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ABSTRACT 

The collection and interpretation of electroencephalogram (EEG) signals are laborious and time-

consuming activities, requiring a trained specialist to perform them. Automatic detection of epilepsy 

may be a solution. However, research on the subject has focused on detecting specific, non-

generalized epilepsies in a larger patient population. Decomposition of signals, through singular 

spectrum analysis, of records of patients with epilepsy for subsequent verification of the energy limit. 

These records were available in a publicly accessible signal bank. The use of different weights to 

calculate means and standard deviations of the energy series and different sample sizes contributed to 

improve the diagnosis. 
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INTRODUCTION 

Classified as a neurological disorder that affects the brain, epilepsy affects about 50 million 

people worldwide, leading to reduced productivity and imposing restrictions on daily life (BERGIL; 

YILDIZ, 2016). Its diagnosis given by neurophysiologists is based on the visual analysis of the 

rhythmic fluctuations of the brain described by the electroencephalogram (EEG).  

It turns out that, as described in Bajaj and Pachori (2013) and Scolaro (2014), diagnosing 

abnormal EEG patterns through visual analysis is a laborious and time-consuming activity. This is 

because it requires the reading of up to 21 channels that are viewed on 10-second screens. In addition 

to being laborious and time-consuming, it can also, due to subjectivity, present different analyses 

when performed by experienced neurophysiologists (SCOLARO, 2014). 

In order to reduce the workload, some techniques (OROSCO et al., 2009; BAJAJ; PACHORI, 

2013; SCOLARO, 2014; BERGIL; YILDIZ, 2016) on automatic detection of abnormal patterns in 

EEG are proposed in studies on the subject. Through different methodologies, they make use of 

signal decomposition models, which treat the rhythmic fluctuations of the brain, from which the 

trend, harmonic and noise components are extracted. Then, classifiers of the characteristics of these 

components identify the patterns. The importance of these models is seen in the description of the 

application of discrete wavelet transform (TDW), singular value decomposition (DVS), empirical 

mode decomposition (DME) in addition to principal component analysis (PCA) (ALOTAIBY et al., 

2014). 

There is no doubt about the contribution of signal decomposition models to the automatic 

detection of abnormal EEG patterns, however, the use of singular spectral analysis (AES) in 

investigations (SHAHID et al., 2013; PARVEZ; PAUL, 2014; THANARAJ; CHITRA, 2014) for the 

detection of abnormal EEG patterns, whose epilepsies are classified as generalized, did not present 

the best performances when compared to the use of DME and TDW models (OROSCO et al., 2009; 

BAJAJ; PACHORI, 2013; BERGIL; YILDIZ, 2016). 

Based on searches carried out in national and international journals, no investigations were 

found on the identification of abnormal EEG patterns, whose epilepsies are classified as generalized, 

through the multivariate singular spectral analysis (AESM) model. 

Although the characteristics of the signals through the AES are extracted, corresponding to 

the underlying physiological phenomena, when considering the multivariate analysis, the common 

harmonics are identified, ensuring more consistent information on the frequency (SANEI; 

HASSANI, 2016). Thus, it is expected that through its use, abnormal patterns in the EEG of 

epilepsies classified as generalized will be identified, useful to the automatic detection process, 

through the manifestations of greater variability of the signs. 
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Therefore, in order to contribute to investigations on the identification of abnormal patterns in 

the EEG whose epilepsies are classified as generalized, the multivariate singular spectral analysis 

model is applied to the EEG recordings and, then, the minimum duration energy limit is calculated in 

order to improve the performance of the identification of these patterns. 

 

MULTIVARIATE SINGULAR SPECTRAL ANALYSIS 

The first investigations on the AESM model were made with climate-related data and 

represented by nearby localities or regions on a map (KEPPENNE; GHIL, 1993; PLAUT; 

VAUTARD, 1994). Then, the work carried out was applied to economic data, such as Patterson et al. 

(2011), as well as to the production of different industrial segments, according to Hassani and 

Mahmoudvand (2013) in addition to Pinheiro and Senna (2015).  

In its presentation, the multivariate analysis model consists of the complementary stages: 

decomposition and reconstruction (HASSANI; MAHMOUDVAND, 2013). The first complementary 

stage is formed by the embedding and DVS steps, and the reconstruction stage is given by the 

grouping step, responsible for grouping the signal components excluding noise, in addition to the 

average diagonal step. 

The embedding step can be considered as a mapping that transfers a set M  of signals, with 

length N  or quantity of observations in the period investigated, one-dimensional ( ) ( ) ( )

1 ,...,i i i

NY y y= , to 
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with L  corresponding to the length of the window and 1+−= LNK  the number of columns of the 

matrix trajectory )(iX . Vectors ( )i

jx  are called lagged vectors. 

By using a set M  of signs, as described in Hassani and Mahmoudvand (2013), the length of 

the window L  can be an integer 1 ( 1)L N M= + + . The result of the embedding step is the formation 

of the block of matrix trajectories VX , as follows: 
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The path matrix block VX  represents a vertical format, that is, the trajectory matrices are arranged 

vertically, one below the other. In the literature they are also arranged horizontally or side by side, 

however, for Hassani and Mahmoudvand (2013) the vertical format better considers the effect of 

cross-correlation and orthogonality issues, and is therefore applied in this investigation. 
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In DVS para T
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LMVV 
 ,...,

1
 the eigenvalues of T

VV XX  in decreasing order of 

magnitude ( )0...
1


LMVV   and by 

LMVV UU


,...,
1

 the orthogonal eigenvectors. The matrix T
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Whereas: 
i i i i

T

V V V VE U V=  

 

DVVV EEX ++= ...
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where 
i i i i

T

V V V VE U V=  represents a block of elementary matrices, 
iii VV

T
VV UXV = , the set 

ViVV VU
ii
,,  as eitriple, and max{ 0}

iVD i =  , that is, the number of nonzero eigenvalues T
VV XX  . 

The grouping step corresponds to dividing the matrices of the elementary matrix blocks 

DVV EE ,...,
1

 into disjoint groups by summing them within each group. The unfolding of the set of 

indices  DJ ,...,1=  into disjoint subsets mII ,...,1  corresponds to the representation: 

 

mIVIVV EEX ++= ...
1

        (04) 

 

com 
mIVIV EE ,...,

1
 defined as blocks of resulting arrays. 

As a simple case, for the frequency domain, which presents the components of the signal, two 

groups of indices are used, according to  aI ,...,11 =  and  DaI ,...,12 += , the first group associated 

with trend and harmonic and the second with noise, with a  an integer greater than 1. Thus, the 

matrices of the resulting matrix block must be further converted to a vector 
( )i

Ny  by means of the 

diagonal mean step. 

If we consider the one-dimensional sign ( ) ( ) ( )

1 ,...,
T

i i i

NY y y =    , the same will be given by: 
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More information about the model can be seen in Hassani and Mahmoudvand (2013). 

 

MATERIALS AND METHOD 

The dataset used in this study was extracted from 171 files with a total of 181 epileptic 

events. These events were identified by experienced neurophysiologists and available in the Institute 

for Signal and Information Processing (ISIP) database. 

The signals were used with a butterworth filter  with a bandwidth of 0.5 to 25 Hz, as this is 

the pathological frequency range (RUNARSSON; SIGURDSSON, 2005; PARREIRA, 2006; YOO et 

al. 2013; SCOLARO, 2014). The application of the filter is defined in the literature as pre-

processing. Then, the pre-processed signals (sampling at 256 Hz) were decomposed using the AESM 

model. 

The proposed methodology is given in three stages: preliminary adjustment, training and 

testing. 
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For the purposes of the investigation, the multivariate decomposition of the signals was 

obtained by calculating the elemental matrices for each channel. After preliminary adjustment, it was 

concluded that the first 10 elementary matrices (converted into 10 subsignals through the diagonal 

mean) contributed to the detection of abnormal EEG patterns, and were thus used. This is due to the 

fact that the first matrices can explain the greater variability of the signal (GOLYANDIN; 

KOROBEYNIKOVA, 2013). 

Considering that ( )i

Ny  it represents a sub-signal obtained from the elemental matrix, each of 

them will be used for the calculation of energy, as follows: 

 

/2 1 ( ) 2

/2 ( 1)* ( 1)*2

1
( )

j

f H i

seg NH f j H j
E y

H

+ −

− + − − −
=        (07) 

 

with seg  the segment number being an integer given in the interval 1,2,..., ( 2) 1j sr ti H=  − , sr  

the sampling rate, ti  the time interval used in seconds, H  the extent in samples of the moving 

overlapping window for the energy calculation, and f given by (( 2) 1)*H j− .  

For illustrative purposes, considering ti  equal to 10 seconds or 2560 samples, 101 segments 

are formed. The first segment defined by samples 1 to 50, the second segment from 26 to 75 and so 

on to define the energy at (07) for each of the 101 segments. 

In the investigation H  , it corresponds to 20.3125% of the sampling at 256 Hz, with the 

intention of capturing the effects of abnormal EEG patterns (sharp waves and spikes), since these 

patterns are located in intervals of 80 to 200 milliseconds. 

Based on the energy, the minimum duration energy limit for each segment (OROSCO et al., 

2009) is given by:  

 

1,0 ( ) 1,5 ( ) seg segstandard dT thr me oan E evia i n E=  +     (08) 

 

with ( )segmean E  and ( ) segstandard devi n Eatio  corresponding to the mean and standard deviation 

of ith  the  energy series, of the EEG channel analyzed, while 1 and 1.5 the respective weights. 

After the definition of the energy based on the movable overlapping window, an event will be 

considered epileptic (BAJAJ; PACHORI, 2013), as part of the series of energy that surpasses Thr . 

The authors sought to determine the events present in the energy of each channel and then identify 

whether the energy exceeded the limit given in (08). 

Also in the preliminary adjustment stage, it was found that when the energy obtained exceeds 

this limit in at least 8 sub-signals of the first 10 chosen, the analyzed interval presents abnormal EEG 
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patterns. Figure 1 shows when the energy of one of the sub-signals investigated is greater than Thr , 

defined by the dashed line. 

 

Figure 1 – Epileptic event detection through the minimum duration energy limit defined by the dashed line 

 

 

Next, an interchannel decision is made, i.e., the channels in which the minimum duration 

energy limit has been exceeded in at least 8 sub-signals are chosen. Based on the methodology 

applied by Orosco et al. (2009), which seeks to identify the same behavior (energy higher than the 

minimum duration energy limit) between channels, also in the preliminary adjustment stage of this 

investigation, it was found that when this behavior occurs in at least 3 channels of the available 

channels, the interval is considered epileptic. 

Contrary to the energy limit being defined by fixed weights for mean and standard deviation, 

according to (08), the weights for mean and standard deviation were defined for amplitude ranges of 

the EEG channel analyzed. This is due to the fact that the correct definition of thresholds plays an 

important role in the performance of the automatic detection of abnormal EEG patterns.  

The definition of weights by amplitude ranges, in the training stage, is given by the 

application of an optimizer with evolutionary mechanism (Solver package in Program R) taking into 

account a function with the objective of maximizing the number of true-positive (PV), having as 

decision variables the weights and as a constraint that the sensitivity index (the sensitivity index 

indicates the ability of the proposed methodology to identify abnormal EEG patterns when they are 

are present) is greater than 95%, i.e., to identify abnormal EEG patterns when they are present.  

From the available database, 50% of the intervals in which the existence of abnormal EEG 

patterns is known, duly identified and described in the database, was chosen. 

After this stage of training with a proposal for improvement, for the test stage the other 50% 

of the database was used and all events marked as epileptic events made by neurophysiologists and 

available in the database. The use of this set allows us to verify the generalization of the proposed 

methodology.  

For the purpose of comparison between the performances obtained, fixed weights for the 

mean and the standard deviation were also used in the calculation of the minimum duration energy, 

as described in (08).  

Seconds en
er
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In the literature, the specificity index indicates the ability to identify normal EEG patterns 

when present. In this way, the findings of the methodology were compared with the markings made 

by the neurophysiologists. 

 

RESULTS AND DISCUSSIONS  

Table 1 shows the weights obtained in the training phase with a proposal for improvement, 

responsible for the highest sensitivity and specificity indexes. 

 

Table 1 – Weights by amplitude range 

Range 

Amplitude 

in μV 

Weight 

average 

Weight 

Detour 

Pattern 

-20 to 0 6.0 2.6 

-40 to -20 5.2 4.0 

-60 to -40 7.8 2.9 

-80 to -60 8.3 5.4 

-100 to -80 1.2 7.7 

-120 to-100 2.7 8.9 

-140 to -120 6.7 0.8 

-160 to -140 6.5 2.0 

-180 to -160 1.7 5.9 

-200 to -180 8.0 3.1 

-220 to -200 5.9 0.0 

-240 to -220 0.0 8.0 

-260 to -240 5.0 6.6 

-280 to -260 4.4 8.0 

-300 to 280 3.0 7.4 

-320 to -300 4.0 6.3 

-340 to -320 1.8 4.5 

-360 to -340 4.7 8.6 

-380 to 360 3.8 3.8 

-400 to -360 7.1 4.0 

below -400 9.5 4.3 

μV - millionth of a volt 

 

Figure 2 shows the Receiver Operating Characteristic (ROC) curves for the versions with 

fixed weights (panel A) and weights for different amplitude ranges (panel B). Through the curves it 

is possible to identify the discriminating power of the proposed diagnostic methodology, whose best 

value corresponds to 0.96. 
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 Figure 2 – ROC curves with weights by fixed values and weights by amplitude range, respectively from top to 

bottom, and it is possible to identify in the curves the ordered pairs that describe the behavior of the diagnostic indices, 

with the optimal combination of sensitivity and specificity located at the top and left of the figures. 

 

 

 

 

In addition to Figure 2, in Table 2, the diagnostic indices help to confirm the best 

performance for the proposed investigation based on weights by amplitude ranges with 97% 

sensitivity and 95% specificity when compared with those obtained based on fixed weights. With 

weights of 1 for mean and 1.5 for standard deviation, in any range of amplitude, the results obtained 

were 93% sensitivity, 94% specificity, and AUC of 0.94. 

 

 
 

 

 

 

Table 2 – Results obtained by the proposed method and in other investigations 
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Performance 

indexes 

 

 

 

Proposed 

method 

weights by 

amplitude 

ranges 

Proposed 

method 

Fixed 

weights 

Orosco 

et al (2009) 

Bajaj E 

Pachori (2013) 

Bergil e 

Yildiz 

(2016) 

Sensitivity 97% 93% 42% 90% 91% 

Specificity 95% 94% 80% 88% 92% 

ROC 0,96 0,94 0,55 0,92 0,91 

ROC – Receiver Operating Charac 

 

The AESM model and the use of weights for mean and standard deviation in different 

amplitude ranges to define the energy and the minimum duration energy limit in the detection of 

abnormal EEG patterns were applied in this investigation. The AESM signal decomposition model, 

as it is non-parametric and indicated for non-stationary signals, contributes to the resolution of the 

analysis of non-stationary signals, being able to extract patterns from the signals (SANEI; 

HASSANI, 2016). By taking into account the existing relationships between the channels, it was also 

useful for the identification of abnormal EEG patterns in the EEG of epilepsies classified as 

generalized. 

In the proposed methodology, the main argument for the use of weights by amplitude ranges 

is that the correct definition of thresholds plays an important role in identifying the greatest 

variability of the signal. This is seen when comparing the results obtained by the investigation when 

weights were used by amplitude range or when they were fixed according to research already carried 

out (OROSCO et al., 2009; BAJAJ; PACHORI, 2013; BERGIL; YILDIZ, 2016). 

Thus, since abnormal EEG patterns are responsible for high energy, by changing the mean 

and standard deviation weights to define the minimum duration energy limit, it was possible to 

obtain the best performance in the automatic detection process. 

Although the weights of the mean and standard deviation are fixed, the proposed 

methodology was able to capture abnormal EEG patterns, showing the potential to assist in automatic 

detection, in relation to the investigations by Orosco et al. (2009) and Bajaj and Pachori (2013), who 

also made use of fixed weights to define the minimum duration energy limit and use of the DME 

model or the investigation that makes use of the entropy and energy characteristics (BERGIL; 

YILDIZ, 2016) with the application of TDW. Unlike the proposed investigation, all these studies 

were based on univariate analysis.  

Thus, the advantages of the proposed methodology stand out for its multivariate character, 

when compared to the DME models or TDW application. However, for the investigation, the 

intervals used are 10 seconds, according to the standard adopted by some neurophysiologists and, 

thus, making use of a smaller number of samples.  

This better performance of the AESM model was possible when verifying other possibilities 

of fixed weights compared to those obtained by DME and TDW and is also due to the fact that the 
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multivariate analysis is able to identify the harmonics (variability) between a set of signals, ensuring 

more consistent information about the frequency (SANEI; HASSANI, 2016).  

 

CONCLUSIONS 

In view of what has been exposed in the present study, it is evident that the use of EMSA in 

the proposed methodology proved to be capable of identifying abnormal EEG patterns of epilepsies 

classified as generalized. The application of different weights for mean and standard deviation of the 

ith  energy series in amplitude ranges improved the detection performance of these abnormal 

patterns. 

In future research, it would be interesting to apply the proposed methodology to EEG signals 

by applying electrodes placed directly on the exposed surface of the brain during surgery or in a 

greater number of channels, to promote changes in the extension value in samples of the mobile 

overlapping window for the calculation of energy in order to verify improvement in the identification 

of EEG patterns, in addition to reviewing or improving the decisions made in the preliminary 

adjustments stage. 
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