameter was adjusted: for value 6, there 

was an increase of 44 bytes; for 7, the increase was 212 bytes; and for values between 8 and 

10, the increase varied between 216 and 220 bytes. 

STACK's static analysis confirmed that local buffer allocation, when configured 

properly, did not compromise the integrity of the system's memory. This validation was 

essential to ensure that the configurations tested were suitable for real devices, guaranteeing 

the reliability of operations without risk of failure. The results obtained are detailed in Table 

05, providing a comprehensive overview of the impact of the proposed configurations. 

 

Table 05:  Results of the tests carried out, where α represents the size of the original data, β represents the 

size of the compressed data, Δ represents the compression rate, t represents the time taken for compression 
and SSA represents Static Stack Analyze. 

Configuration 

96 Samples 144 Samples 
SSA 

𝛼1 𝛽1 Δ𝛼1,𝛽1
 𝑡 𝛼2 𝛽2 Δ𝛼2,𝛽2

 𝑡 

(bytes) (bytes) (%) (ms) (Bytes) (Bytes) (%) (ms) (bytes) 

HSWB04_HSLB03            3840          2405         0,3737            439         5760         3674      0,36215       664       104 
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HSWB05_HSLB03            3840          2258         0,4120            435         5760         3341      0,41997       661       136  

HSWB05_HSLB04            3840          2311         0,3982            452         5760         3520      0,38889       687       136  

HSWB06_HSLB03            3840          2120         0,4479            541         5760         3179      0,44809       809       200   

HSWB06_HSLB04            3840          2038         0,4693            525         5760         3056      0,46944       786       200 

HSWB06_HSLB05            3840          2045         0,4674            527         5760         3060      0,46875       789       200   

HSWB07_HSLB03            3840          2144         0,4417            840         5760         3212      0,44236     1257       336  

HSWB07_HSLB04            3840          2047         0,4669            821         5760         3070      0,46701     1228       336  

HSWB07_HSLB05            3840          2061         0,4633            821         5760         3084      0,46458     1228       336  

HSWB07_HSLB06            3840          2112         0,4500            830         5760         3160      0,45139     1243       336  

HSWB08_HSLB03            3840          2175         0,4336          1400         5760         3268      0,43264     2103       592 

HSWB08_HSLB04            3840          2064         0,4625          1383         5760         3102      0,46146     2074       592 

HSWB08_HSLB05            3840          2087         0,4565          1392         5760         3127      0,45712     2087       592 

HSWB08_HSLB06            3840          2140         0,4427          1396         5760         3206      0,44340     2092       592 

HSWB08_HSLB07            3840          2223         0,4211          1502         5760         3328      0,42222     2247       592 

HSWB09_HSLB03            3840          2207         0,4253          2532         5760         3320      0,42361     3799     1104  

HSWB09_HSLB04            3840          2086         0,4568          2517         5760         3142      0,45451     3773     1104 

HSWB09_HSLB05            3840          2115         0,4492          2547         5760         3173      0,44913     3811     1104 

HSWB09_HSLB06            3840          2205         0,4258          2764         5760         3309      0,42552     4149     1104 

HSWB09_HSLB07            3840          2243         0,4159          2767         5760         3365      0,41580     4153     1104 

HSWB09_HSLB08            3840          2281         0,4060          2770         5760         3422      0,40590     4158     1104 

HSWB10_HSLB03            3840          2244         0,4156          4712         5760         3380      0,41319     7030     2128 

HSWB10_HSLB04            3840          2116         0,4490          4716         5760         3194      0,44549     7008     2128  

HSWB10_HSLB05            3840          2178         0,4328          5254         5760         3290      0,42882      7931    2128 

HSWB10_HSLB06            3840          2218         0,4224          5254         5760         3350      0,41840      7933    2128 

HSWB10_HSLB07            3840          2258         0,4120          5257         5760         3409      0,40816      7936    2128 

HSWB10_HSLB08            3840          2298         0,4016          5256         5760         3469      0,39774      7936    2128 

HSWB10_HSLB09            3840          2338         0,3911          5265         5760         3528      0,38750      7948    2128 

Average                                                2179         0,4325          2318                          3276      0,43119       3483     957 

Source: Author's own 

 

The tests conducted with the HEATSHRINK library clearly demonstrated how the 

settings of its parameters influence compression efficiency and the system's temporal 

performance. During the evaluations, varying the window_size and lookahead_sz2 

parameters revealed a direct relationship: configurations that adopted higher values for these 

parameters resulted in higher compression rates, reflecting greater efficiency in data 

compression. However, this gain was accompanied by a significant increase in the time 

required for processing. 

This behavior highlights the characteristic trade-off between compression efficiency 

and performance, a central issue in the context of embedded systems. These devices operate 

under severe resource limitations, such as memory and processing capacity, which requires 

a careful balance when choosing configurations. Therefore, optimizing the parameters of the 

HEATSHRINK library must consider not only maximizing compression, but also the need to 

preserve the overall performance of the system, ensuring that it remains functional and 

efficient within the constraints imposed by the hardware. 
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DISCUSSION OF RESULTS 

Among the results obtained, the performance of intermediate configurations stood out, 

such as HSWB0_HSLB04 and HSWB06_HSLB05, which demonstrated a compression rate 

close to 46.93% when processing 96 samples, with manageable execution times of 

approximately 525 ms. These findings show that it is possible to achieve a suitable balance 

between compression efficiency and temporal performance, making these configurations 

viable for embedded systems that need to optimize resource use without significantly 

compromising response time. See the figure 03. 

 

Figure 03: Compress ratio comparation with 96 and 144 samples 

 
Source: Author's own 

 

In contrast, more extreme configurations, such as HSWB10_HSLB08 and 

HSWB10_HSLB09, showed inferior performance, with compression rates below 40%. In 

addition, the processing times for these configurations exceeded 7,900 ms when dealing with 

144 samples, a value that makes it unfeasible to use them in applications that require low 

latency or real-time responses. These results emphasize the importance of carefully 

balancing the parameters to meet the specific demands of each application, especially in 

embedded devices where hardware limits impose severe restrictions on the choice of 

extreme configurations. 

The tests also revealed that the number of samples processed directly impacts time 

performance, while compression rates remain practically unchanged. When comparing 

scenarios with 96 and 144 samples, a proportional increase in execution time was observed 

as a function of the volume of data processed, see figure 04. These results indicate that the 

HEATSHRINK library is scalable, allowing it to be used with different volumes of data without 
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compromising compression efficiency. However, in our application and use case, time is not 

a limiting factor, as it could take up to minutes since we will only be compressing once a day. 

 

Figure 04: Time comparation with 96 and 144 samples 

 
Source: Author's own 

 

However, the impact on execution time highlights the need for precise adjustments to 

configurations, especially in applications that demand reduced response times. This analysis 

reinforces that while HEATSHRINK's scalability is an advantage, its application in embedded 

systems must be carefully designed to ensure that performance meets specific operational 

requirements while maintaining system stability and efficiency. 

Analyzing the impact on memory usage revealed significant results, especially in more 

robust configurations such as HSWB10_HSLB09, which demanded up to 2,128 bytes of 

memory, see figure 05. This consumption represents a considerable challenge for embedded 

devices, which are often characterized by limited resources. These findings emphasize the 

importance of making careful parameter adjustments, considering not only compression 

efficiency and execution time, but also memory consumption, a critical factor in ensuring the 

stability and functionality of embedded systems in restricted operating scenarios. 
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Figure 04: Memory usage with 96 and 144 samples 

 
Source: Author's own 

 

Based on the results obtained, configuration recommendations should be adapted to 

the specific context of the application. For devices facing strict time and resource constraints, 

intermediate configurations such as HSWB06_HSLB04 are more appropriate. These 

configurations offer an advantageous balance, with efficient compression rates and 

manageable runtimes. In this case, compression proved to be highly effective: by initially 

reducing the header by 21.15% and applying an additional compression rate of 46.93%, a 

final reduction of 68.08% was achieved, leaving the original file with only 31.92% of its initial 

size. 

In applications where maximum compression efficiency is a priority, configurations with 

higher window_size and lookahead values can be explored, as long as memory consumption 

remains within the acceptable limits of the hardware. In this way, it is possible to optimize the 

performance of the HEATSHRINK library to meet both the compression demands and the 

restrictions of each operating environment, guaranteeing the viability and efficiency of the 

application in embedded systems. 

The results obtained emphasize the importance of a detailed and careful analysis 

when defining the parameters of the HEATSHRINK library for embedded systems. Proper 

adjustment of these parameters is fundamental to achieving the ideal balance between 

compression efficiency, processing time and memory consumption. This approach ensures 
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that applications meet their specific demands without compromising technical feasibility or 

operational efficiency, especially on devices with severe resource constraints. 

The findings also highlight the need for a balanced parameterization of the library. In 

scenarios where the priority is compression efficiency, higher values for window_size and 

lookahead_sz2 proved advantageous, providing higher compression rates, even with the 

increase in memory consumption and processing time. On the other hand, in applications 

that require low latency, such as real-time systems, intermediate configurations of these 

parameters were more suitable. These configurations achieved satisfactory compression 

rates, with shorter execution times and less impact on RAM usage, making them ideal for 

contexts where fast performance is essential. 

The experiment showed that applying HEATSHRINK to embedded systems requires 

a thorough understanding of the specific needs of the application, as well as the limitations 

imposed by the hardware. The strategy of allocating the original data in FLASH memory and 

the compressed data in RAM, combined with strict control over the library's parameters, made 

it possible to explore its efficiency in different scenarios. This approach not only optimized 

data storage and transmission, but also guaranteed system stability and performance, even 

in resource-limited environments. 

These results provide a basis for implementing compression solutions in embedded 

devices. By balancing the configuration of parameters with the specific demands of each 

application, it is possible to maximize the benefits of compression, guaranteeing the 

functionality and efficiency of the system without compromising its stability. These findings 

can serve as a valuable reference for the development and optimization of embedded 

systems that require robust and scalable data compression solutions. 

 

CONCLUSION 

This study investigated the application of data compression techniques in embedded 

systems, focusing on the use of the HEATSHRINK library to optimize the performance of 

devices based on the STM32WBA microcontroller. The main objective was to develop an 

efficient solution that met the resource constraints of this hardware, reducing the volume of 

data transmitted without compromising the integrity of the information or the stability of the 

system. 

The tests carried out explored different HEATSHRINK parameter settings, with 

adjustments to the window_size and lookahead_sz2 values to balance compression rate, 
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processing time and memory consumption. Intermediate configurations, such as 

HSWB06_HSLB04 and HSWB06_HSLB05, achieved a compression rate of approximately 

46.93% when processing 96 samples, with execution times of around 525 ms and a controlled 

impact on memory usage, limited to 200 bytes of RAM. Considering the additional reduction 

provided by removing the header, the total efficiency reached 68.08%. These results 

demonstrate that such configurations are suitable for embedded devices that require a 

combination of good compression efficiency and manageable execution times. 

In contrast, more extreme configurations, such as HSWB10_HSLB08 and 

HSWB10_HSLB09, showed compression rates of less than 40%. In addition, processing 

times exceeded 7,900 ms for 144 samples, while memory consumption reached 2,128 bytes. 

These results emphasize the importance of careful analysis when choosing parameters, 

particularly in systems with severe memory and latency restrictions. 

The analysis also revealed that the volume of samples processed directly impacts 

temporal performance, even if compression rates remain stable. This behavior indicates that 

the HEATSHRINK library is scalable but requires precise adjustments to meet the specific 

demands of each application. For scenarios requiring low latency, intermediate configurations 

proved to be the ideal choice, offering an efficient balance between compression and 

performance. 

The technical feasibility of the experiment was ensured by strategically allocating the 

STM32WBA's resources. With RAM memory limited to 4,096 bytes, the original data was 

stored in FLASH memory, while the compressed data was allocated to RAM. The buffer 

required for library operation was managed locally in the STACK, ensuring that the system 

remained stable and free of memory overflows during the tests. The analysis carried out with 

the STM32CubeIDE Build Analyzer confirmed that these allocation strategies made it 

possible to integrate the HEATSHRINK library effectively, without compromising the device's 

overall operations. These results provide a basis for applying data compression to embedded 

systems, balancing efficiency and stability in different operating scenarios. 

The results of this study confirm that data compression, in addition to significantly 

reducing the volume transmitted, represents an effective solution for extending the life of 

battery-powered devices, reducing energy consumption and optimizing bandwidth in IoT 

networks. Considering the specific limitations of the STM32WBA, this work has proposed 

optimized configurations that maximize the microcontroller's resources without compromising 

its storage capacity or RAM during the data compression and transmission processes. 
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As its main contribution, the study positions the HEATSHRINK library, combined with 

compression algorithms, as a viable solution for compression in embedded devices, provided 

that it is configured precisely and appropriately to meet the hardware constraints and specific 

demands of each application. The results presented provide a basis for the development of 

future implementations, while also suggesting the incorporation of hybrid techniques and the 

use of machine learning to further improve the performance and efficiency of devices with 

limited resources. 

The advances made in this study offer a significant contribution to Wasion, 

strengthening its position as a leader in smart metering and energy efficiency solutions. The 

detailed analysis of the impact of data compression on embedded meters, especially the 

STM32WBA, provides valuable guidelines for optimizing device performance without 

compromising information integrity or operational stability. By demonstrating the viability of 

HEATSHRINK as an efficient solution for reducing the volume of data transmitted, this study 

makes it possible to implement more agile and energy-efficient systems, extending the life of 

the meters and optimizing the consumption of computing resources. In addition, the proposed 

configurations allow Wasion's devices to be better adapted to low-bandwidth communication 

networks such as LoRaWAN and NB-IoT, extending the company's reach and 

competitiveness in the global smart metering market. Based on the results presented, future 

integrations with advanced techniques such as hybrid compression and machine learning 

could further improve the efficiency of the company's embedded systems, consolidating its 

capacity for innovation and meeting the growing demands for sustainable and scalable 

solutions in the energy sector. 

Recommendations for future work include exploring hybrid compression techniques 

that combine classic algorithms, such as those used in this study, with modern methods 

based on machine learning. Approaches such as compressed neural networks and adaptive 

predictive models could be investigated to further optimize compression efficiency, especially 

on devices with severe resource constraints. These solutions have the potential to identify 

patterns in real time and adapt the compression process to the dynamic characteristics of the 

data collected, providing greater flexibility and efficiency. We can also explore a practical 

comparison with equipment in the field, analyzing efficiency before and after implementing 

the algorithm. 

In addition, we recommend investigating advanced memory management strategies 

for embedded devices with even more limited resources than the STM32WBA, as well as 
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new sample configurations and collection times. Methods such as dynamic memory 

allocation and segmented buffers could be tested to offer greater flexibility in resource 

management during data compression and sending. This line of research could include the 

development of detailed metrics to evaluate the impact of compression on overall system 

performance, providing a more comprehensive view of the benefits and limitations of the 

proposed solutions. 

Another area of interest would be the integration of compression techniques with 

monitoring and predictive analysis systems, used in applications such as predictive 

maintenance and anomaly detection. Combining efficient compression with predictive models 

would not only reduce the volume of data transmitted but would also allow faults to be 

anticipated and anomalous behavior to be identified with greater precision. This approach 

would be particularly useful in industrial IoT networks, where reliability and efficiency are 

crucial. 

Finally, field validation of the optimized configurations proposed in this study is a 

fundamental step in consolidating the theoretical and experimental results. Future studies 

could carry out large-scale tests, simulating different operating conditions and assessing the 

robustness, efficiency and reliability of the proposed solutions in real scenarios. This type of 

practical validation has the potential to expand the applications of compression techniques in 

sectors such as energy, health and transport, broadening the impact and relevance of the 

contributions of this work. 
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