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ABSTRACT  
This study proposes a machine learning-based system for capacity supervision and control 
in industrial automation. The solution integrates high-precision sensors, programmable logic 
controllers (PLCs) and a SCADA (Supervisory Control and Data Acquisition) system, 
allowing real-time monitoring and adjustment of manufacturing processes. The 
methodology included the development of a software in C# in the Visual Studio 2015 
environment, with an interface in a Mitsubishi CPU Q03UDV PLC, and the implementation 
of the system in a production line for practical evaluation. 
The results demonstrated the system's ability to maintain the process capability indexes 
(CpK) above the critical limits (1.33) through the automatic correction of deviations. Key 
highlights include efficient integration with industrial networks and dynamic adaptation to 
production variabilities. On the other hand, limitations were identified, such as the 
dependence on a robust infrastructure and challenges in environments with high 
electromagnetic interference. 
The discussion highlights the potential for scalability, application in other industrial contexts, 
and the inclusion of advanced algorithms, such as neural networks, to enhance predictive 
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capacity. Future work suggests exploring more affordable implementations for small and 
medium-sized businesses, integration with IoT for predictive maintenance, and 
sustainability assessments. This research contributes to the advancement of intelligent 
automation, promoting consistent quality and operational efficiency in manufacturing. 
 
Keywords: Supervision and control of industrial processes, Intelligent automation, Machine 
learning, SCADA, Industry 4.0. 
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INTRODUCTION  

Industrial automation is fundamental in the evolution of manufacturing, especially in 

the efficiency and precision of production processes. Since the beginning of the Industrial 

Revolution, the manufacture of all types of products has constantly sought ways to improve 

productivity and reduce operating costs.  

The emerging technologies of Industry 4.0 are the state of the art of this effort, 

especially in the application of Artificial Intelligence (AI), Machine Learning (ML) and Deep 

Learning (DL) in robotic systems. Assembly robots, one of the most sophisticated 

applications of automation, have demonstrated an exceptional ability to handle complex 

tasks with a high degree of precision. However, the inherent variability of automated 

processes still presents significant challenges to maintaining consistent process quality and 

capability (SOORI et al., 2024).  

In this journey, SCADA (Supervisory Control and Data Acquisition) systems have 

become mandatory components of manufacturing systems to monitor and control industrial 

processes, and increasingly aligned with modern automation projects through the 

interconnectivity between equipment and systems. This has created opportunities for the 

intensification of the development of AI and ML-based technologies.  

However, interconnectivity still has elements that need to be overcome, such as 

failures in communication protocols and vulnerabilities in security configurations, which can 

compromise the efficiency and reliability of production systems. Recent studies show the 

existence of interest in cyberattacks targeting SCADA systems, for data hijacking, strategic 

information capture, and even piracy, making the need for accurate monitoring of process 

performance a priority (NAGARAJ, et al., 2023).  

Added to all this context is the emergence of human-robot collaboration, represented 

by the use of collaborative robots (COBOTS), as one of the main trends in contemporary 

industrial automation. Designed to operate safely alongside humans, they combine the 

precision, accuracy, and consistency of traditional industrial robots with human flexibility 

and adaptability. The integration of COBOTS requires a new look at those of traditional line 

balancing methods, due to the weight that old and new variables, such as ergonomics and 

safety, start to play in the design of these lines (FATHI et al., 2024).  

Key capabilities for the continued evolution of factory automation in Industry 4.0, 

such as autonomous navigation, object recognition, and predictive maintenance, have 

benefited from the facilitation of AI, ML, and DL applications. Thus, the accelerated 
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development of areas such as Deep Learning (DP) Algorithms such as Convolutional 

Neural Networks (CNNs) enable robots to identify and classify objects with high accuracy 

and accuracy, while ML techniques are widely used to predict failures and optimize 

processes in real-time. These innovations not only increase the efficiency of industrial 

systems, but also provide greater adaptability to dynamic environments and changing 

conditions (ZAINEDIN et al., 2024).  

However, despite the characteristic anxiety of industries for quick solutions to 

increase efficiency, there is still a lot of research and development work for these 

innovations to be mature enough for their general application and not only in specific users, 

(FUZZY et al., 2023):  

• The need for large volumes of high-quality data to train AI/ML models is a known 

obstacle, especially in industries where the cost of data collection is high;  

• The reliance on robust hardware, coupled with high power consumption, imposes 

practical limitations on the widespread adoption of these technologies; and  

• Ethical and social challenges, such as the impact on employment and the economy. 

 

This study seeks to address some of these challenges by proposing the 

development of a process capacity supervision and control system based on machine 

learning. The solution integrates sensors, machine learning algorithms, and SCADA 

systems to monitor and adjust industrial processes in real time, ensuring that quality and 

efficiency standards are maintained, even in the face of variations in processes. 

Unlike conventional approaches, which often rely on static parameters, the use of 

machine learning allows the system to dynamically adapt to operating conditions, making it 

more effective in modern industrial environments. In addition, the development of fuzzy 

process capability indices has proven to be a promising solution to deal with uncertainties in 

industrial data and asymmetric tolerances. These indices offer a more robust and detailed 

analysis of process performance, contributing to more informed decisions about 

adjustments and interventions in production systems.  

Practical applications have demonstrated the effectiveness of this approach in 

sectors such as the automotive industry, where accuracy and reliability are critical for 

success (FUZZY et al., 2023). Finally, the study highlights the importance of a holistic 

approach to industrial automation, which takes into account not only the technical aspects, 

but also the social, economic, and ethical implications of emerging technologies. The 
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successful integration of AI, ML, and DL in industrial automation requires a balance 

between technological innovation and the responsible management of the associated 

impacts.  

 

THEORETICAL FRAMEWORK 

OVERVIEW 

Industrial automation, driven by Industry 4.0 technologies, stands out for the 

integration of intelligent systems for real-time monitoring and control. Programmable Logic 

Controllers (PLCs) play a central role, providing the flexibility and robustness needed for 

complex industrial environments. According to Borges (2009), PLCs are widely used due to 

their ability to integrate with sensors and actuators, ensuring high reliability in continuous 

operations. 

High-precision sensors, such as those used to measure dimensions in manufacturing 

processes, are essential for maintaining quality and consistency. According to Lugli and 

Santos (2015), modern sensors allow the collection of data in real time, being crucial for the 

automated control of processes in advanced production lines. 

In addition, SCADA systems have been widely used for supervision and data 

acquisition in industrial processes. UPADHYAY et al., 2020 highlight that the integration of 

SCADA with modern industrial networks, such as PROFINET, allows for real-time analysis 

and intervention, increasing operational efficiency. 

Process capability analysis (CpK) is widely recognized as a key metric for assessing 

compliance with specifications. According to Fuzzy et al. (2023), the calculation of CpK 

provides a clear view of the stability and efficiency of the process, and is widely applied in 

the electronics and automotive industry. 

On the other hand, reliance on robust infrastructure and vulnerability to 

electromagnetic interference are common challenges. SOORI et al. (2023) suggest that 

adopting machine learning algorithms can mitigate these challenges by providing greater 

accuracy and adaptability in harsh industrial environments. 

The scalability and applicability of the system across different industries are critical 

factors for the adoption of emerging technologies. Pinto and Sousa (2020) highlight that 

integration with IoT and predictive maintenance can transform industrial automation, 

allowing remote monitoring and more efficient interventions. 
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Finally, sustainability in industrial automation is also a relevant issue. FATHI et al. 

(2023) argue that artificial intelligence-based solutions not only increase efficiency but also 

reduce waste by promoting more sustainable industrial practices. 

 

CHALLENGES IN INDUSTRY 4.0 

Industrial automation, integrated with Industry 4.0 technologies, represents a 

milestone in the modernization of production processes. However, challenges related to the 

cost and availability of equipment remain important barriers to large-scale implementation, 

especially in small and medium-sized enterprises (SMEs). These challenges are 

compounded by rapid technological evolution, which often renders devices obsolete before 

they are even widely adopted. 

 

Cost Challenges 

The acquisition of high-precision sensors, state-of-the-art PLCs, and SCADA 

systems represents a significant initial investment. SOORI et al. (2020) highlight that the 

reliance on robust infrastructure and advanced technologies can be an obstacle for 

companies with limited budgets. Additionally, emerging technologies such as machine 

learning and artificial intelligence require specialized hardware, such as high-performance 

GPUs, which increase operating costs. 

The cost of maintenance is also a critical concern. Lugli and Santos (2015) point out 

that the need for frequent calibration of sensors and continuous software updating make 

systems more expensive throughout their life cycle. In addition, the implementation of 

industrial networks, such as PROFINET and EtherCAT, requires specialists, increasing the 

costs of training and hiring qualified personnel. 

 

Equipment Availability 

The availability of equipment in the global market is influenced by complex supply 

chains that are vulnerable to disruptions. UPADHYAY et al., 2020 (2023) report that recent 

events, such as the COVID-19 pandemic, have exacerbated the shortage of electronic 

components, negatively impacting the production and supply of essential devices for 

industrial automation. 

Another aspect is the concentration of specialized manufacturers, which limits 

competition and raises prices. Pinto and Sousa (2020) highlight that, in many regions, the 
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lack of local distributors makes it difficult to access modern equipment, forcing companies 

to import technologies at high costs and long delivery times. 

 

Impacts on SMEs 

For SMEs, which represent the bulk of businesses in emerging economies, these 

challenges are particularly significant. FATHI et al. (2023) suggest that creating low-cost 

solutions, such as sensors based on open technologies and streamlined industrial 

networks, can mitigate these barriers. In addition, infrastructure sharing initiatives and 

access to government funding programs have the potential to democratize automation. 

 

Potential Solutions 

To overcome these barriers, integration with Internet of Things (IoT) technologies and 

cloud-based platforms has emerged as a viable alternative ZAINELDIN et al., (2024) argue 

that cloud solutions allow access to high-performance resources without the need for large 

investments in on-premises hardware. In addition, predictive maintenance, enabled by 

machine learning algorithms, reduces costs by predicting failures and optimizing equipment 

usage. 

Another solution is the development of modular devices, which can be upgraded or 

replaced individually, reducing obsolescence costs. According to Fuzzy et al. (2023), this 

approach not only minimizes waste but also improves scalability, allowing companies to 

increase their capabilities gradually. 

 

Sustainability and Circular Economy 

In addition to reducing costs, adopting circular economy practices can improve 

equipment availability. Lugli and Santos (2015) suggest that the reuse and remanufacturing 

of devices, such as PLCs and sensors, can relieve pressure on the supply chain, making 

automation more accessible and sustainable. 

 

ETHICAL AND ECONOMIC DILEMMAS IN INDUSTRIAL AUTOMATION AND THE ROLE 

OF AI AND ML 

The integration of automation, artificial intelligence (AI), and machine learning (ML) 

into industrial processes has generated significant discussions about their ethical and 

economic impacts. While these technologies promise unprecedented efficiency, quality, and 
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scalability, they also raise concerns regarding the potential reduction of jobs and the 

economic inequality resulting from the replacement of human labor with automated 

systems. 

 

ETHICAL DILEMMAS 

1. Job Replacement: Automation and the use of AI in production processes, such as in 

the system described, where adjustments are performed automatically by PLCs and 

algorithms, reduce the need for direct human supervision. This, on the one hand, 

eliminates human errors and increases productivity, but on the other hand, it creates 

uncertainty for workers who previously performed these functions. According to 

RAMAIAH et al. (2019), the replacement of low-skilled jobs is an inevitable 

consequence of automation in labor-intensive industries. 

2. Economic Inequality: Companies that adopt these technologies tend to gain 

significant competitive advantages, but this can create a greater economic disparity 

between large corporations, which have the capital to invest in automation, and small 

and medium-sized companies, which struggle to keep up with this transition. 

3. Redefining the Human Role: Automation creates the need to rethink the human role 

in the industrial environment. Workers who previously operated machines need to be 

trained to perform more analytical and creative functions, such as monitoring data 

and managing automated systems. This requires significant investment in education 

and training, which is not always guaranteed. 

 

ECONOMIC DILEMMAS 

1. Employment Impacts: The reduction of direct jobs, particularly in sectors that rely on 

repetitive tasks, can lead to an increase in structural unemployment VAHDAT et al. 

(2024) note that while new positions are created in areas such as data analytics and 

systems maintenance, not all workers have access to the resources they need to 

upskill. 

2. Concentration of Wealth: Automation tends to concentrate profits in companies that 

successfully implement the most advanced technologies, while workers and small 

businesses face greater difficulties in adapting. UPADHYAY et al., 2020 (2023) 

highlight that this concentration of wealth can intensify social and economic 

disparities. 
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3. Transition Cost: Implementing and maintaining AI and ML systems requires high 

upfront investments. This presents an economic dilemma for many organizations that 

want to modernize their operations but lack sufficient financial or technical resources. 

 

MITIGATION AND FUTURE PATHWAYS 

1. Education and Reskilling: Investments in education for the reskilling of the workforce 

are essential. This includes programs that teach technical skills such as data 

analysis and programming, as well as behavioral competencies such as problem-

solving and creativity. 

2. Responsible Adoption of Automation: Companies can adopt a hybrid approach, 

combining automation with human oversight to create a more inclusive and balanced 

work environment. According to Pinto and Sousa (2020), keeping the human at the 

center of the process can minimize the social impact of automation. 

3. Public Policies: Governments can introduce tax incentives for companies that invest 

in reskilling programs and create regulations that promote a just transition. 

Additionally, measures such as taxing robots or subsidizing SMEs can help balance 

the economic impact. 

 

ETHICAL CONSIDERATIONS 

While automation increases efficiency, it's crucial to address the ethical dilemmas 

associated with reducing jobs responsibly. Developing strategies that prioritize social well-

being and economic inclusion, such as integrating corporate responsibility policies, can help 

build a more balanced transition. 

 

MATERIALS AND METHODS 

In this section, the materials and methods used to conduct the research are 

described, with the aim of providing sufficient detail for the study to be reproduced. The 

description covers the devices, tools, equipment, and systems employed, as well as the 

stages of the experimental process, data collection procedures, and statistical analysis 

used.  

The methodological planning was developed in order to ensure the accuracy, 

reliability, and validity of the results, considering the variables and specific conditions of the 

study environment.  
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All the methods adopted were carefully selected based on their adequacy to the 

research objective and their ability to answer the proposed questions. 

 

LOCATION AND PERIOD OF THE SURVEY 

The research was conducted on an automated production line of a manufacturing 

plant between the months of June and September 2023. The environment was selected for 

its serial production and advanced automation infrastructure, which allowed for real-time 

data collection and the implementation of automated adjustments. 

FAI91 piece: The object of study was the FAI91 piece, whose dimensions were 

monitored and adjusted automatically based on the technical specifications (minimum limit: 

86.973 mm; maximum: 88.133 mm; nominal: 87.628 mm. 

 

UNIVERSE, POPULATION AND SAMPLE 

The research universe comprised all FAI91 pieces produced during the study period, 

about 500 units per day, totaling 45,000 pieces. The sample was composed of 10% of the 

daily production, resulting in a final sample of approximately 4,500 pieces, representative 

for statistical analysis and evaluation of the quality of the process. 

For the development of the industrial automation system, intended for the monitoring 

and automatic adjustment of the manufacturing process of parts, the following materials 

were used: 

Computer and Software: A computer with Visual Studio 2015 software was used to 

develop the C# program responsible for controlling and automating the system. 

Visual Studio 2015 is an integrated development environment (IDE) from Microsoft, 

widely used to create applications in a variety of languages, including C#. In industrial 

automation, it offers a comprehensive set of tools that facilitate the development, 

debugging, and deployment of software that interacts with control systems, such as PLCs 

(Programmable Logic Controllers) and field devices, MICROSOFT (2024). 

With support for the .NET Framework, Visual Studio 2015 enables the creation of 

robust and scalable applications that are essential for complex industrial environments. In 

addition, its compatibility with automation-specific libraries and frameworks enables efficient 

integration with industrial protocols and SCADA (Supervisory Control and Data Acquisition), 

PINTO, and SOUSA (2024) systems. 
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Programmable Logic Controller (PLC): Equipment responsible for receiving 

automatic adjustment commands and implementing changes in the manufacturing process. 

A Programmable Logic Controller (PLC) is an electronic device that is widely used in 

industrial automation to monitor and control processes and machines. It functions as the 

brain of the automation system, receiving inputs from sensors, processing the data based 

on pre-defined programs, and sending commands to actuators. PLCs are designed to 

operate in harsh industrial environments and offer high reliability, flexibility, and ease of 

integration with other industrial devices, such as SCADA systems and industrial networks, 

(NEPIN, 2024). 

The Mitsubishi CPU Q03UDV is a central processing unit (CPU) belonging to the Q 

series of programmable logic controllers from Mitsubishi Electric. This series is recognized 

for its high performance and flexibility, being ideal for complex industrial applications with 

high processing speed, native connectivity to ETHERNET and SCADA communication, 

modularity and industrial resistance, (MITISUBISHI ELECTRIC, 2024). 

The electronic component assembly industry works on detailed confidentiality 

agreements about its components, production line configuration, and processes. Up to this 

point, naming the specification of the components used does not cause any prejudice to 

these contracts, but the specification of sensors, communication interfaces and network 

equipment may infringe the rules of these contracts, because they begin to indicate the 

level of performance required in the manufacturing strategy of each product. It is not the 

objective of this work to detail the functioning of these components, but rather to build a 

strategy for the measurement of quality indicators capable of correcting the performance of 

a line with a high degree of automation in process. Thus, from this point on the description 

of the equipment will be in terms of the types and principles of operation. 

Measurement Sensors: Image measurement sensors (dimensions and positioning), 

are known to be used in these applications, they are high quality devices when it is 

necessary to measure dimensions of manufactured parts in real time, ensuring continuous 

data collection.  

The choice of the type of measurement required (dimensions, positioning or surface 

inspection) and environmental conditions such as lighting and material characteristics. 

Leading brands in the market, such as Cognex, Keyence, Basler, and Omron, are widely 

recognized for their reliability in applications characteristic of the electronics industry: 



 

 
REVISTA ARACÊ, São José dos Pinhais, v. 6, n. 4, p. 16090-16112, 2024  

 
16101 

internal alignment, external dimensions, and finish quality of cell phone batteries, ensuring 

final products within specifications, (THOMAZINI, 2020). 

 

COMMUNICATION INTERFACE 

The communication interface is a critical component in automation systems, as it 

acts as the conduit that connects sensors, programmable logic controllers (PLCs), and 

automation software. Its main function is to allow the exchange of information between 

devices, ensuring that the data captured by the sensors is efficiently transmitted to the 

controllers and supervisory systems (SCADA).  

Communication interfaces are crucial in industrial automation, offering high 

transmission speed for real-time applications and low latency for quick responses to critical 

events. Its robustness ensures resistance to industrial interference, while reliability reduces 

failures and interruptions. In a factory, sensors measure the thickness of parts and send 

data to a PLC, which automatically adjusts parameters such as pressure or speed to ensure 

quality. 

Among the technologies, Modbus is simple and widely used, while PROFINET caters 

to applications that require high speed. OPC UA facilitates integration between devices 

from different manufacturers. These systems bring operational efficiency, flexible integration 

of new devices, and cost savings with fewer errors and manual interventions. 

 

INDUSTRIAL NETWORK 

 Industrial networks are communication infrastructures specifically designed to 

connect devices and systems in industrial environments, such as sensors, actuators, 

programmable logic controllers (PLCs), and SCADA systems. They ensure that data is 

exchanged reliably and in real time, even in harsh conditions such as high temperatures, 

electromagnetic interference, and vibrations.  

Industrial networks are essential in automation due to their high reliability, operating 

continuously with minimal communication failure. Its low latency ensures immediate 

responses in real-time controls, while security mechanisms protect against unauthorized 

access. With scalability to integrate new devices and robustness against dust, moisture, 

and interference, they are ideal for harsh industrial environments. An example is the 

connection between sensors and PLCs in automobile factories, which synchronize welding 
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robots with the position of the parts, ensuring precision and efficiency in the production 

process. 

 

Main logic blocks 

This work takes advantage of the opportunity of technological development that 

requires the improvement of business objectives, improvement of efficiency and 

manufacturing quality, made available in a robust and large-scale production line. All the 

components presented and mentioned have their fundamental principles known in the 

market, although specifically, due to the cost, they are not common in universities and 

laboratories. 

In this alignment, its development contribution is to demonstrate how all these 

components should be aligned, both functionally and in a programmable logic structure, in 

order to ensure the measure of interest, its quality and the calculation routine for 

automation and human interaction. 

This configuration can be visualized, for your general understanding, from the 

definition, location and explanation of three logical blocks. 

 

1st Logical Block: Integration and communication of line control, measurement systems and 

process validation 

This block comprises the integration of all the physical components of the proposed 

control system, on the existing assembly line itself. That is, a measurement system was 

built, with specific characteristics, on top of the existing system itself. This is expanding the 

inference about the control variables, in this case a specific measurement measure, and 

taking advantage of the robustness of the installed equipment. 

All the steps of configuring the PLC's communication with the industrial network are 

established: control and definition of the instance in the network, communication 

configuration (IP, communication ports and logic) and supervision of the system's 

connection to the Cloud. This set must guarantee the unique processing capability of the 

PLC (open/close) at the time of reading the measurement sensor (accuracy of 0.001 mm). 

Finally, the three data reading validity checks are established: device concurrency, 

data conversion, and spelling (ENUM). 

Table 1 shows the structure of this configuration. 
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Table 1 – Configurations of the Logical Block for integration and communication of line control, measurement 
systems and process validation. 

 
 

2nd Logical Block: Data Collection and Auto-Tuning 

This block works from the capacity established, in the previous block, to 

simultaneously locate, access and manage the control, the PLC and the sensors, in the 

correct order through the industrial communication network. 

Specifically, locating, commanding, and returning the sensor readings stored in the 

PLC and converting them to the analysis job format. In this process, possible reading errors 

are also identified through the spelling evaluation (ENUM).   

This entire set is built so that the performance of the process, from the measurement 

of the quota of the chosen component, can be compared with a pre-defined capability curve 

(CpK 1.33). The measurement history is used in the automatic correction of the process, in 

the previous stations of the line. 

Table 2 shows the structure of this configuration. 
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Table 2 – Logical Block Settings: data collection and automatic adjustment. 

 
 

3rd Logical Block: Data Analysis and Inference 

This block specifically takes care of the analysis of data after the monitoring and 

process adjustment actions, with three objectives: 

• Evaluation of general trends, variations, and potential causes of process deviations. 

This is done using Descriptive Analysis strategies; 

• Verification of the consistency of CpK values and the impact of external variables 

such as different work shifts. This is done by means of statistical, parametric and 

non-parametric analysis; and 

• Search and identification of relationships between the results (set of measurements, 

statistics and calculation of CpK) and the operating conditions. This is done through 

regression analysis.  

 

Table 3 shows the structure of this configuration. 
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Table 3 – Logical Block Configurations: data analysis and inference. 

 
 

The methods described were implemented and tested in a real industrial 

environment, allowing a detailed analysis of the effectiveness of the proposed system.  

The data collected during the validation period provided valuable insights into the 

performance of the automated control, especially in maintaining the dimensional conformity 

of the manufactured parts.  

Next, the Results section presents an analysis of the performance of the system 

developed and implemented, highlighting the efficiency of the system in ensuring the 

stability of the production process, as well as the adjustments made to optimize the 

operation in real time. 

 

RESULTS 

The general objective of the technological development project to which this article 

corresponds was fully fulfilled, as the implementation of a supervisory and process capacity 

control system was achieved, using the structure of the production system already 

implemented and taking advantage of its robustness for the implementation of machine 

learning routines. 

Figure 1 shows the entire architecture of the supervision and control system, 

installed on the components of the line, associated with the components of the three logical 

blocks presented in the description section of the methodology. 

  



 

 
REVISTA ARACÊ, São José dos Pinhais, v. 6, n. 4, p. 16090-16112, 2024  

 
16106 

Figure 1 – Schematic representation of the architecture of the supervision and control system. 

 
 

This construction allowed the production line managers to: 

• Access and accumulate enough data for machine learning to be able to effectively 

adjust the production parameters for CpK correction, within the expected 

performance limits (CpK 1.33), including failure rate and the required response time 

for the stabilization of the adjustments associated with the number of parts to be 

reworked; 

• Relate, through machine learning (statistical and regression analysis, in real time) 

the dimensional errors to the set of process parameters and promote the appropriate 

adjustment, compensating for external variables beyond the possibility of control, 

including calibration of the data reading, the set of servo motors for adjustment and 

data filtering (transmission noises),  once again isolating false results of low CpK; 

• Improve the reliability of the reduction of failures, the value of response time to 

adjustments and, with this, guarantee of the quota of the measure in question and 

the consequent optimization of product quality; and 

• Finally, to make the supervision and adjustment of a critical process independent of 

human action, depending on the limits of adjustment of the quota of the measure in 

question, significantly reducing the number of components out of quality due to non-

action in the correction at the necessary time, or in an erroneous way. At the same 
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time, it provides worked and validated data for the human interface to seek assertive 

improvement paths. 

This set of results showed that it is possible to build, on the already installed 

components of a robust electronic component assembly line with a high degree of 

automation, an advanced statistical process control (SPC) system that calculates the 

process capacity index (CPK) in real time. The data analysis takes place from data 

formatted in a .csv file, verified in relation to access and transmission errors to the control 

(Cloud), which identifies which parameter values are out of specifications and automatically 

adjusts the performance of the set of positioning servo motors, correcting deviations without 

human intervention. The routine of data manipulation, from its capture as electrical impulses 

to its conversion into a high-level data manipulation (.csv) file is an important achievement 

of the work, because it demonstrates that all the noises (electromagnetic, mechanical and 

environmental) inherent to a complex and extensive automated production line can be 

isolated,  without the acquisition of new equipment. 

Figure 2 shows the configuration of the system monitoring dashboard and its key 

components: 

• The CpK control history, recalculated for each part and which immediately enables 

the identification of extreme variations in the process that can put the integrity of the 

entire line at risk (table to the left of the reader – "CPK FAI9I Control"); 

• The process data in relation to the batch in production (central tanela – "Process 

Data"), where the CpK of the whole batch is displayed against its position relative to 

the boundary lines (USL & LSL) and the nominal value;  

• The field for accessing the CpK status and the adjustment decision (table to the right 

of the reader – STATUS CpK – TARGET 1.33); and  

• In the lower field of the screen, the CpK control chart, an essential tool for starting 

the search for ways to improve. 
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Figure 2 – Configuration of the monitoring panel, with process under control 

 
 

This is the screen that shows the process under correct working conditions and 

without the need for automatic adjustment. 

Figure 3 shows the same configuration as the monitoring dashboard, but in the 

situation where the process has started to show a tendency to overshoot the process upper 

limit (USL).  

 
Figure 3 - Configuration of the monitoring panel, with process outside the established limit and automatic 

adjustment action. 

 
 

This set of results demonstrates the validity of the initial idea, by demonstrating its 

ability to maintain the conformity of the process, even in the face of variations in the 
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parameters of the production process. The process capability (CpK) metrics proved to be 

consistent for this objective, showing that there are still development paths for the 

identification of data patterns.  

In the following section, the implications of this construction will be discussed, as well 

as its limitations and opportunities for future applications in different industrial contexts. 

 

DISCUSSION 

The results obtained confirm the feasibility of the system proposed for industrial 

automation, highlighting its ability to monitor and adjust production processes in real time. 

The integration between high-precision measurement sensors, the programmable logic 

controller (PLC) and the developed automation software proved to be effective in 

maintaining the process capacity indices (CpK), overcoming critical limits at times of greater 

variability. This approach contributed significantly to the stability of the process and the final 

quality of the manufactured parts. 

 

INTERPRETATION OF RESULTS 

The CpK values calculated throughout the experiment indicated that the system was 

able to react quickly to variations in the production process, adjusting critical parameters 

such as pressure and speed with high precision. This behavior underscores the importance 

of using machine learning algorithms and real-time control as key tools for modern 

automation. However, the reliance on advanced technological infrastructure, such as high-

precision sensors and robust industrial networks, presents scalability challenges, especially 

for small and medium-sized businesses that may not have access to such resources. 

 

STUDY LIMITATIONS 

Although the system has shown promising results, some limitations have been 

observed. First, the analysis was conducted in a specific production environment, with well-

defined characteristics. The applicability in production lines with greater complexity or with 

greater variability in materials and processes still needs to be investigated. In addition, the 

reliance on stable communication between sensors, PLC, and software can compromise 

performance in environments with significant interference, such as factories with high 

electromagnetic load. 
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SUGGESTIONS FOR FUTURE WORK 

Based on the results and the limitations observed, the following directions are 

suggested for future research: 

1. Exploration of New Algorithms: Investigate the use of more advanced machine 

learning algorithms, such as convolutional neural networks (CNNs), to improve 

pattern detection and failure prediction in industrial processes. 

2. Multi-Sector Application: Evaluate the performance of the system in different 

industrial sectors, such as the automotive sector and the food industry, which have 

different demands for automation and quality control. 

3. Reduction of Technological Dependence: Develop solutions that use sensors and 

devices at a more affordable cost, making the system more attractive to small and 

medium-sized companies. 

4. IoT Integration and Predictive Maintenance: Explore system integration with 

Internet of Things (IoT) platforms to enable remote monitoring and predictive 

maintenance, increasing efficiency and reducing unplanned downtime. 

5. Sustainability Assessment: Investigate the environmental and energy impacts of 

the system, with the aim of making it more sustainable, reducing energy 

consumption and material waste. 

 

PRACTICAL IMPLICATIONS 

The research reinforces the crucial role of intelligent automation in the modernization 

of the industry, offering solutions that increase productivity and quality. However, its 

implementation requires careful planning to ensure that the technological benefits are 

accompanied by economic and social considerations, including the impact on the workforce 

and sustainability. 
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