

REVISTA ARACÊ, São José dos Pinhais, v.7, n.3, p.14833-14857, 2025

14833

SMART METER DATA COMPRESSION: A SOLUTION FOR REDUCING AND
OPTIMISING ENERGY METER RESOURCES IN NBIOT NETWORKS

 https://doi.org/10.56238/arev7n3-270

Date of submission: 26/02/2025 Date of publication: 26/03/2025

Gleison Guardia1, Rogério Guerra Diogenes2, Iury Gonçalves França3, Lucas Noé dos
Santos Santana4, Jamilly Cristina de Sousa5, Brunna Conceição de Paulo6, Antônio
Ébano Rafael Machado de Oliveira7 and Alberto Alexandre Moura de Albuquerque8

ABSTRACT
This study proposes a strategy to optimize data compression in embedded devices based on
the STM32WBA microcontroller. The main objective was to reduce the volume of data

1 Mathematician and Data Scientist (Master's Degree)
Evolution Institute of Science and Technology/Federal Institute of Rondônia – IFRO
E-mail: gleison.guardia@ifro.edu.br
ORCID: orcid.org/0000-0003-1402-0777
LATTES: lattes.cnpq.br/3081488341816997
2 Telecommunications Engineer (Master's Degree)
Center for Studies and Research in the North and Northeast – NEPEN
E-mail: rogerio.diogenes@nepen.org.br
ORCID: orcid.org/0009-0007-5461-7937
LATTES: lattes.cnpq.br/3782482898648331
3 Systems Analyst and Developer (in progress)
Evolution Institute of Science and Technology
E-mail: iurygfranca@gmail.com
ORCID: orcid.org/0009-0007-8535-0139
LATTES: lattes.cnpq.br/5608507491741074
4 Mechatronics Engineering (in progress)
Center for Studies and Research in the North and Northeast – NEPEN
E-mail: lucas.santana@nepen.org.br
ORCID: orcid.org/0009-0009-6236-1753
LATTES: lattes.cnpq.br/6086974571374063
5 Mechanical Production Engineer (Graduate)
Evolution Institute of Science and Technology
E-mail: jamillycristina90@gmail.com
ORCID: orcid.org/0009-0001-8820-3165
LATTES: lattes.cnpq.br/6374960584977744
6 Computer Engineering (Studying)
Evolution Institute of Science and Technology
E-mail: brunnacdepaulo@gmail.com
ORCID: orcid.org/0009-0003-6448-1309
LATTES: lattes.cnpq.br/5168826144828472
7 Mechatronics Engineering (in progress)
Evolution Institute of Science and Technology
E-mail: eebanorafael@gmail.com
ORCID: orcid.org/0009-0006-7576-2722
LATTES: lattes.cnpq.br/9847201110211140
8 Electrical Engineer (Master's Degree)
Evolution Institute of Science and Technology
alberto.alexandre@evolucaoinstituto.org.br
ORCID: orcid.org/0009-0003-1742-8652
LATTES: lattes.cnpq.br/1776411644533237

https://doi.org/10.56238/arev7n3-270

REVISTA ARACÊ, São José dos Pinhais, v.7, n.3, p.14833-14857, 2025

14834

transmitted in NB-IoT networks, with the aim of reducing the volume of this data without
compromising the integrity of the information, while at the same time while respecting the
memory and computing capacity constraints of these systems. The research used the
HEATSHRINK library, based on the LZSS algorithm, adjusting parameters such as the size
of the compression window (window_size) and the size of the lookahead (lookahead_sz2)
integrated with the BZ2 algorithm based on the Burrows-Wheeler Transform (BWT)
technique, to achieve a balance between compression rate, processing time and memory
consumption. The experiments revealed that intermediate configurations, such as
HSWB06_HSLB04 and HSWB06_HSLB05, achieved compression rates of up to 46.93% for
sets of 96 samples. Combined with a 21.15% reduction in the DLMS header, these
configurations resulted in a total compression gain of 68.08%. These parameters also had
moderate processing times, in the range of 525 ms, and a memory consumption of 200 bytes,
making them suitable for devices with limited resources. On the other hand, more extreme
configurations, such as HSWB10_HSLB09, showed inferior performance, with compression
rates below 40% and processing times of over 7,900 ms, making them unfeasible for systems
that require low latency. A strategic approach to allocating microcontroller resources was also
implemented. Original data was stored in FLASH memory, compressed data in RAM and
temporary buffers were managed by STACK, ensuring operational stability even under high
load conditions. The viability of these configurations was confirmed through memory analyses
carried out with the Build Analyzer tool integrated into STM32CubeIDE, which showed
minimal impact on the device's operations. The results obtained highlight the potential of the
HEATSHRINK library as an efficient solution for data compression in embedded devices,
provided it is properly adjusted to the specifics of the application. In addition, the study opens
up avenues for future advances, such as the integration of hybrid compression techniques
with machine learning, validations in real environments and adaptations for intermittent
transmission systems, such as NB-IoT and LoRaWAN networks. These improvements have
the potential to significantly expand compression applications in diverse sectors, including
energy, health and transport, promoting greater energy efficiency, robustness and reliability.

Keywords: Data compression. Embedded devices. IoT networks. STM32WBA52CE.

REVISTA ARACÊ, São José dos Pinhais, v.7, n.3, p.14833-14857, 2025

14835

INTRODUCTION

This study was conducted by the Evolução Institute of Science and Technology, in

collaboration with the North and Northeast Studies and Research Centre (NEPEN) and the

Federal Institute of Education, Science and Technology of Rondônia - IFRO, with the aim of

investigating and implementing more effective solutions for data compression in embedded

device networks.

The research focused on the use of the STM32WBA microcontroller, used in a NIC

with NB-IoT technology adapted for the WASION aMeter. The main purpose is to minimize

the volume of data transmitted on a daily basis without compromising the integrity of the

information, promoting less use of the frequency spectrum and savings in data usage, the

main parameter used by telephony operators to charge tariffs.

Wasion Group is a leader in advanced metering, smart distribution and energy

efficiency management solutions, operating in more than 50 countries. Founded in 2000 and

listed on the Hong Kong Stock Exchange since 2005, the company employs more than 6,000

people and invests around 9.4\% of its revenue in R&D, standing out for its technological

innovation. Its portfolio covers electricity, water and gas meters, telecoms systems,

renewable energy and smart distribution, with more than 100 million devices delivered

globally. Wasion has factories in strategic locations such as Mexico, Brazil and Hungary,

guaranteeing close service and 24-hour technical support. Recognized for its quality and

certifications such as CE and KEMA, the company collaborates with renowned brands such

as Siemens and ABB, reinforcing its commitment to energy efficiency and sustainable

innovation on a global scale.

The project proposes an innovative approach for the significant and lossless reduction

of data traffic, using the concept of energy mass memory. This involves the application of pre-

processing techniques to reduce the volume of information before compression, the adoption

of specific libraries for data compression and decompression, and integration with a web

application for transmitting and retrieving the information.

The structure of the paper is organized into six main sections. Section 2 presents a

literature review, exploring relevant studies that underpin the techniques and solutions

discussed. Section 3 describes the characteristics of the embedded hardware used in the

meters, their limitations and the specifics of the data collected and transmitted.

Section 4 details the technical developments carried out, including the algorithms and

libraries used, as well as the modelling and implementation of the experiments. Section 5

REVISTA ARACÊ, São José dos Pinhais, v.7, n.3, p.14833-14857, 2025

14836

discusses the results obtained, analyzing the effectiveness of the proposed solutions. Finally,

Section 6 presents the study's conclusions, highlighting its contributions and suggesting

possible directions for future work.

LITERATURE REVIEW

Data compression for embedded devices has been widely investigated in different

contexts, with a focus on improving energy efficiency, reducing the consumption of computing

resources and optimising the transmission of information. Ketshabetswe et al. (2021) carried

out a comparative analysis of compression algorithms aimed at wireless sensor networks

(WSN), highlighting ALDC (Adaptive Lossless Data Compression) and distributed

compression and data aggregation methods. This study resulted in the development of an

algorithm capable of reducing energy consumption by up to 76.8%.

In the field of textual data compression, Kodituwakku and Amarasinghe (2010)

evaluated lossless algorithms, identifying the limitations of LZW in large files and the robust

performance of the Huffman and Adaptive Huffman methods. In parallel, Sandoval et al.

(2020) introduced tensor decomposition to identify patterns and anomalies in power systems,

contributing to the efficient operation of these systems. Zhang et al. (2023) and Zhang (2023)

presented RSDC (Real-Time Synchrophasor Data Compression), a real-time technique that

has increased compression rates and reduced delays in power grids.

Smart meter studies highlight practical approaches. Santos et al. (2023) investigated

NB-IoT meters to reduce fraud in urban and rural areas, recording an increase of 134 kWh

per unit after installing protections, with 99% efficiency in data transmission. Meffe et al.

(2023) implemented a low-cost solution for remote monitoring with LoRaWAN, providing

improved coverage in hard-to-reach locations and greater effectiveness in detecting fraud.

Other contributions explored specific solutions for compression in embedded devices.

Lee et al. (2016) proposed a lossless method for mobile data tables, reducing file size without

jeopardizing accuracy. Moon et al. (2018) analysed lossy compression in spatio-temporal IoT

data, examining the trade-offs between data reduction and information integrity. Qin et al.

(2020) introduced the CZ-Array algorithm for long data streams on sensors with limited

resources, outperforming gzip and bzip2 in compression rates.

The adaptation of classic algorithms for IoT networks was also explored in Júnior and

Oyamada (2023) and Júnior et al. (2023) where they applied methods such as LZ77, LZ78

REVISTA ARACÊ, São José dos Pinhais, v.7, n.3, p.14833-14857, 2025

14837

and Huffman, achieving reductions of up to 22% in energy consumption and 70% in data

compression.

Finally, Malandrino et al. (2024) contributed approaches to smart cities and deep

neural networks. Gomes applied machine learning to sensor compression, improving energy

efficiency by 22% and reducing latency. Malandrino developed PACT (Predictive Adaptive

Compression Technique), dynamically adjusting compression in DNNs and significantly

reducing energy consumption.

While this research makes progress in optimizing data compression and energy

efficiency, it does not fully address memory constraints, a critical aspect for embedded

devices. Based on these studies, this work proposes an innovative solution to reduce the size

of files transmitted by controller boards, ensuring that memory consumption and storage

capacity remain compatible with hardware limitations during data compression and

transmission.

INFRASTRUCTURE

ABOUT HARDWARE

The STM32WBA is a 32-bit wireless microcontroller developed by STMicroelectronics,

designed to meet the needs of applications that demand Bluetooth® Low Energy (BLE)

connectivity and high energy efficiency. Equipped with the Arm® Cortex®-M33 core,

operating at up to 100 MHz, the device combines robust computing performance with

advanced security features such as TrustZone® and the Memory Protection Unit (MPU). In

addition, it supports DSP instructions and incorporates a Floating Point Unit (FPU), features

that make it suitable for digital signal processing, see figure 01:

Figure 01: Wasion meters: On the left is the complete meter, in the centre is the top of the STM32WBA
microcontroller, on the top right is the front of the microcontroller and on the bottom right is the back side
microcontroller.

Source: Author's own

REVISTA ARACÊ, São José dos Pinhais, v.7, n.3, p.14833-14857, 2025

14838

In the field of connectivity, the STM32WBA integrates a 2.4 GHz radio transceiver

compatible with BLE 5.4 and additional protocols such as Thread, Matter, Zigbee® and

proprietary solutions. The device's reception sensitivity is -96 dBm for BLE at 1 Mbps and -

97.5 dBm for IEEE 802.15.4 at 250 kbps, while the output power is programmable up to +10

dBm, in 1 dB increments, offering flexibility for various operating conditions.

As far as memory is concerned, the STM32WBA offers up to 1 Mbyte of flash memory

with error correction (ECC), 256 Kbytes of which can support 100,000 write cycles. It also

has 128 Kbytes of SRAM, 64 Kbytes of which are parity-checked. The version implemented

in smart meters, however, has a simplified configuration, with 512 Kbytes of flash memory

and 96 Kbytes of RAM, suitable for more restrictive applications.

The microcontroller is designed to operate in low power consumption environments.

In Standby mode, it consumes just 160 nA with 16 wake-up pins, and 6.5 A in Stop mode

with 64 Kbytes of SRAM, making it ideal for battery-powered devices.

In addition to low power consumption, the STM32WBA is equipped with a wide range

of peripherals. This includes a 12-bit ADC with a sampling rate of up to 2.5 Msps, low-power

comparators, 16- and 32-bit timers, and communication interfaces such as I2C, SPI, USART

and SAI. In addition, the device has a capacitive touch controller that supports up to 20

sensors, extending its versatility for touch-sensitive interface applications.

These specifications make the STM32WBA a highly adaptable and reliable solution,

ideal for applications ranging from the Internet of Things (IoT) to industrial systems. Its

combination of robust connectivity, energy efficiency and support for a variety of protocols

positions it as a strategic choice for projects that require high performance and efficient

operation in embedded devices.

ABOUT DATA

The study was based on the Wasion three-phase meter, in which data is transmitted

via a Network Interface Card (NIC) to a Data Collection Module (MDC). During this process,

the data relating to the meter's measurements is sent in the form of a mass memory frame,

structured as an array of bytes. This array encapsulates the information related to the

measurements taken by the device.

The DTSD341 three-phase energy meter, developed by Wasion, is a solution for

residential consumers and small commercial establishments, offering accurate and reliable

measurements, see figure 01. Certified with class 1.0 accuracy for active energy and class

REVISTA ARACÊ, São José dos Pinhais, v.7, n.3, p.14833-14857, 2025

14839

2.0 for reactive energy, the device supports voltage ranges of 3x120/240 V and 3x127/220 V,

with a tolerance of -20% to +20%.

Equipped with an integrated RF module for wireless communication and an optical

port option, the DTSD341 facilitates remote reading and parameter configuration,

guaranteeing operational efficiency. Its features include support for up to four different tariffs,

detailed load profile recording with data storage for 60 days (at 15-minute intervals), and

detection of events such as cover opening, current reversal and phase failures. Its large,

easy-to-read LCD display, with optional internal battery or supercapacitor support, ensures

data visibility even in the absence of power. In addition, data security is enhanced by

password-protected communication, while its compatibility with the IEC62056-21 protocol

guarantees adherence to international standards.

Table 01: Read mass memory hash

Read mass memory

0F0000000000010109290C6748E7E000308C00
00308A0000308B0000

Source: Author's own

For better understanding, the table 01 provides a detailed overview of the readings

captured, while the table 02 provides a detailed explanation of how this data is organized

and structured in the frame. These tables help visualize the format and interpretation of the

information transmitted by the three-phase meter, providing a clear overview of how the data

is generated, structured and sent for processing.

Table 02: Table of the mass memory read by the Wasion three-phase meter

Bytes Description

0F00000000000101 DLMS PDU header (fixed number of bytes and information)

09 Data type: Indicates that the data type contained in the frame is ‘octet-
string’

2A Indicates the size of the information

0C Mass Memory Template

6748E7E0 UNIX timestamp

00000000 totalizer general direct active energy A

00000000 totalizer reverse active energy general A

00000000 totalizer direct inductive reactive energy general qi

00000000 general reverse capacitive reactive energy totalizer qii

00000000 totalizer general reverse inductive reactive energy qiii

00000000 totalizer capacitive reactive energy direct general qiv

308C voltage a

0000 current a

308A voltage b

0000 current b

308B voltage c

REVISTA ARACÊ, São José dos Pinhais, v.7, n.3, p.14833-14857, 2025

14840

0000 current c

Source: Author's own

As the first bytes of the frame correspond to the DLMS header, which has a fixed

format, they can be discarded before the compression stage. This simplification reduces the

initial size of a read from 52 bytes to 41 bytes, resulting in a 21.15% reduction in the size of

the file to be transmitted.

With this initial implementation, the next step is to apply compression techniques to

the rest of the hash captured at each predefined time interval. This process aims to further

increase the gain obtained in reducing the volume of bytes transmitted, optimizing

transmission efficiency and ensuring greater savings in the use of system resources.

DEVELOPMENT

In order to evaluate and improve the performance of this work, an extensive literature

search was carried out in renowned sources, including the Data Compression Conference

(DCC), the IEEE (Institute of Electrical and Electronics Engineers) database, the CAPES

(Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) journal portal and the

proceedings of the 2024 SENDI (Seminário Nacional de Distribuição de Energia Elétrica).

The research focused exclusively on topics related to data compression in embedded

systems.

Based on the studies identified, algorithms were selected for the initial tests, prioritizing

those with the potential to meet the system's needs in terms of efficiency and performance.

Based on this selection, a detailed analysis of the compression applied to mass storage was

carried out, varying the amount of data processed. The aim was to find the best balance

between data volume, compression rate and algorithm performance. The results obtained for

each configuration tested are shown in figure 02.

Figure 02: Compression rate of the algorithms researched

Source: Author's own

REVISTA ARACÊ, São José dos Pinhais, v.7, n.3, p.14833-14857, 2025

14841

The analysis revealed a reduction in the volume of data transmitted ranging from 75%

to 80%, highlighting the relevance of the proposed implementation. It was also observed that

an increase in the number of files accumulated results in incremental gains in the

compression rate. However, the time interval needed to send the files proved to be a

determining factor in this process.

According to the system data, accumulating 100 readings in the mass memory

requires a period of approximately 24 hours. As the additional percentage gain in

compression does not justify the additional time needed to accumulate more data, it was

decided to standardize on a 24-hour interval as the basis for sending. This decision seeks to

balance compression efficiency and processing time, while maintaining the practical viability

of the system.

ABOUT THE BZ2 ALGORITHM

The BZ2 compression algorithm is widely recognized for its efficiency in lossless data

compression and is a frequent choice on Unix/Linux systems. Developed in the 1990s, it is

based on the Burrows-Wheeler Transform (BWT) technique, which reorganizes substrings to

facilitate compression. Compared to traditional methods such as ZIP and GZIP, BZ2 has

higher compression rates in many cases, making it an effective solution for storing and

transmitting data \cite{burrows1994bwt}. Its effectiveness comes from the combination of

advanced techniques, such as BWT, Move-to-Front (MTF), Run-Length encoding (RLE) and

Huffman encoding, which optimize the compression process Seward (2024).

How BZ2 works is made up of structured stages that maximize compression. Firstly,

the Burrows-Wheeler Transform (BWT) rearranges the characters in the text, grouping

repetitive patterns and preparing the data for the subsequent phases. Next, Move-to-Front

(MTF) converts characters into indices based on their frequency, maximizing symbol

repetition Cleary and Witten (1984). Run-Length Encoding (RLE) then compresses repetitive

sequences, such as turning ‘aaaaa’ into ‘5a’. Finally, Huffman Coding assigns shorter

sequences to the most frequent characters, further reducing the size of the data Knuth (1998).

Despite these advantages, BZ2 requires more memory and processing power, limiting its

application in systems with limited resources.

BZ2 is widely used in practices that require efficient compression. On Unix/Linux

systems, it is the standard choice for creating compressed files with a .bz2 extension,

especially in backups and logs, due to its ability to reduce the size of large files and facilitate

REVISTA ARACÊ, São José dos Pinhais, v.7, n.3, p.14833-14857, 2025

14842

their transfer Python Software Foundation (2024). In addition, BZ2 is ideal for compressing

large volumes of data before transmission, reducing costs and optimizing processes. Tools

such as tar offer native support for BZ2, integrating it efficiently into workflows.

In this study, BZ2 was assessed for its viability in embedded systems, analyzing the

use of ROM and RAM memory, as well as the operating cost. However, the nature of the data

to be compressed, stored in byte format, presented significant challenges. Many compression

algorithms are optimized to work with strings, hexadecimal values or floating point numbers,

while the data in this project required a specific approach. This limitation led to

experimentation with different libraries, looking for solutions that met the system's constraints.

After careful analysis, the decision was made to adopt the HEATSHRINK library,

available in the https://github.com/atomicobject/heatshrink repository. Developed for

embedded devices, HEATSHRINK is lightweight and efficient, designed to operate with data

formats such as bytes, meeting the specific needs of this project. The choice of HEATSHRINK

allowed the challenges posed by the original data to be circumvented and made it possible

to implement efficient compression in line with the limitations and demands of the system.

ABOUT HEATSHRINK

The Heatshrink library is a solution designed specifically for data compression and

decompression in embedded systems and real-time environments. Its main feature is its low

memory consumption, with minimum requirements of just 50 bytes, as well as its ability to

process data incrementally, optimizing CPU usage in a controlled and efficient manner. This

flexibility makes Heatshrink ideal for devices with limited resources, allowing static or dynamic

memory allocations according to the project's needs. The settings can be customized directly

in the heatshrink_config.h file, providing precise adjustments for different applications.

The library offers two forms of integration. The developer can directly incorporate the

encoding and decoding functions into the project or use the stand-alone command-line

programmed for independent operations. Operation follows a simple model based on a state

machine. The input data is supplied using the sink method, processed and retrieved using

the poll method, and finally the input is closed with the finish method. This cycle can be

repeated as many times as necessary, allowing incremental manipulation of the data.

With its efficiency and ease of use, Heatshrink stands out as a dynamic tool with a low

computational cost, making it a popular choice for embedded systems that require data

compression without compromising the device's limited resources.

https://github.com/atomicobject/heatshrink

REVISTA ARACÊ, São José dos Pinhais, v.7, n.3, p.14833-14857, 2025

14843

ABOUT CODE

To begin implementing the tests, we structured our algorithms in such a way as to

integrate the coding of the BZ2 algorithm with the libraries provided by Heatshrink. This

combined approach aims to leverage the advantages of both methods, optimizing data

compression in embedded systems.

The Table 03 presents the pseudocode that describes the logic used to implement the

data compression process. This structure details the fundamental stages of the algorithm,

demonstrating how the data is initially processed by BZ2 and then refined using Heatshrink.

This integration was designed to maximize efficiency while respecting the memory and CPU

limitations typical of embedded devices.

Table 03: Compression pseudo code

01 Use stdio.h
02 Use string.h
03 Use heatshrink_encoder
04 Use data_compress_app_layer.h

05 Define max_compressed_data
06 Create mass_memory_samples

07 Create compressed_data  0xff

08 Function compress_data (p_from*, from_size, p_to*, p_to_size*):
09 Initialize p_from*
10 Initialize from_size
11 Initialize p_to*
12 Wile (𝑥𝑖 ≤ 𝑥𝑛):

13 p_to*  𝑥𝑖
14 If p_to* ≥ max_compressed_data
15 Print(Error)
16 Break
17 Update p_to_size*
18 Return: p_to_size*

19 Function compress_data_test():
20 Initialize compressed_data
21 compressed_data ⟵ compress_data(mass_memory_samples)
22 Print compressed_data

Source: Author's own

The process seeks to detail the implementation of the data compression system using

the Heatshrink library, with an emphasis on simplicity and efficiency. Initially, fundamental

constants are defined, such as the maximum size allowed for the compressed data, as well

as basic structures, including the array mass_memory_samples to store the memory samples

REVISTA ARACÊ, São José dos Pinhais, v.7, n.3, p.14833-14857, 2025

14844

that will be compressed and the array compressed_data to contain the compressed results,

initially filled with default values.

The main function, compress_data, is responsible for performing the compression

iteratively. It takes as input the original data, pointers to store the compressed results and a

variable to record the final compression size. The flow of this function involves initializing the

encoder, processing the original data in blocks, and continuously extracting the compressed

data until all the content has been processed. In the event of errors during execution, specific

messages are displayed to ensure transparency and facilitate debugging. Once compression

is complete, the final size is updated, and the function returns the index of the last data

processed.

For validation and testing, the compress_data_test function uses the

mass_memory_samples array as input, displaying the returned index and the compressed

data in hexadecimal format directly on the console. This visualization makes it easier to

analyze and verify the results obtained.

The implementation also includes auxiliary functions based on the library components,

such as heatshrink_encoder and heatshrink_decoder, which are used for data compression

and decompression. In addition, robust error handling mechanisms have been integrated to

ensure that the process is reliable and secure, even in adverse scenarios.

With its modular and well-defined structure, this approach is highly suitable for

embedded applications that require efficiency and reliability in data compression, aligning

performance with simplicity of implementation.

The decompress_data table 04 function is responsible for decompressing the

previously processed data, ensuring that the compressed content is restored within the

specified limits. It takes as input the compressed data, the size of that data, a pointer to store

the decompressed data, the final size of the decompressed data and the maximum size

allowed for the output, ensuring that the process remains within the memory restrictions.

Table 04: Decompression pseudo-code

01 Use stdio.h
02 Use string.h
03 Use heatshrink_decoder
04 Use datacompressapplayer.h

05 Define 𝑚𝑎𝑥_𝑑𝑒𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠_𝑠𝑖𝑧𝑒
06 Function decompress_data(p_from*, from_size, p_to_size*, max_decompress_size):
07 Initialize p_from*
08 Initialize from_size
09 Initialize p_to*

REVISTA ARACÊ, São José dos Pinhais, v.7, n.3, p.14833-14857, 2025

14845

10 Initialize p_to_size*
11 Wile xi ≤ xn:
12 p_to* ⟵ xi

13 If p_to∗ ≥ max_decompress_size
14 Print(Error)
15 Break.
16 Update p_to∗
17 Update 𝑝_𝑡𝑜_𝑠𝑖𝑧𝑒∗

 18 Return: 0

Source: Author's own

The function starts by configuring the decoder and initializing the control variables,

such as the processing rate and the size intended for the decompressed data. To ensure a

consistent state, the decoder is restarted before receiving the compressed data, which is

gradually fed into smaller chunks. This split-into-fragments approach reduces the risk of

overloading memory, ensuring efficient processing that is compatible with the system's

limitations.

During each processing stage, the function carries out rigorous checks to identify

possible errors. If a fault is detected, error messages are displayed, facilitating diagnosis and

correction. At the same time, the processing index is continuously updated, keeping pace

with the progress of data handling. As the flow progresses, the decompressed data is

extracted in each iteration until all the compressed content has been completely processed.

At the end of the decompression process, the final size of the decompressed data is

recorded in the pointer provided, ensuring that the memory allocated corresponds to the

amount of information recovered. Finally, the function returns the value 0, signaling that the

operation has been successfully completed and that the original content has been restored

without errors or interruptions.

IMPLEMENTATION

The HEATSHRINK library uses a set of configurable parameters that directly impact

its efficiency in terms of compression and resource use. As described in the documentation,

the window_size parameter defines the size of the window, expressed as 2W bytes , and has a

direct influence on both memory consumption and the efficiency of the compression

algorithm. Another relevant parameter is lookahead_sz2, which specifies the maximum

length of repeated patterns, also defined as 2W bytes, with ideal values between 3 and

windowsize − 1. In addition, the input_buffer_size parameter determines the size of the input

buffer in the decoder, influencing the amount of data processed at each stage.

REVISTA ARACÊ, São José dos Pinhais, v.7, n.3, p.14833-14857, 2025

14846

In the experiments carried out, the initial setting for the

HEATSHRINK_STATIC_WINDO_BITS-(W) parameter was set to 4, gradually increasing to

10. Similarly, the HEATSHRINK_STATIC_LOOKAHEAD_BITS-(L) parameter was adjusted

from 3 to n-1, taking the maximum window_size value into account. Each experimental

battery included 30 different combinations of parameters. The test scenario was designed to

assess performance in two data collection contexts: the first with 96 measurements,

equivalent to 24 hours of readings taken at 15-minute intervals; the second with 144

measurements, corresponding to readings every 10 minutes over the same 24-hour interval.

This last scenario was called Collection Time (Tc).

The main objective of the experiments was to identify the configuration that would

provide the best balance between the time needed to send the data and the compression

efficiency, maximizing the cost-benefit ratio. The mathematical structure used to model the

configurations and analyse the results is formalized in equation 01, which describes the

methodological approach applied during the tests.

𝑇𝑖𝑗 = 𝑊𝑖𝐿j, (1)

where:

• 𝑖 = {4, 5, 6, ⋯ , 15}

• 𝑗 = {3, ⋯ , 𝑖 − 1} 𝑗 ∈ 𝑍.

• 𝑇 represents the Test

EXPERIMENTS

To organize the experiments, a factorial test design was adopted, represented by:

𝑇30 × 𝑇𝑐2,

resulting in 60 different tests, covering all possible combinations of configurations.

The HEATSHRINK library was used to evaluate its effectiveness in compressing mass

memory frames from a three-phase meter. Each frame contains 52 bytes, of which 41 bytes

are made up of useful data after removing the DLMS header, resulting in an initial reduction

of 21.42% in the volume of data transmitted. These frames include critical information such

REVISTA ARACÊ, São José dos Pinhais, v.7, n.3, p.14833-14857, 2025

14847

as the UNIX timestamp, active and reactive energy totalizers under different operating

conditions, as well as the voltages and currents corresponding to phases A, B and C.

The implementation of the HEATSHRINK library, based on the LZSS algorithm, made

it possible to adjust parameters that balance compression efficiency with system resource

consumption. The maximum value for the window_size parameter was limited to 10, due to

the device's memory restrictions, which is equivalent to a buffer of 2,048 bytes. The

experiment was designed to test various combinations of parameters, evaluating their impact

on memory usage, compression rate and execution time.

The embedded device used has significant memory limitations: 4,096 bytes available

for STACK, 2,048 bytes allocated for HEAP and 4,102 bytes free. In FLASH memory, the

device has 24,316 bytes. These resources were strategically allocated to ensure system

stability during the tests. The original data was stored in FLASH memory (.rodata section),

the compressed data was allocated in RAM (.noinit section), and the buffer required for library

operation was allocated locally in STACK.

The memory usage analysis, conducted with the help of STM32CubeIDE's Build

Analyzer, revealed that the inclusion of the HEATSHRINK library implied an increase in the

size of the .text section. Before the library was incorporated, this section occupied 146,204

bytes. After inclusion, usage increased to 148,912 bytes, representing an increase of 2,708

bytes. Of this total, 494 bytes were attributed to the functions created specifically for the tests,

while 2,214 bytes corresponded to the library itself. In addition, a variation in memory

consumption was identified as the window_size parameter was adjusted: for value 6, there

was an increase of 44 bytes; for 7, the increase was 212 bytes; and for values between 8 and

10, the increase varied between 216 and 220 bytes.

STACK's static analysis confirmed that local buffer allocation, when configured

properly, did not compromise the integrity of the system's memory. This validation was

essential to ensure that the configurations tested were suitable for real devices, guaranteeing

the reliability of operations without risk of failure. The results obtained are detailed in Table

05, providing a comprehensive overview of the impact of the proposed configurations.

Table 05: Results of the tests carried out, where α represents the size of the original data, β represents the

size of the compressed data, Δ represents the compression rate, t represents the time taken for compression
and SSA represents Static Stack Analyze.

Configuration

96 Samples 144 Samples
SSA

𝛼1 𝛽1 Δ𝛼1,𝛽1
 𝑡 𝛼2 𝛽2 Δ𝛼2,𝛽2

 𝑡

(bytes) (bytes) (%) (ms) (Bytes) (Bytes) (%) (ms) (bytes)

HSWB04_HSLB03 3840 2405 0,3737 439 5760 3674 0,36215 664 104

REVISTA ARACÊ, São José dos Pinhais, v.7, n.3, p.14833-14857, 2025

14848

HSWB05_HSLB03 3840 2258 0,4120 435 5760 3341 0,41997 661 136

HSWB05_HSLB04 3840 2311 0,3982 452 5760 3520 0,38889 687 136

HSWB06_HSLB03 3840 2120 0,4479 541 5760 3179 0,44809 809 200

HSWB06_HSLB04 3840 2038 0,4693 525 5760 3056 0,46944 786 200

HSWB06_HSLB05 3840 2045 0,4674 527 5760 3060 0,46875 789 200

HSWB07_HSLB03 3840 2144 0,4417 840 5760 3212 0,44236 1257 336

HSWB07_HSLB04 3840 2047 0,4669 821 5760 3070 0,46701 1228 336

HSWB07_HSLB05 3840 2061 0,4633 821 5760 3084 0,46458 1228 336

HSWB07_HSLB06 3840 2112 0,4500 830 5760 3160 0,45139 1243 336

HSWB08_HSLB03 3840 2175 0,4336 1400 5760 3268 0,43264 2103 592

HSWB08_HSLB04 3840 2064 0,4625 1383 5760 3102 0,46146 2074 592

HSWB08_HSLB05 3840 2087 0,4565 1392 5760 3127 0,45712 2087 592

HSWB08_HSLB06 3840 2140 0,4427 1396 5760 3206 0,44340 2092 592

HSWB08_HSLB07 3840 2223 0,4211 1502 5760 3328 0,42222 2247 592

HSWB09_HSLB03 3840 2207 0,4253 2532 5760 3320 0,42361 3799 1104

HSWB09_HSLB04 3840 2086 0,4568 2517 5760 3142 0,45451 3773 1104

HSWB09_HSLB05 3840 2115 0,4492 2547 5760 3173 0,44913 3811 1104

HSWB09_HSLB06 3840 2205 0,4258 2764 5760 3309 0,42552 4149 1104

HSWB09_HSLB07 3840 2243 0,4159 2767 5760 3365 0,41580 4153 1104

HSWB09_HSLB08 3840 2281 0,4060 2770 5760 3422 0,40590 4158 1104

HSWB10_HSLB03 3840 2244 0,4156 4712 5760 3380 0,41319 7030 2128

HSWB10_HSLB04 3840 2116 0,4490 4716 5760 3194 0,44549 7008 2128

HSWB10_HSLB05 3840 2178 0,4328 5254 5760 3290 0,42882 7931 2128

HSWB10_HSLB06 3840 2218 0,4224 5254 5760 3350 0,41840 7933 2128

HSWB10_HSLB07 3840 2258 0,4120 5257 5760 3409 0,40816 7936 2128

HSWB10_HSLB08 3840 2298 0,4016 5256 5760 3469 0,39774 7936 2128

HSWB10_HSLB09 3840 2338 0,3911 5265 5760 3528 0,38750 7948 2128

Average 2179 0,4325 2318 3276 0,43119 3483 957

Source: Author's own

The tests conducted with the HEATSHRINK library clearly demonstrated how the

settings of its parameters influence compression efficiency and the system's temporal

performance. During the evaluations, varying the window_size and lookahead_sz2

parameters revealed a direct relationship: configurations that adopted higher values for these

parameters resulted in higher compression rates, reflecting greater efficiency in data

compression. However, this gain was accompanied by a significant increase in the time

required for processing.

This behavior highlights the characteristic trade-off between compression efficiency

and performance, a central issue in the context of embedded systems. These devices operate

under severe resource limitations, such as memory and processing capacity, which requires

a careful balance when choosing configurations. Therefore, optimizing the parameters of the

HEATSHRINK library must consider not only maximizing compression, but also the need to

preserve the overall performance of the system, ensuring that it remains functional and

efficient within the constraints imposed by the hardware.

REVISTA ARACÊ, São José dos Pinhais, v.7, n.3, p.14833-14857, 2025

14849

DISCUSSION OF RESULTS

Among the results obtained, the performance of intermediate configurations stood out,

such as HSWB0_HSLB04 and HSWB06_HSLB05, which demonstrated a compression rate

close to 46.93% when processing 96 samples, with manageable execution times of

approximately 525 ms. These findings show that it is possible to achieve a suitable balance

between compression efficiency and temporal performance, making these configurations

viable for embedded systems that need to optimize resource use without significantly

compromising response time. See the figure 03.

Figure 03: Compress ratio comparation with 96 and 144 samples

Source: Author's own

In contrast, more extreme configurations, such as HSWB10_HSLB08 and

HSWB10_HSLB09, showed inferior performance, with compression rates below 40%. In

addition, the processing times for these configurations exceeded 7,900 ms when dealing with

144 samples, a value that makes it unfeasible to use them in applications that require low

latency or real-time responses. These results emphasize the importance of carefully

balancing the parameters to meet the specific demands of each application, especially in

embedded devices where hardware limits impose severe restrictions on the choice of

extreme configurations.

The tests also revealed that the number of samples processed directly impacts time

performance, while compression rates remain practically unchanged. When comparing

scenarios with 96 and 144 samples, a proportional increase in execution time was observed

as a function of the volume of data processed, see figure 04. These results indicate that the

HEATSHRINK library is scalable, allowing it to be used with different volumes of data without

REVISTA ARACÊ, São José dos Pinhais, v.7, n.3, p.14833-14857, 2025

14850

compromising compression efficiency. However, in our application and use case, time is not

a limiting factor, as it could take up to minutes since we will only be compressing once a day.

Figure 04: Time comparation with 96 and 144 samples

Source: Author's own

However, the impact on execution time highlights the need for precise adjustments to

configurations, especially in applications that demand reduced response times. This analysis

reinforces that while HEATSHRINK's scalability is an advantage, its application in embedded

systems must be carefully designed to ensure that performance meets specific operational

requirements while maintaining system stability and efficiency.

Analyzing the impact on memory usage revealed significant results, especially in more

robust configurations such as HSWB10_HSLB09, which demanded up to 2,128 bytes of

memory, see figure 05. This consumption represents a considerable challenge for embedded

devices, which are often characterized by limited resources. These findings emphasize the

importance of making careful parameter adjustments, considering not only compression

efficiency and execution time, but also memory consumption, a critical factor in ensuring the

stability and functionality of embedded systems in restricted operating scenarios.

REVISTA ARACÊ, São José dos Pinhais, v.7, n.3, p.14833-14857, 2025

14851

Figure 04: Memory usage with 96 and 144 samples

Source: Author's own

Based on the results obtained, configuration recommendations should be adapted to

the specific context of the application. For devices facing strict time and resource constraints,

intermediate configurations such as HSWB06_HSLB04 are more appropriate. These

configurations offer an advantageous balance, with efficient compression rates and

manageable runtimes. In this case, compression proved to be highly effective: by initially

reducing the header by 21.15% and applying an additional compression rate of 46.93%, a

final reduction of 68.08% was achieved, leaving the original file with only 31.92% of its initial

size.

In applications where maximum compression efficiency is a priority, configurations with

higher window_size and lookahead values can be explored, as long as memory consumption

remains within the acceptable limits of the hardware. In this way, it is possible to optimize the

performance of the HEATSHRINK library to meet both the compression demands and the

restrictions of each operating environment, guaranteeing the viability and efficiency of the

application in embedded systems.

The results obtained emphasize the importance of a detailed and careful analysis

when defining the parameters of the HEATSHRINK library for embedded systems. Proper

adjustment of these parameters is fundamental to achieving the ideal balance between

compression efficiency, processing time and memory consumption. This approach ensures

REVISTA ARACÊ, São José dos Pinhais, v.7, n.3, p.14833-14857, 2025

14852

that applications meet their specific demands without compromising technical feasibility or

operational efficiency, especially on devices with severe resource constraints.

The findings also highlight the need for a balanced parameterization of the library. In

scenarios where the priority is compression efficiency, higher values for window_size and

lookahead_sz2 proved advantageous, providing higher compression rates, even with the

increase in memory consumption and processing time. On the other hand, in applications

that require low latency, such as real-time systems, intermediate configurations of these

parameters were more suitable. These configurations achieved satisfactory compression

rates, with shorter execution times and less impact on RAM usage, making them ideal for

contexts where fast performance is essential.

The experiment showed that applying HEATSHRINK to embedded systems requires

a thorough understanding of the specific needs of the application, as well as the limitations

imposed by the hardware. The strategy of allocating the original data in FLASH memory and

the compressed data in RAM, combined with strict control over the library's parameters, made

it possible to explore its efficiency in different scenarios. This approach not only optimized

data storage and transmission, but also guaranteed system stability and performance, even

in resource-limited environments.

These results provide a basis for implementing compression solutions in embedded

devices. By balancing the configuration of parameters with the specific demands of each

application, it is possible to maximize the benefits of compression, guaranteeing the

functionality and efficiency of the system without compromising its stability. These findings

can serve as a valuable reference for the development and optimization of embedded

systems that require robust and scalable data compression solutions.

CONCLUSION

This study investigated the application of data compression techniques in embedded

systems, focusing on the use of the HEATSHRINK library to optimize the performance of

devices based on the STM32WBA microcontroller. The main objective was to develop an

efficient solution that met the resource constraints of this hardware, reducing the volume of

data transmitted without compromising the integrity of the information or the stability of the

system.

The tests carried out explored different HEATSHRINK parameter settings, with

adjustments to the window_size and lookahead_sz2 values to balance compression rate,

REVISTA ARACÊ, São José dos Pinhais, v.7, n.3, p.14833-14857, 2025

14853

processing time and memory consumption. Intermediate configurations, such as

HSWB06_HSLB04 and HSWB06_HSLB05, achieved a compression rate of approximately

46.93% when processing 96 samples, with execution times of around 525 ms and a controlled

impact on memory usage, limited to 200 bytes of RAM. Considering the additional reduction

provided by removing the header, the total efficiency reached 68.08%. These results

demonstrate that such configurations are suitable for embedded devices that require a

combination of good compression efficiency and manageable execution times.

In contrast, more extreme configurations, such as HSWB10_HSLB08 and

HSWB10_HSLB09, showed compression rates of less than 40%. In addition, processing

times exceeded 7,900 ms for 144 samples, while memory consumption reached 2,128 bytes.

These results emphasize the importance of careful analysis when choosing parameters,

particularly in systems with severe memory and latency restrictions.

The analysis also revealed that the volume of samples processed directly impacts

temporal performance, even if compression rates remain stable. This behavior indicates that

the HEATSHRINK library is scalable but requires precise adjustments to meet the specific

demands of each application. For scenarios requiring low latency, intermediate configurations

proved to be the ideal choice, offering an efficient balance between compression and

performance.

The technical feasibility of the experiment was ensured by strategically allocating the

STM32WBA's resources. With RAM memory limited to 4,096 bytes, the original data was

stored in FLASH memory, while the compressed data was allocated to RAM. The buffer

required for library operation was managed locally in the STACK, ensuring that the system

remained stable and free of memory overflows during the tests. The analysis carried out with

the STM32CubeIDE Build Analyzer confirmed that these allocation strategies made it

possible to integrate the HEATSHRINK library effectively, without compromising the device's

overall operations. These results provide a basis for applying data compression to embedded

systems, balancing efficiency and stability in different operating scenarios.

The results of this study confirm that data compression, in addition to significantly

reducing the volume transmitted, represents an effective solution for extending the life of

battery-powered devices, reducing energy consumption and optimizing bandwidth in IoT

networks. Considering the specific limitations of the STM32WBA, this work has proposed

optimized configurations that maximize the microcontroller's resources without compromising

its storage capacity or RAM during the data compression and transmission processes.

REVISTA ARACÊ, São José dos Pinhais, v.7, n.3, p.14833-14857, 2025

14854

As its main contribution, the study positions the HEATSHRINK library, combined with

compression algorithms, as a viable solution for compression in embedded devices, provided

that it is configured precisely and appropriately to meet the hardware constraints and specific

demands of each application. The results presented provide a basis for the development of

future implementations, while also suggesting the incorporation of hybrid techniques and the

use of machine learning to further improve the performance and efficiency of devices with

limited resources.

The advances made in this study offer a significant contribution to Wasion,

strengthening its position as a leader in smart metering and energy efficiency solutions. The

detailed analysis of the impact of data compression on embedded meters, especially the

STM32WBA, provides valuable guidelines for optimizing device performance without

compromising information integrity or operational stability. By demonstrating the viability of

HEATSHRINK as an efficient solution for reducing the volume of data transmitted, this study

makes it possible to implement more agile and energy-efficient systems, extending the life of

the meters and optimizing the consumption of computing resources. In addition, the proposed

configurations allow Wasion's devices to be better adapted to low-bandwidth communication

networks such as LoRaWAN and NB-IoT, extending the company's reach and

competitiveness in the global smart metering market. Based on the results presented, future

integrations with advanced techniques such as hybrid compression and machine learning

could further improve the efficiency of the company's embedded systems, consolidating its

capacity for innovation and meeting the growing demands for sustainable and scalable

solutions in the energy sector.

Recommendations for future work include exploring hybrid compression techniques

that combine classic algorithms, such as those used in this study, with modern methods

based on machine learning. Approaches such as compressed neural networks and adaptive

predictive models could be investigated to further optimize compression efficiency, especially

on devices with severe resource constraints. These solutions have the potential to identify

patterns in real time and adapt the compression process to the dynamic characteristics of the

data collected, providing greater flexibility and efficiency. We can also explore a practical

comparison with equipment in the field, analyzing efficiency before and after implementing

the algorithm.

In addition, we recommend investigating advanced memory management strategies

for embedded devices with even more limited resources than the STM32WBA, as well as

REVISTA ARACÊ, São José dos Pinhais, v.7, n.3, p.14833-14857, 2025

14855

new sample configurations and collection times. Methods such as dynamic memory

allocation and segmented buffers could be tested to offer greater flexibility in resource

management during data compression and sending. This line of research could include the

development of detailed metrics to evaluate the impact of compression on overall system

performance, providing a more comprehensive view of the benefits and limitations of the

proposed solutions.

Another area of interest would be the integration of compression techniques with

monitoring and predictive analysis systems, used in applications such as predictive

maintenance and anomaly detection. Combining efficient compression with predictive models

would not only reduce the volume of data transmitted but would also allow faults to be

anticipated and anomalous behavior to be identified with greater precision. This approach

would be particularly useful in industrial IoT networks, where reliability and efficiency are

crucial.

Finally, field validation of the optimized configurations proposed in this study is a

fundamental step in consolidating the theoretical and experimental results. Future studies

could carry out large-scale tests, simulating different operating conditions and assessing the

robustness, efficiency and reliability of the proposed solutions in real scenarios. This type of

practical validation has the potential to expand the applications of compression techniques in

sectors such as energy, health and transport, broadening the impact and relevance of the

contributions of this work.

ACKNOWLEDGEMENTS

We would like to thank Wasion Group, which believed in Evolução Instituto and its partners,

NEPEN and IFRO, to carry out this research and prototype the solution found. This research

was funded by Lei nº 8.387/1991 (Zona Franca de Manaus) Framed in articles 21 and 22 of

Decree No. 10,521, of 10/15/2020

REVISTA ARACÊ, São José dos Pinhais, v.7, n.3, p.14833-14857, 2025

14856

REFERENCES

1. BURROWS, Michael; WHEELER, David J. A Block-Sorting Lossless Data Compression

Algorithm. Digital Equipment Corporation, n. 124, 1994. Disponível em:
https://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-124.pdf.

2. CLEARY, John G.; WITTEN, Ian H. Data Compression Using Adaptive Coding and

Partial String Matching. IEEE Transactions on Communications, v. 32, n. 4, p. 396–402,
abr. 1984.

3. COSTANZI, Jean Eduardo; GUEMBAROVSKI, Ricardo Haus. Aplicação de Técnicas

de Mineração de Dados para Aprimoramento da Gestão do Sistema Elétrico de Baixa
Tensão. Seminário Nacional de Distribuição de Energia Elétrica (SENDI), 2023.

4. JÚNIOR, Javan Ataíde de Oliveira; CAMARGO, Edson Tavares de; OYAMADA, Márcio

Seiji. Data Compression in LoRa Networks: A Compromise between Performance and
Energy Consumption. Journal of Internet Services and Applications, v. 14, n. 1, p. 1–
15, 2023.

5. JÚNIOR, Javan Ataíde de Oliveira; OYAMADA, Márcio Seiji. Avaliando o impacto da

compressão de dados no desempenho e energia em redes LoRa. Seminário Nacional
de Distribuição de Energia Elétrica (SENDI), 2023.

6. KETSHABETSWE, Keleadile Lucia; ZUNGERU, Adamu Murtala; MTENGI, Bokani;

LEBEKWE, Caspar K.; PRABAHARAN, S. R. S. Data Compression Algorithms for
Wireless Sensor Networks: A Review and Comparison. IEEE Access, v. 9, p. 136872–
136882, set. 2021. Acesso em: 25 jul. 2024.

7. KNUTH, Donald E. The Art of Computer Programming: Sorting and Searching. v. 3.

Addison-Wesley, 1998.

8. KODITUWAKKU, S. R.; AMARASINGHE, U. S. Comparison of Lossless Data

Compression Algorithms for Text Data. Indian Journal of Computer Science and
Engineering, v. 1, n. 4, p. 416–426, out. 2010. Acesso em: 18 abr. 2024.

9. LEE, Jaemoon; GONG, Qian; CHOI, Jong; BANERJEE, Tania; KLASKY, Scott;

RANKA, Sanjay; RANGARAJAN, Anand. Error-Bounded Learned Scientific Data
Compression with Preservation of Derived Quantities. Applied Sciences, v. 12, n. 13, p.
6718, jul. 2022. Acesso em: 02 ago. 2024.

10. LEE, Wen-Han; CHEN, Min-Hua; LEE, Chen-Yu; LI, Yu-Liang. Lossless Compression

of Data Tables in Mobile Devices using Co-clustering. 2016. Acesso em: 12 ago. 2024.

11. MALANDRINO, Francesco; DI GIACOMO, Giuseppe; KARAMZADE, Armin;

LEVORATO, Marco; CHIASSERINI, Carla Fabiana. Tuning DNN Model Compression
to Resource and Data Availability in Cooperative Training. IEEE/ACM Transactions on
Networking, v. 32, n. 2, p. 1600–1615, abr. 2024. Acesso em: 18 abr. 2024.

REVISTA ARACÊ, São José dos Pinhais, v.7, n.3, p.14833-14857, 2025

14857

12. MEFFE, André; PRIETO, Mauricio Andrés Paez; GARCEZ NETO, Alvaro de Freitas;
TEODORO JUNIOR, José Raimundo. Solução de baixo custo para leitura e
gerenciamento remoto de unidades consumidoras dispersas com tecnologia
LoRaWAN. Seminário Nacional de Distribuição de Energia Elétrica (SENDI), 2023.

13. MOON, Aekyeung; KIM, Jaeyoung; ZANG, Jialing; SON, Seung Woo. Evaluating

Fidelity of Lossy Compression on Spatiotemporal Data from an IoT. Computers and
Electronics in Agriculture, v. 154, p. 304–313, nov. 2018. Acesso em: 19 ago. 2024.

14. PYTHON SOFTWARE FOUNDATION. bz2 Compression compatible with bzip2. 2024.

Disponível em: https://docs.python.org/3/library/bz2.html.

15. QIN, Jiancheng; LU, Yiqin; ZHONG, Yu. Block‐Split Array Coding Algorithm for Long‐

Stream Data Compression. Journal of Sensors, v. 2020, p. 1–22, 2020. Acesso em: 22
jul. 2024.

16. RIBERA NETO, Danilo; LEITE, Marcelo Antonio Ramos. Aplicação de Inteligência

Artificial no Processo de Análise dos Dados de Medição com Foco na Recuperação de
Energia. Seminário Nacional de Distribuição de Energia Elétrica (SENDI), 2023. Acesso
ao texto completo disponível no PDF fornecido pelo usuário.

17. SANDOVAL, S.; VARGAS, A.; ORTEGA, C.; VIDAL, Y. Three-way unsupervised data

mining for power system applications based on tensor decomposition. International
Journal of Electrical Power & Energy Systems, v. 123, p. 106241, out. 2020. Acesso
em: 12 ago. 2024.

18. SANTOS, Willian Garcia Viega dos; QUEIROZ COSTA, Juliana Vitória de;

SALUSTIANO DE OLIVEIRA, Rodrigo; CABRAL, Mayara de Oliveira. Medidores
Inteligentes com Tecnologia NB-IoT: Análise em Ambientes Urbanos e Regiões Rurais
com o uso de Blindagem. Seminário Nacional de Distribuição de Energia Elétrica
(SENDI), 2023.

19. SEWARD, Julian. bzip2 and libbzip2: A program and library for data compression. 2024.

Disponível em: https://www.sourceware.org/bzip2/.

20. ZHANG, Fang; LIU, Meiqian; ZHANG, Zixuan; HE, Jinghan; GAO, Wenzhong. Real-

time Synchrophasor Data Compression Technique with Phasor Interpolation and
Extrapolation. Journal of Modern Power Systems and Clean Energy, v. 11, n. 3, p. 803–
815, maio 2023. Acesso em: 18 abr. 2024.

21. ZHANG, Zhihua. The improvement of the discrete wavelet transforms. Mathematics, v.

11, n. 1770, 2023. Acesso em: 02 ago. 2024.

