

LUMEN ET VIRTUS, São José dos Pinhais, v. XVII, n. LVI, p.1-24, 2026 1

PROJETO E IMPLANTAÇÃO DE AGENTES DE INTELIGÊNCIA ARTIFICIAL

PLUG-AND-PLAY UTILIZANDO ARQUITETURAS SERVERLESS

DESIGN AND IMPLEMENTATION OF PLUG-AND-PLAY ARTIFICIAL

INTELLIGENCE AGENTS USING SERVERLESS ARCHITECTURES

DISEÑO E IMPLEMENTACIÓN DE AGENTES DE INTELIGENCIA ARTIFICIAL

PLUG-AND-PLAY UTILIZANDO ARQUITECTURAS SIN SERVIDOR

 https://doi.org/10.56238/levv17n56-035

Data de submissão: 12/12/2025 Data de publicação: 12/01/2026

Erick Roberto Furst Brito

Pós Graduação em Gerencimento de Banco de Dados

Instituição: Centro Universitário de Belo Horizonte (UNI-BH)

E-mail: erick.furst@gmail.com

Lattes: http://lattes.cnpq.br/5747557105880611

RESUMO

A rápida adoção da inteligência artificial (IA) em ambientes corporativos tem evidenciado uma lacuna

recorrente entre protótipos experimentais e sistemas prontos para produção. Embora modelos de

linguagem de grande porte, visão computacional e pipelines de aprendizado de máquina estejam cada

vez mais acessíveis, as organizações continuam enfrentando desafios relacionados à escalabilidade, ao

controle de custos, à complexidade operacional e à integração ao tentar implantar soluções de IA como

serviços consumíveis. Este artigo apresenta uma abordagem arquitetural serverless para a construção

de agentes de IA modulares e plug-and-play, disponibilizados como APIs, com ênfase nas restrições

do mundo real encontradas em ambientes de produção. A arquitetura proposta utiliza funções

containerizadas, execução stateless e faturamento baseado no consumo para viabilizar implantação

rápida, escalabilidade e eficiência econômica. Além disso, o artigo discute os trade-offs arquiteturais

observados entre os modelos de integração REST API e HTTP API, e apresenta lições empíricas

obtidas a partir da implantação de múltiplos agentes de IA nos domínios de processamento de

linguagem natural, visão computacional e automação de dados.

Palavras-chave: Inteligência Artificial. Arquitetura sem Servidor. Computação em Nuvem. Design de

API. Agentes de IA. Arquitetura de Software.

ABSTRACT

The rapid adoption of artificial intelligence (AI) in corporate environments has exposed a recurring

gap between experimental prototypes and production-ready systems. While large language models,

computer vision, and machine learning pipelines are increasingly accessible, organizations continue to

face challenges related to scalability, cost control, operational complexity, and integration when

attempting to deploy AI solutions as consumable services. This paper presents a serverless architectural

approach for building modular, plug-and-play AI agents deployed as APIs, emphasizing real-world

constraints encountered in production environments. The proposed architecture leverages

containerized functions, stateless execution, and consumption-based billing to enable rapid

deployment, scalability, and economic efficiency. Additionally, the paper discusses architectural trade-

offs observed between REST and HTTP API integration models and presents empirical lessons learned

https://doi.org/10.56238/levv17n56-035

LUMEN ET VIRTUS, São José dos Pinhais, v. XVII, n. LVI, p.1-24, 2026

2

from deploying multiple AI agents across natural language processing, computer vision, and data

automation domains.

Keywords: Artificial Intelligence. Serverless Architecture. Cloud Computing. API Design. AI Agents.

Software Architecture.

RESUMEN

La rápida adopción de la inteligencia artificial (IA) en entornos corporativos ha puesto de relieve la

creciente brecha entre los prototipos experimentales y los sistemas listos para producción. Si bien los

modelos de lenguaje a gran escala, la visión artificial y los procesos de aprendizaje automático son

cada vez más accesibles, las organizaciones siguen enfrentándose a desafíos relacionados con la

escalabilidad, el control de costes, la complejidad operativa y la integración al intentar implementar

soluciones de IA como servicios consumibles. Este artículo presenta un enfoque arquitectónico sin

servidor para la creación de agentes de IA modulares, listos para usar y distribuidos como API,

haciendo hincapié en las limitaciones reales de los entornos de producción. La arquitectura propuesta

utiliza funciones contenedorizadas, ejecución sin estado y facturación basada en el consumo para

permitir una implementación rápida, escalabilidad y eficiencia económica. Además, el artículo analiza

las compensaciones arquitectónicas observadas entre los modelos de integración de API REST y API

HTTP y presenta lecciones empíricas aprendidas al implementar múltiples agentes de IA en los

dominios del procesamiento del lenguaje natural, la visión artificial y la automatización de datos.

Palabras clave: Inteligencia Artificial. Arquitectura Sin Servidor. Computación en la Nube. Diseño

de API. Agentes de IA. Arquitectura de Software.

LUMEN ET VIRTUS, São José dos Pinhais, v. XVII, n. LVI, p.1-24, 2026

3

1 INTRODUÇÃO

A crescente demanda por soluções de inteligência artificial em diversos setores tem resultado

na proliferação de sistemas de prova de conceito (PoC) que demonstram viabilidade técnica, mas não

conseguem evoluir para produtos prontos para produção. Entre os obstáculos mais comuns estão a

sobrecarga de gerenciamento de infraestrutura, os custos operacionais imprevisíveis, as dificuldades

de escalabilidade das cargas de trabalho e os desafios associados à integração de modelos de IA aos

sistemas corporativos existentes.

A computação serverless surgiu como um paradigma promissor para enfrentar esses desafios,

ao abstrair o gerenciamento da infraestrutura e permitir uma alocação de recursos mais granular.

Quando combinadas com containerização e um design orientado a APIs, as arquiteturas serverless

oferecem uma base sólida para a implantação de agentes de IA como serviços modulares e reutilizáveis.

Este artigo explora o projeto e a implantação de agentes de IA como serviços plug-and-play

utilizando uma arquitetura serverless, com foco nas decisões arquiteturais, nos padrões de integração

e nas lições aprendidas a partir de implantações reais em ambientes de produção.

2 DEFINIÇÃO DO PROBLEMA

Apesar dos avanços no desenvolvimento de modelos de IA, as organizações frequentemente

enfrentam dificuldades em:

● Transicionar soluções de IA de ambientes experimentais para produção

● Gerenciar a infraestrutura e a complexidade operacional

● Controlar os custos associados a cargas de trabalho variáveis

● Escalar serviços de IA em resposta à demanda

● Disponibilizar interfaces padronizadas e seguras para o consumo de IA

Arquiteturas tradicionais, monolíticas ou baseadas em servidores, tendem a agravar esses

desafios ao introduzir um forte acoplamento entre a infraestrutura e a lógica da aplicação. Como

resultado, torna-se necessária a adoção de modelos arquiteturais que priorizem modularidade,

escalabilidade e simplicidade operacional.

3 POR QUE PROVAS DE CONCEITO DE IA FREQUENTEMENTE NÃO EVOLUEM

PARA PRODUTOS

O crescimento acelerado das tecnologias de inteligência artificial tem levado organizações de

diferentes setores a investirem em provas de conceito (Proofs of Concept – PoCs) como forma de

validar rapidamente ideias, algoritmos e hipóteses de negócio. Essas iniciativas costumam demonstrar

viabilidade técnica em ambientes controlados, utilizando conjuntos de dados reduzidos, infraestrutura

LUMEN ET VIRTUS, São José dos Pinhais, v. XVII, n. LVI, p.1-24, 2026

4

simplificada e requisitos funcionais limitados. No entanto, uma parcela significativa dessas PoCs não

consegue evoluir para produtos prontos para produção.

Uma das principais razões para esse fenômeno está na diferença estrutural entre validação

técnica e operação contínua. PoCs são, por definição, experimentais. Elas são desenvolvidas para

responder à pergunta “isso é possível?”, enquanto produtos precisam responder continuamente a “isso

é confiável, escalável, seguro e sustentável?”. Essa mudança de foco impõe desafios que raramente

são considerados na fase inicial de experimentação.

3.1 COMPLEXIDADE DE INFRAESTRUTURA E OPERAÇÃO

PoCs geralmente são executadas em ambientes locais ou em infraestruturas provisionadas

manualmente, sem preocupação com alta disponibilidade, tolerância a falhas ou monitoramento.

Quando a solução precisa operar de forma contínua, surgem demandas por:

● Escalabilidade automática

● Monitoramento e observabilidade

● Gerenciamento de versões e rollback

● Segurança e controle de acesso

A ausência de uma arquitetura preparada para essas exigências torna a transição para produção

onerosa e, muitas vezes, inviável dentro dos prazos e orçamentos disponíveis.

3.2 CUSTOS OPERACIONAIS IMPREVISÍVEIS

Em PoCs, o custo computacional costuma ser irrelevante ou artificialmente reduzido. Em

produção, entretanto, modelos de IA podem gerar custos significativos devido a:

● Execuções frequentes ou concorrentes

● Uso intensivo de recursos computacionais

● Dependência de serviços externos pagos por requisição

Sem mecanismos de controle de consumo, como faturamento por uso ou limitação de

requisições, a solução rapidamente se torna financeiramente insustentável, levando ao seu abandono

antes mesmo da consolidação como produto.

3.3 FALTA DE PADRONIZAÇÃO E INTEGRAÇÃO

Outro fator recorrente é a dificuldade de integração com sistemas corporativos existentes. PoCs

frequentemente utilizam interfaces ad hoc, scripts ou notebooks que não seguem padrões de integração,

autenticação ou versionamento. Em ambientes produtivos, espera-se que soluções de IA ofereçam:

LUMEN ET VIRTUS, São José dos Pinhais, v. XVII, n. LVI, p.1-24, 2026

5

● Interfaces padronizadas (APIs)

● Contratos claros de entrada e saída

● Compatibilidade com múltiplos clientes e aplicações

A ausência desses elementos limita a reutilização e a adoção da solução em escala

organizacional.

3.4 ACOPLAMENTO EXCESSIVO ENTRE MODELO E APLICAÇÃO

Muitas PoCs são desenvolvidas com forte acoplamento entre o modelo de IA, a lógica de

negócio e a infraestrutura subjacente. Essa abordagem dificulta a manutenção, a atualização de

modelos e a evolução do sistema. Em produtos maduros, é desejável que modelos possam ser

substituídos ou aprimorados sem impactar consumidores externos, o que exige separação clara de

responsabilidades e modularidade arquitetural.

3.5 AUSÊNCIA DE GOVERNANÇA E CONFIABILIDADE

Aspectos como versionamento de modelos, rastreabilidade de decisões, controle de qualidade

e conformidade regulatória raramente são considerados em PoCs. No entanto, em produção, esses

fatores são essenciais para garantir confiança, especialmente em ambientes corporativos e regulados.

A falta de governança técnica e operacional contribui para que soluções experimentais não alcancem

maturidade suficiente para uso contínuo.

3.6 DESALINHAMENTO ENTRE TECNOLOGIA E MODELO DE NEGÓCIO

Por fim, muitas PoCs falham por não estarem associadas a um modelo claro de entrega de valor.

Demonstrar que um modelo funciona tecnicamente não implica que ele possa ser oferecido como

serviço, produto ou plataforma. A ausência de uma estratégia de monetização, distribuição ou consumo

frequentemente impede que a iniciativa avance além do estágio experimental.

3.6.1 Custo, Escalabilidade, Segurança e Latência como Barreiras à Produtização da IA

A transição de soluções de inteligência artificial de provas de conceito para sistemas prontos

para produção impõe um conjunto de requisitos não funcionais que frequentemente não são abordados

nas fases iniciais de desenvolvimento. Entre esses requisitos, custo, escalabilidade, segurança e

latência destacam-se como fatores críticos que determinam a viabilidade técnica e econômica de uma

solução de IA em ambientes corporativos.

LUMEN ET VIRTUS, São José dos Pinhais, v. XVII, n. LVI, p.1-24, 2026

6

3.7 CUSTO

Em provas de conceito, o custo computacional tende a ser subestimado ou desconsiderado, uma

vez que os experimentos são realizados com volumes reduzidos de dados, baixa concorrência e

infraestrutura temporária. No entanto, quando uma solução de IA é exposta como serviço, os custos

passam a crescer de forma proporcional ao uso, podendo incluir:

● Execuções concorrentes de modelos de alto custo computacional

● Consumo intensivo de CPU, memória ou GPU

● Dependência de serviços externos cobrados por requisição ou volume de dados

Sem mecanismos adequados de controle, como limitação de requisições, isolamento por cliente

e faturamento baseado em consumo, o custo operacional torna-se imprevisível. Essa imprevisibilidade

compromete a sustentabilidade financeira da solução e representa uma das principais razões pelas quais

PoCs de IA não evoluem para produtos comerciais.

3.8 ESCALABILIDADE

A escalabilidade raramente é um requisito explícito em PoCs, que normalmente são executadas

de forma sequencial ou com baixa concorrência. Em ambientes de produção, entretanto, sistemas de

IA precisam lidar com variações abruptas de demanda, múltiplos usuários simultâneos e cargas de

trabalho imprevisíveis.

Arquiteturas tradicionais baseadas em servidores fixos exigem planejamento prévio de

capacidade, o que pode resultar tanto em subutilização de recursos quanto em degradação de

desempenho sob picos de carga. A ausência de escalabilidade automática dificulta a expansão do

serviço e reduz a confiabilidade percebida pelos usuários finais.

Soluções arquiteturais que favorecem escalabilidade horizontal e execução stateless são

fundamentais para permitir que agentes de IA respondam dinamicamente à demanda, mantendo

desempenho consistente sem intervenção manual.

3.9 SEGURANÇA

Em PoCs, práticas de segurança costumam ser mínimas ou inexistentes, já que o foco está na

validação técnica do modelo. No entanto, quando uma solução de IA é implantada em produção,

surgem preocupações relacionadas a:

● Autenticação e autorização de acesso

● Isolamento entre clientes e dados

● Proteção de dados sensíveis e informações confidenciais

● Conformidade com requisitos regulatórios e corporativos

LUMEN ET VIRTUS, São José dos Pinhais, v. XVII, n. LVI, p.1-24, 2026

7

A ausência de controles de segurança adequados não apenas expõe a organização a riscos

técnicos e legais, como também impede a adoção da solução em ambientes empresariais. Sistemas de

IA destinados à produção precisam oferecer mecanismos robustos de controle de acesso, auditoria e

governança, integrados à arquitetura desde sua concepção.

3.10 LATÊNCIA

A latência é outro fator frequentemente negligenciado em ambientes experimentais. Em PoCs,

tempos de resposta elevados podem ser aceitáveis, desde que o modelo produza resultados corretos.

Em sistemas produtivos, no entanto, a latência impacta diretamente a experiência do usuário e a

viabilidade da solução.

Modelos de IA, especialmente aqueles baseados em processamento intensivo ou cadeias de

inferência complexas, podem introduzir atrasos significativos quando executados em ambientes não

otimizados. A falta de otimização arquitetural, como roteamento eficiente, execução sob demanda e

redução de camadas intermediárias, pode tornar a solução impraticável para uso em tempo real ou

quase em tempo real.

Arquiteturas que minimizam latência por meio de provisionamento dinâmico, isolamento de

funções e integração direta entre API e execução do modelo são essenciais para atender às expectativas

de desempenho em produção.

3.11 SÍNTESE

Em síntese, PoCs de IA não se tornam produtos não por limitações algorítmicas, mas por

lacunas arquiteturais, operacionais e estratégicas. A transformação de uma PoC em produto exige uma

mudança de paradigma: da experimentação isolada para a engenharia de sistemas escaláveis,

modulares e economicamente sustentáveis. Arquiteturas serverless, design orientado a APIs e execução

stateless surgem, nesse contexto, como abordagens capazes de reduzir essa lacuna e acelerar a transição

da IA experimental para soluções efetivamente produtivas.

Custo, escalabilidade, segurança e latência não são desafios secundários, mas requisitos

estruturais que determinam se uma solução de IA pode ser sustentada como produto. A negligência

desses fatores na fase de prova de conceito contribui significativamente para o alto índice de iniciativas

de IA que não ultrapassam o estágio experimental. Abordagens arquiteturais que incorporam esses

requisitos desde o início são fundamentais para transformar experimentos bem-sucedidos em soluções

de IA robustas, confiáveis e economicamente viáveis.

4 PRINCÍPIOS ARQUITETURAIS

A arquitetura proposta é orientada pelos seguintes princípios:

LUMEN ET VIRTUS, São José dos Pinhais, v. XVII, n. LVI, p.1-24, 2026

8

4.1 DESIGN SERVERLESS-FIRST

Os recursos computacionais são provisionados dinamicamente em resposta à demanda,

eliminando infraestrutura ociosa e reduzindo a sobrecarga operacional.

O princípio de design serverless-first estabelece que os recursos computacionais devem ser

alocados de forma dinâmica e sob demanda, em vez de permanecerem continuamente provisionados.

Nesse modelo, a infraestrutura deixa de ser um elemento central de preocupação para o

desenvolvimento da aplicação, permitindo que o foco seja direcionado à lógica de negócio e ao

comportamento funcional dos agentes de inteligência artificial.

Em arquiteturas tradicionais baseadas em servidores dedicados ou clusters fixos, a necessidade

de prever picos de carga frequentemente resulta em infraestrutura ociosa durante períodos de baixa

utilização. Esse cenário gera ineficiência econômica e aumenta a complexidade operacional, uma vez

que a capacidade deve ser constantemente monitorada, ajustada e mantida. O paradigma serverless

elimina essa necessidade ao permitir que o ambiente de execução seja instanciado automaticamente

apenas quando há requisições ativas.

No contexto de agentes de IA, o design serverless-first apresenta vantagens particularmente

relevantes. Cargas de trabalho de IA costumam ser altamente variáveis, com períodos de inatividade

intercalados por picos de processamento intensivo. O provisionamento dinâmico garante que os

recursos computacionais sejam utilizados exclusivamente durante a execução das inferências ou

tarefas de processamento, reduzindo custos e melhorando a eficiência geral do sistema.

Além disso, o modelo serverless reduz significativamente a sobrecarga operacional associada

à gestão de infraestrutura. Atividades como configuração de servidores, balanceamento de carga,

atualização de sistemas operacionais e gerenciamento de escalabilidade passam a ser abstraídas pela

plataforma de nuvem. Essa abstração diminui o risco de falhas operacionais e acelera o ciclo de

desenvolvimento e implantação, favorecendo a rápida evolução das soluções.

Outro aspecto fundamental do design serverless-first é sua aderência natural à escalabilidade

automática. À medida que a demanda cresce, múltiplas instâncias de execução podem ser criadas de

forma transparente, sem necessidade de intervenção manual. Essa característica é essencial para

agentes de IA expostos como serviços, nos quais o número de requisições pode variar de forma

imprevisível em função do comportamento dos usuários ou de integrações externas.

Em síntese, o design serverless-first oferece uma base arquitetural que alinha eficiência

econômica, simplicidade operacional e escalabilidade. Ao eliminar infraestrutura ociosa e automatizar

o provisionamento de recursos, esse paradigma contribui diretamente para a transformação de soluções

de IA experimentais em sistemas robustos e sustentáveis em ambientes de produção.

LUMEN ET VIRTUS, São José dos Pinhais, v. XVII, n. LVI, p.1-24, 2026

9

4.2 AGENTES DE IA STATELESS

Cada agente de IA opera sem estado persistente, permitindo escalabilidade horizontal e

tolerância a falhas.

O princípio de agentes de IA stateless estabelece que cada instância de execução opera de forma

independente, sem manter estado persistente entre requisições. Nesse modelo, todo o contexto

necessário para o processamento deve ser fornecido como entrada ou recuperado de serviços externos,

evitando dependências diretas entre execuções consecutivas.

Em arquiteturas tradicionais, o estado da aplicação frequentemente é mantido em memória

local ou em estruturas internas do serviço, criando acoplamento entre sessões e dificultando a

escalabilidade. Em sistemas de IA expostos como serviços, essa abordagem introduz limitações

significativas, pois impede a criação dinâmica de múltiplas instâncias e aumenta a complexidade de

recuperação em caso de falhas.

A adoção de agentes de IA stateless viabiliza a escalabilidade horizontal, uma vez que cada

requisição pode ser atendida por qualquer instância disponível, sem a necessidade de sincronização de

estado. Esse modelo permite que novas instâncias sejam criadas ou removidas automaticamente

conforme a demanda, garantindo desempenho consistente mesmo sob cargas variáveis.

Além disso, a ausência de estado persistente contribui diretamente para a tolerância a falhas.

Caso uma instância de execução seja interrompida ou falhe durante o processamento, outra instância

pode assumir a requisição sem impacto significativo para o sistema ou para o usuário final. Essa

característica é particularmente relevante em ambientes serverless, nos quais instâncias são efêmeras

por natureza.

No contexto de agentes de IA, o design stateless também facilita a manutenção e a evolução

do sistema. Modelos de IA podem ser atualizados, substituídos ou versionados sem a necessidade de

migração de estado interno, reduzindo riscos durante o processo de implantação. Dados persistentes,

quando necessários, podem ser armazenados em serviços externos especializados, como bancos de

dados ou sistemas de armazenamento de objetos, preservando a separação de responsabilidades.

Por fim, agentes de IA stateless promovem maior previsibilidade operacional. Ao eliminar

dependências implícitas entre execuções, o comportamento do sistema torna-se mais determinístico,

facilitando testes, monitoramento e auditoria. Essa previsibilidade é essencial para transformar

soluções experimentais em serviços confiáveis e adequados para ambientes corporativos.

4.3 EXECUÇÃO CONTAINERIZADA

Os agentes de IA são empacotados como imagens de contêiner, garantindo consistência entre

ambientes e simplificando o gerenciamento de dependências.

LUMEN ET VIRTUS, São José dos Pinhais, v. XVII, n. LVI, p.1-24, 2026

10

A execução containerizada consiste no empacotamento dos agentes de inteligência artificial

como imagens de contêiner, contendo todo o conjunto de dependências, bibliotecas, modelos e

configurações necessárias para sua execução. Esse modelo promove a padronização do ambiente de

execução, assegurando que o comportamento do agente seja consistente entre os ambientes de

desenvolvimento, teste e produção.

Um dos principais desafios na transição de PoCs de IA para produção está relacionado à

inconsistência entre ambientes. Diferenças de versões de bibliotecas, dependências nativas e

configurações do sistema operacional frequentemente resultam em falhas difíceis de reproduzir e

diagnosticar. A containerização mitiga esse problema ao encapsular completamente o ambiente de

execução, reduzindo a variabilidade entre diferentes estágios do ciclo de vida da aplicação.

Além de garantir consistência, a execução containerizada simplifica significativamente o

gerenciamento de dependências. Agentes de IA costumam depender de bibliotecas especializadas,

frameworks de aprendizado de máquina e componentes de sistema que, quando instalados diretamente

no ambiente de execução, aumentam a complexidade operacional. Ao consolidar essas dependências

em uma imagem de contêiner versionada, torna-se possível controlar com precisão as mudanças no

ambiente e facilitar processos de atualização e rollback.

No contexto de arquiteturas serverless, a containerização amplia a flexibilidade do modelo de

execução. Ao permitir que funções serverless sejam baseadas em imagens de contêiner, elimina-se a

necessidade de adaptar o código a ambientes de execução predefinidos e restritivos. Isso é

particularmente relevante para agentes de IA que exigem dependências específicas ou configurações

customizadas, tornando a arquitetura mais adequada para workloads complexos.

Outro benefício relevante da execução containerizada é a independência tecnológica. Ao

desacoplar o agente de IA da infraestrutura subjacente, o mesmo contêiner pode ser executado em

diferentes plataformas compatíveis, favorecendo portabilidade e reduzindo riscos de dependência

excessiva de um único provedor. Essa característica contribui para a sustentabilidade da solução a

longo prazo.

Em síntese, a execução containerizada oferece uma base sólida para a operacionalização de

agentes de IA em ambientes produtivos. Ao garantir consistência entre ambientes, simplificar o

gerenciamento de dependências e ampliar a flexibilidade de execução, esse paradigma fortalece a

confiabilidade e a manutenibilidade de arquiteturas orientadas à IA.

4.4 APIS COMO PRODUTOS

Cada capacidade de IA é exposta por meio de uma interface de API padronizada, permitindo

implantação independente, versionamento e monetização.

LUMEN ET VIRTUS, São José dos Pinhais, v. XVII, n. LVI, p.1-24, 2026

11

O princípio de APIs como produtos estabelece que cada capacidade de inteligência artificial

deve ser concebida, projetada e disponibilizada como um serviço independente, acessível por meio de

uma interface de programação padronizada. Nesse modelo, a API deixa de ser apenas um meio técnico

de integração e passa a representar a unidade fundamental de entrega de valor, consumo e evolução do

sistema.

Em provas de conceito, funcionalidades de IA costumam estar fortemente acopladas a

aplicações específicas, scripts ou fluxos internos, dificultando sua reutilização e expansão. Ao tratar

cada capacidade de IA como um produto independente, a arquitetura promove desacoplamento entre

consumidores e provedores, permitindo que diferentes aplicações utilizem os mesmos serviços sem

dependências diretas de implementação.

A padronização das interfaces de API desempenha papel central nesse contexto. Contratos bem

definidos de entrada e saída, formatos de dados consistentes e comportamentos previsíveis facilitam a

integração com múltiplos clientes, sejam eles aplicações web, móveis ou sistemas corporativos. Além

disso, APIs padronizadas reduzem a curva de adoção e ampliam a escalabilidade organizacional da

solução.

Outro aspecto fundamental do modelo de APIs como produtos é a implantação independente.

Cada agente de IA pode ser atualizado, substituído ou escalado sem impactar outros componentes do

sistema, desde que o contrato da API seja preservado. Essa independência reduz riscos durante o ciclo

de desenvolvimento e favorece a evolução contínua da plataforma.

O versionamento é igualmente essencial para garantir a estabilidade do ecossistema. Ao

disponibilizar múltiplas versões de uma API, torna-se possível introduzir melhorias ou alterações sem

interromper consumidores existentes. Essa abordagem é particularmente relevante em sistemas de IA,

nos quais modelos e algoritmos evoluem rapidamente e podem exigir ajustes frequentes.

Além dos benefícios técnicos, o modelo de APIs como produtos viabiliza estratégias claras de

monetização e governança. A exposição das capacidades de IA por meio de APIs permite o controle

preciso de uso, a aplicação de políticas de acesso e a cobrança baseada em consumo. Essa característica

transforma funcionalidades de IA em ativos econômicos mensuráveis, alinhando a arquitetura técnica

aos objetivos de negócio.

Em síntese, ao tratar APIs como produtos, a arquitetura transcende a experimentação isolada e

estabelece uma base sólida para a entrega sustentável de serviços de IA. Essa abordagem promove

modularidade, escalabilidade, previsibilidade e viabilidade econômica, elementos essenciais para a

consolidação de soluções de IA em ambientes de produção.

LUMEN ET VIRTUS, São José dos Pinhais, v. XVII, n. LVI, p.1-24, 2026

12

5 ARQUITETURA DO SISTEMA

A arquitetura proposta foi concebida para suportar a implantação, a operação e a evolução

contínua de agentes de inteligência artificial como serviços independentes e reutilizáveis. Seu desenho

prioriza modularidade, escalabilidade e simplicidade operacional, permitindo que cada componente

evolua de forma autônoma sem comprometer o funcionamento global do sistema.

A arquitetura é composta pelos seguintes componentes:

5.1 REGISTRO DE CONTÊINERES

O registro de contêineres desempenha um papel fundamental na arquitetura proposta, atuando

como o repositório central de imagens versionadas que encapsulam os agentes de inteligência artificial.

Cada imagem de contêiner contém não apenas o código-fonte do agente, mas também todas as

dependências de software, bibliotecas especializadas, modelos de IA e configurações necessárias para

sua execução consistente.

A utilização de imagens versionadas permite um controle preciso sobre o ciclo de vida dos

agentes de IA. Cada atualização — seja de código, de modelo ou de dependências — pode ser

registrada como uma nova versão, possibilitando rastreabilidade completa das mudanças ao longo do

tempo. Esse controle é essencial em ambientes produtivos, nos quais auditoria, conformidade e

capacidade de reprodução de comportamentos anteriores são requisitos críticos.

Outro benefício relevante do uso de um registro de contêineres é a viabilização de mecanismos

seguros e eficientes de rollback. Em caso de falhas ou degradação de desempenho após uma

atualização, versões anteriores das imagens podem ser rapidamente reimplantadas, reduzindo o tempo

de indisponibilidade e os riscos operacionais. Essa capacidade é particularmente importante em

sistemas de IA, nos quais alterações em modelos podem produzir efeitos inesperados.

Além disso, o registro de contêineres garante a reprodutibilidade dos ambientes de execução.

Ao utilizar a mesma imagem de contêiner em diferentes estágios — desenvolvimento, testes e

produção — elimina-se a variabilidade causada por diferenças de configuração ou dependências. Essa

consistência reduz falhas difíceis de diagnosticar e contribui para a estabilidade do sistema como um

todo.

Por fim, o registro de contêineres atua como o ponto central de distribuição dos agentes de IA,

permitindo que a camada de computação serverless obtenha imagens confiáveis e previamente

validadas. Essa centralização fortalece a governança do ecossistema, assegurando que apenas versões

autorizadas e verificadas dos agentes sejam implantadas, ao mesmo tempo em que simplifica a gestão

e a escalabilidade da plataforma.

LUMEN ET VIRTUS, São José dos Pinhais, v. XVII, n. LVI, p.1-24, 2026

13

5.2 CAMADA DE COMPUTAÇÃO SERVERLESS

A camada de computação serverless é responsável pela execução dos agentes de inteligência

artificial containerizados em resposta direta às requisições encaminhadas pela camada de API. Nesse

modelo, cada solicitação recebida resulta na criação de uma instância de execução efêmera, isolada e

independente, que processa a tarefa solicitada e é descartada ao final da execução.

A principal característica dessa abordagem é a eliminação do provisionamento manual de

infraestrutura. Diferentemente de arquiteturas baseadas em servidores persistentes, nas quais é

necessário planejar capacidade, gerenciar recursos e realizar manutenção contínua, o paradigma

serverless delega essas responsabilidades à plataforma de nuvem. Isso reduz significativamente a

complexidade operacional e permite que equipes concentrem esforços no desenvolvimento e na

evolução dos agentes de IA.

A criação dinâmica de instâncias de execução conforme a demanda viabiliza escalabilidade

horizontal automática. À medida que o volume de requisições aumenta, múltiplas instâncias podem

ser inicializadas simultaneamente para atender à carga, sem necessidade de configuração prévia. Da

mesma forma, em períodos de baixa demanda, os recursos são automaticamente liberados, evitando

desperdício computacional.

A natureza efêmera das execuções reforça o modelo stateless adotado pelos agentes de IA.

Como não há garantia de reutilização da mesma instância entre requisições, todo o processamento é

realizado de forma independente, sem dependência de estado local. Essa característica contribui

diretamente para a tolerância a falhas, uma vez que a interrupção ou falha de uma instância não

compromete o funcionamento global do sistema, podendo ser imediatamente compensada por outra

execução.

Do ponto de vista econômico, a computação serverless introduz um modelo de cobrança

baseado no tempo de execução e nos recursos efetivamente consumidos. Esse modelo alinha custos ao

uso real do serviço, reduzindo investimentos iniciais e tornando a solução financeiramente viável

mesmo para cargas de trabalho intermitentes, típicas de aplicações de IA expostas como serviços.

Em conjunto, essas características fazem da camada de computação serverless um elemento

central da arquitetura proposta, oferecendo escalabilidade, resiliência e eficiência econômica. Ao

abstrair a complexidade da infraestrutura e favorecer um modelo de execução dinâmico e desacoplado,

essa camada contribui de forma decisiva para a transformação de agentes de IA experimentais em

serviços robustos e prontos para produção.

5.3 CAMADA DE API GATEWAY

A camada de API Gateway atua como o ponto de entrada único para os serviços de inteligência

artificial, sendo responsável por expor os agentes de IA como endpoints HTTP padronizados e por

LUMEN ET VIRTUS, São José dos Pinhais, v. XVII, n. LVI, p.1-24, 2026

14

intermediar a comunicação entre aplicações clientes e a camada de computação serverless baseada em

funções AWS Lambda. Essa integração direta estabelece um fluxo eficiente no qual cada requisição

recebida pelo gateway resulta na invocação controlada de uma função Lambda correspondente ao

agente solicitado.

No contexto da arquitetura proposta, dois modelos de integração do API Gateway foram

avaliados: HTTP API e REST API. Cada abordagem apresenta características distintas, que impactam

diretamente a governança, a flexibilidade e o grau de controle sobre o tráfego e o comportamento das

requisições.

Durante as fases iniciais de implantação, a HTTP API foi adotada como mecanismo de

exposição dos serviços devido à sua configuração simplificada, menor latência e menor custo

operacional. Essa abordagem mostrou-se adequada para acelerar o time-to-market e validar

rapidamente o consumo dos agentes de IA. Entretanto, a simplicidade da HTTP API impõe limitações

relevantes em cenários que demandam maior controle sobre requisições e respostas.

À medida que a arquitetura evoluiu e requisitos mais avançados foram incorporados, tornou-se

necessária a adoção da REST API. Diferentemente da HTTP API, a REST API oferece suporte

completo a funcionalidades essenciais de governança, incluindo:

● Configuração detalhada e consistente de CORS (Cross-Origin Resource Sharing)

● Manipulação e transformação de payloads de requisição e resposta

● Suporte robusto a cargas binárias (como imagens, PDFs e arquivos CSV)

● Integrações do tipo Lambda Proxy e Non-Proxy

● Padronização rigorosa de headers e códigos de resposta

Em particular, a habilitação completa e confiável de CORS, fundamental para o consumo

dos serviços de IA por aplicações frontend modernas, só foi plenamente alcançada por meio da REST

API. Esse nível de controle mostrou-se indispensável para garantir interoperabilidade segura entre

aplicações web e os agentes de IA executados no Lambda.

Além disso, a REST API possibilitou a implementação mais refinada de mecanismos de

autenticação, autorização e limitação de requisições (throttling), reforçando a proteção da camada de

computação serverless e assegurando previsibilidade de custos e desempenho. Ao centralizar essas

responsabilidades no API Gateway, o código dos agentes de IA permaneceu desacoplado de

preocupações relacionadas à segurança e ao controle de tráfego.

Em síntese, a experiência prática evidenciou que a escolha entre HTTP API e REST API não

deve ser tratada como uma decisão binária, mas como uma questão de maturidade arquitetural e

requisitos funcionais. Enquanto a HTTP API atende de forma eficaz cenários iniciais e de baixa

complexidade, a REST API se mostrou essencial para suportar requisitos avançados de governança,

LUMEN ET VIRTUS, São José dos Pinhais, v. XVII, n. LVI, p.1-24, 2026

15

segurança e integração, consolidando a arquitetura proposta como adequada para ambientes de

produção.

Tabela 1

Aspecto HTTP API REST API

Objetivo principal
Exposição simplificada de

APIs

Exposição completa e altamente configurável de

APIs

Complexidade de configuração Baixa Alta

Custo por requisição Menor Maior

Latência Menor Maior (devido a camadas adicionais)

Integração com AWS Lambda Direta e simplificada Direta, com suporte a proxy e não-proxy

Suporte a CORS Básico e limitado Completo e altamente configurável

Controle de headers Limitado Granular e detalhado

Transformação de payload Não suportada Suportada (request/response mapping)

Suporte a payloads binários Nativo
Requer configuração explícita (Binary Media

Types)

Versionamento de APIs Limitado Suportado de forma nativa

Governança e controle Básico Avançado

Limitação de requisições

(throttling)
Básica Avançada e configurável

Adequação para MVP Alta Média

Adequação para produção

corporativa
Média Alta

Curva de aprendizado Baixa Alta

Casos de uso recomendados MVPs, validações rápidas Sistemas maduros, ambientes produtivos

Fonte: Autores.

5.4 APLICAÇÕES FRONTEND E CLIENTES

As aplicações frontend e os clientes externos constituem a camada de consumo da arquitetura

proposta, sendo responsáveis por interagir com os agentes de inteligência artificial exclusivamente por

meio das APIs expostas pela camada de API Gateway. Nesse modelo, os consumidores não possuem

conhecimento direto sobre a infraestrutura subjacente, os mecanismos de execução serverless ou a

implementação interna dos agentes de IA, o que promove um forte desacoplamento entre consumo e

execução.

Esse desacoplamento arquitetural favorece a interoperabilidade com diferentes plataformas e

tecnologias. Aplicações web, móveis e sistemas corporativos podem consumir os serviços de IA de

maneira uniforme, independentemente de sua linguagem de programação, ambiente de execução ou

arquitetura interna. Como resultado, as capacidades de IA tornam-se reutilizáveis em múltiplos

contextos, ampliando significativamente seu potencial de adoção.

A padronização das interfaces de consumo desempenha um papel central nesse processo. APIs

com contratos bem definidos, formatos de dados consistentes e comportamentos previsíveis reduzem

a complexidade de integração e minimizam erros de comunicação entre clientes e serviços. Essa

previsibilidade é particularmente importante em ambientes corporativos, nos quais múltiplas equipes

ou sistemas podem consumir os mesmos serviços de IA simultaneamente.

LUMEN ET VIRTUS, São José dos Pinhais, v. XVII, n. LVI, p.1-24, 2026

16

Além disso, a utilização de APIs padronizadas facilita a evolução das aplicações clientes de

forma independente. Novas versões de agentes de IA podem ser implantadas sem exigir alterações

imediatas nos consumidores, desde que os contratos das APIs sejam preservados. Essa independência

reduz riscos durante a evolução do sistema e contribui para a estabilidade do ecossistema como um

todo.

Do ponto de vista operacional, o modelo de consumo via APIs também favorece o controle e a

governança. Métricas de uso, limites de requisição e políticas de acesso podem ser aplicados de forma

consistente a todos os clientes, independentemente da plataforma de origem. Essa uniformidade

simplifica o monitoramento e permite uma gestão mais eficiente do consumo dos serviços de IA.

Em síntese, a camada de aplicações frontend e clientes desempenha um papel essencial na

arquitetura ao viabilizar o consumo amplo, seguro e padronizado das capacidades de IA. O

desacoplamento entre consumidores e agentes de IA, aliado à padronização das interfaces, contribui

diretamente para a escalabilidade, a interoperabilidade e a sustentabilidade da solução em ambientes

produtivos.

5.5 FATURAMENTO E CONTROLE DE ACESSO

O componente de faturamento e controle de acesso desempenha um papel estratégico na

arquitetura proposta, ao estabelecer políticas claras de uso, governança e monetização dos serviços de

inteligência artificial. Ao tratar cada agente de IA como um serviço consumível, torna-se essencial

identificar consumidores, controlar o volume de requisições e associar o uso efetivo a modelos de

cobrança sustentáveis.

A utilização de chaves de API como mecanismo de identificação permite distinguir

consumidores individuais ou aplicações clientes de forma consistente. Cada requisição pode ser

associada a uma chave específica, possibilitando a aplicação de políticas diferenciadas de acesso,

limites de uso e níveis de serviço. Esse modelo favorece tanto cenários internos, nos quais diferentes

áreas consomem os serviços, quanto contextos externos, nos quais clientes distintos acessam a

plataforma.

O controle de requisições, por meio de limitação (throttling) e cotas de consumo, contribui

diretamente para a estabilidade operacional do sistema. Ao impor limites por consumidor, evita-se o

uso excessivo ou indevido dos recursos computacionais, protegendo a camada de computação

serverless contra sobrecarga e assegurando previsibilidade de desempenho e custos.

Do ponto de vista econômico, o registro detalhado de métricas de consumo viabiliza modelos

de cobrança baseados em uso real. Esse modelo de faturamento alinha custos operacionais ao valor

efetivamente entregue, reduzindo barreiras de adoção e tornando a plataforma financeiramente viável

mesmo para cargas de trabalho variáveis. A monetização por consumo também favorece a

LUMEN ET VIRTUS, São José dos Pinhais, v. XVII, n. LVI, p.1-24, 2026

17

escalabilidade do negócio, à medida que o crescimento do uso se traduz diretamente em aumento de

receita.

Além da monetização, o controle de acesso contribui de forma significativa para a segurança

da arquitetura. A autenticação baseada em chaves de API, associada a políticas de autorização, reduz

o risco de acessos não autorizados e facilita a auditoria das interações com os serviços de IA. Esse

nível de controle é particularmente relevante em ambientes corporativos, nos quais requisitos de

conformidade e rastreabilidade são fundamentais.

Essa estrutura de faturamento e controle de acesso, integrada às demais camadas da arquitetura,

reforça a modularidade do sistema. Cada agente de IA pode evoluir de forma independente, com

políticas de uso e monetização ajustadas conforme suas características, sem comprometer o

comportamento operacional consistente da plataforma como um todo. Dessa forma, a arquitetura

proposta estabelece uma base sólida para a oferta sustentável de serviços de IA em ambientes

produtivos.

5.6 SÍNTESE DA ARQUITETURA

A arquitetura apresentada neste trabalho foi projetada para viabilizar a implantação de agentes

de inteligência artificial como serviços modulares, escaláveis e economicamente sustentáveis,

superando as limitações frequentemente observadas em provas de conceito que não evoluem para

ambientes de produção. Seu desenho adota princípios serverless-first, execução stateless,

containerização e exposição das capacidades de IA por meio de APIs tratadas como produtos.

No núcleo da arquitetura, os agentes de IA são empacotados como imagens de contêiner

versionadas e armazenados em um registro centralizado, garantindo consistência de execução,

rastreabilidade de mudanças e reprodutibilidade entre diferentes estágios do ciclo de vida da aplicação.

Essas imagens são consumidas pela camada de computação serverless, que executa os agentes de

forma efêmera e sob demanda, eliminando a necessidade de provisionamento manual de infraestrutura

e permitindo escalabilidade horizontal automática.

A camada de API Gateway atua como intermediária entre os consumidores e a camada de

execução baseada em AWS Lambda, expondo os agentes como endpoints HTTP padronizados. A

diferenciação entre HTTP API e REST API permite equilibrar simplicidade inicial e controle avançado,

sendo a REST API essencial para a implementação completa de funcionalidades de governança, como

configuração detalhada de CORS, controle de headers, transformação de payloads e suporte robusto a

cargas binárias. Ao centralizar preocupações relacionadas a segurança, autenticação, autorização e

limitação de requisições, o API Gateway desacopla essas responsabilidades do código dos agentes de

IA, simplificando seu desenvolvimento e manutenção.

LUMEN ET VIRTUS, São José dos Pinhais, v. XVII, n. LVI, p.1-24, 2026

18

As aplicações frontend e os clientes externos consomem os serviços de IA exclusivamente por

meio das APIs expostas, sem dependência direta da infraestrutura ou da implementação interna dos

agentes. Esse desacoplamento promove interoperabilidade entre diferentes plataformas e tecnologias,

reduz a complexidade de integração e amplia o alcance das capacidades de IA oferecidas pela

plataforma.

Complementarmente, o componente de faturamento e controle de acesso estabelece políticas

claras de uso, governança e monetização, utilizando chaves de API para identificar consumidores,

aplicar limites de requisição e registrar métricas de consumo. Esse modelo viabiliza a cobrança baseada

em uso real, contribui para a segurança do sistema e assegura previsibilidade operacional e financeira.

Em conjunto, esses componentes formam uma arquitetura modular que permite a evolução

independente de cada agente de IA, mantendo um comportamento operacional consistente em todo o

sistema. Ao alinhar decisões arquiteturais a requisitos não funcionais críticos — como custo,

escalabilidade, segurança e latência — a arquitetura proposta oferece uma base sólida para a

transformação de soluções de IA experimentais em serviços prontos para produção, escaláveis e

sustentáveis em ambientes corporativos.

6 REST API VS HTTP API: LIÇÕES APRENDIDAS EM PRODUÇÃO

Durante as fases iniciais de implantação da arquitetura proposta, optou-se pela adoção de uma

integração baseada em HTTP API, com o objetivo de acelerar o time-to-market e viabilizar a validação

rápida do consumo dos agentes de inteligência artificial. Essa escolha mostrou-se adequada em um

contexto de baixa complexidade operacional, oferecendo menor esforço de configuração, redução de

latência e integração simplificada com a camada de computação serverless baseada em AWS Lambda.

A HTTP API apresentou vantagens importantes nesse estágio inicial, como a facilidade de

exposição de endpoints, o suporte nativo a chamadas cross-origin e o manuseio simplificado de

uploads de arquivos. Essas características permitiram que os agentes de IA fossem rapidamente

disponibilizados para aplicações clientes, favorecendo ciclos curtos de desenvolvimento e feedback.

Entretanto, à medida que os requisitos do sistema evoluíram e a arquitetura passou a atender

cenários mais complexos, tornou-se evidente a necessidade de maior controle sobre o comportamento

das requisições e respostas. Nesse contexto, a arquitetura foi revisitada para incorporar integrações

baseadas em REST API, que oferecem maior flexibilidade e capacidades avançadas de governança.

As REST APIs permitem controle mais granular sobre diversos aspectos críticos da

comunicação entre clientes e agentes de IA, incluindo:

● Tratamento detalhado de cargas binárias, como imagens, documentos PDF e arquivos CSV

● Configuração completa e consistente de políticas de Cross-Origin Resource Sharing (CORS)

● Mapeamento e transformação de payloads de requisição e resposta

LUMEN ET VIRTUS, São José dos Pinhais, v. XVII, n. LVI, p.1-24, 2026

19

● Suporte a integrações do tipo Lambda Proxy e Non-Proxy

Essas capacidades mostraram-se essenciais para suportar aplicações frontend mais sofisticadas,

integração com sistemas corporativos e padronização do comportamento dos serviços em ambientes

produtivos. Em particular, a habilitação completa e confiável de CORS revelou-se um requisito

fundamental para a interoperabilidade com aplicações web modernas, sendo plenamente atendida

apenas por meio da REST API.

A adoção da REST API, contudo, introduziu uma complexidade adicional de configuração e

exigiu maior maturidade arquitetural. Aspectos como definição explícita de binary media types,

escolha adequada entre integrações proxy e não proxy, e padronização de headers e códigos de resposta

demandaram um entendimento mais profundo do funcionamento do API Gateway e de sua integração

com o AWS Lambda.

Por meio de um processo iterativo de refinamento e aprendizado, as REST APIs foram

configuradas com sucesso para uso em produção. A padronização das integrações proxy, o tratamento

adequado de cargas binárias e a imposição de esquemas de resposta consistentes resultaram em uma

arquitetura estável, previsível e alinhada aos requisitos operacionais do sistema.

Essa experiência evidencia que a REST API não representa uma limitação técnica, mas sim

uma solução mais poderosa que requer maior grau de maturidade arquitetural e expertise operacional.

Os resultados obtidos reforçam que a escolha entre HTTP API e REST API deve ser orientada pelo

estágio de maturidade do sistema e pelos requisitos funcionais e não funcionais, e não por uma

avaliação simplista de superioridade tecnológica.

7 CASOS DE APLICAÇÃO

A arquitetura proposta foi validada por meio de sua aplicação em múltiplos domínios de

inteligência artificial, abrangendo diferentes tipos de dados, padrões de consumo e requisitos

computacionais. Em todos os casos, os agentes de IA foram implantados como serviços independentes,

expostos por meio de APIs padronizadas e executados em uma infraestrutura serverless, demonstrando

a flexibilidade e a reutilização do modelo arquitetural.

7.1 VISÃO COMPUTACIONAL

No domínio de visão computacional, a arquitetura foi utilizada para a classificação de imagens

e a detecção de danos em objetos, cenários que demandam processamento intensivo e suporte a cargas

binárias. Os agentes de IA responsáveis por essas tarefas recebem imagens como entrada, executam

inferências baseadas em modelos de aprendizado profundo e retornam resultados estruturados por meio

da API.

LUMEN ET VIRTUS, São José dos Pinhais, v. XVII, n. LVI, p.1-24, 2026

20

A execução serverless mostrou-se adequada para esse tipo de carga de trabalho, permitindo que

os recursos computacionais fossem alocados apenas durante o processamento das imagens. A

integração com REST API possibilitou o tratamento adequado de binary media types e a padronização

das respostas, assegurando interoperabilidade com aplicações frontend e sistemas corporativos.

7.2 PROCESSAMENTO DE LINGUAGEM NATURAL

A arquitetura também foi aplicada a agentes de processamento de linguagem natural, incluindo

análise de sentimentos, sumarização de documentos e análise automatizada de currículos. Esses

agentes operam sobre dados textuais, frequentemente enviados em formatos estruturados ou como

arquivos, e produzem saídas que apoiam processos decisórios em ambientes corporativos.

A modularidade da arquitetura permitiu que cada capacidade de NLP fosse implementada como

um agente independente, facilitando atualização de modelos, versionamento de APIs e controle de uso

por tipo de serviço. Além disso, a execução stateless garantiu previsibilidade de comportamento e

escalabilidade em cenários de uso concorrente.

7.3 AUTOMAÇÃO DE DADOS

No contexto de automação de dados, a arquitetura foi empregada para a geração de consultas

SQL a partir de prompts em linguagem natural. Nesse caso, os agentes de IA atuam como

intermediários inteligentes entre usuários finais e sistemas de banco de dados, traduzindo intenções

expressas em linguagem natural em comandos estruturados.

A exposição desse tipo de funcionalidade por meio de APIs padronizadas permitiu sua

integração com diferentes aplicações, sem dependência direta de um banco de dados específico. Essa

abordagem favoreceu a reutilização do agente em múltiplos contextos e reforçou o desacoplamento

entre lógica de IA e sistemas de persistência.

7.4 GERAÇÃO DE MÍDIA

A arquitetura também foi aplicada à geração automatizada de mídia, especificamente na criação

de podcasts a partir de documentos textuais. Nesse cenário, os agentes de IA executam pipelines que

envolvem processamento de texto, geração de roteiro e síntese de voz, produzindo arquivos de áudio

como saída.

A execução containerizada mostrou-se essencial para suportar as dependências específicas

desse tipo de pipeline, enquanto a computação serverless permitiu lidar com tempos de execução

variáveis e picos de demanda. A exposição do serviço por meio de APIs facilitou sua integração com

aplicações externas e possibilitou a monetização baseada em consumo.

LUMEN ET VIRTUS, São José dos Pinhais, v. XVII, n. LVI, p.1-24, 2026

21

7.5 SÍNTESE DOS CASOS DE APLICAÇÃO

Em todos os domínios analisados, a implantação dos agentes como serviços independentes

evidenciou a capacidade da arquitetura de acomodar diferentes cargas de trabalho, formatos de dados

e padrões de uso. A reutilização dos mesmos princípios arquiteturais — serverless, execução stateless,

containerização e APIs como produtos — reforça a generalidade e a robustez da abordagem proposta,

validando sua aplicabilidade em cenários reais de produção.

8 DISCUSSÃO

Os resultados apresentados ao longo deste trabalho evidenciam que a principal barreira para a

transformação de soluções de inteligência artificial em produtos prontos para produção não reside na

sofisticação dos modelos, mas nas decisões arquiteturais e operacionais que sustentam sua execução

em ambientes reais. A arquitetura proposta demonstrou ser eficaz ao abordar, de forma integrada,

requisitos não funcionais críticos como custo, escalabilidade, segurança e latência.

Um dos principais achados deste estudo é a relevância do paradigma serverless-first para

workloads de IA caracterizados por demanda intermitente e alta variabilidade de uso. A computação

serverless mostrou-se particularmente adequada para mitigar custos operacionais e eliminar

infraestrutura ociosa, ao mesmo tempo em que fornece escalabilidade automática e tolerância a falhas.

No entanto, esse modelo também impõe restrições, como limites de tempo de execução e dependência

de inicializações dinâmicas, que precisam ser consideradas no desenho dos agentes de IA.

A adoção de agentes de IA stateless revelou-se um fator determinante para a escalabilidade

horizontal e a previsibilidade operacional da plataforma. Ao eliminar dependências de estado entre

execuções, tornou-se possível tratar cada requisição de forma independente, favorecendo a resiliência

do sistema e simplificando processos de manutenção e atualização. Esse modelo, entretanto, exige uma

separação clara entre lógica de processamento e persistência de dados, o que demanda maior disciplina

arquitetural.

A execução containerizada destacou-se como um mecanismo essencial para garantir

consistência entre ambientes e reduzir falhas decorrentes de incompatibilidades de dependências. Ao

encapsular código, modelos e bibliotecas em imagens versionadas, a arquitetura promoveu

reprodutibilidade e controle rigoroso do ciclo de vida dos agentes de IA. Por outro lado, a adoção de

contêineres em ambientes serverless requer atenção ao tamanho das imagens e ao impacto potencial

sobre tempos de inicialização.

A análise comparativa entre HTTP API e REST API revelou que a escolha do modelo de

integração deve ser orientada pelo estágio de maturidade do sistema e pelos requisitos funcionais e de

governança. Enquanto a HTTP API mostrou-se adequada para fases iniciais, oferecendo simplicidade

e menor latência, a REST API tornou-se indispensável para atender requisitos avançados, como

LUMEN ET VIRTUS, São José dos Pinhais, v. XVII, n. LVI, p.1-24, 2026

22

configuração completa de CORS, manipulação de cargas binárias e controle refinado de requisições e

respostas. Essa experiência reforça que decisões arquiteturais eficazes são contextuais e evolutivas, e

não absolutas.

Outro aspecto relevante discutido neste trabalho é o papel das APIs como produtos. Ao expor

cada capacidade de IA como um serviço independente, a arquitetura possibilitou implantação

autônoma, versionamento controlado e monetização baseada em uso. Esse modelo não apenas favorece

a reutilização técnica, como também alinha a arquitetura aos objetivos de negócio, transformando

funcionalidades de IA em ativos mensuráveis e governáveis.

Por fim, os casos de aplicação apresentados demonstram a generalidade da arquitetura

proposta, que se mostrou capaz de acomodar diferentes domínios de IA — visão computacional,

processamento de linguagem natural, automação de dados e geração de mídia — sem alterações

estruturais significativas. Essa versatilidade sugere que a abordagem pode ser replicada em outros

contextos e setores, desde que os princípios arquiteturais fundamentais sejam respeitados.

Em síntese, a discussão reforça que a produtização da IA exige uma mudança de foco, da

experimentação isolada para a engenharia de sistemas robustos, escaláveis e economicamente

sustentáveis. A arquitetura apresentada oferece um caminho viável para essa transição, ao integrar

práticas consolidadas de engenharia de software e computação em nuvem às demandas específicas de

sistemas de inteligência artificial em produção.

9 CONCLUSÃO

Este trabalho apresentou uma arquitetura serverless para a implantação de agentes de

inteligência artificial como serviços modulares, escaláveis e economicamente sustentáveis, abordando

desafios recorrentes que impedem a evolução de provas de conceito para sistemas prontos para

produção. Ao longo do artigo, demonstrou-se que as principais limitações enfrentadas por iniciativas

de IA em ambientes corporativos não estão relacionadas à capacidade dos modelos, mas à ausência de

uma base arquitetural adequada para sua operacionalização contínua.

A arquitetura proposta fundamenta-se em princípios como serverless-first, execução stateless,

containerização e exposição das capacidades de IA por meio de APIs tratadas como produtos. Esses

princípios permitiram alinhar requisitos não funcionais críticos — custo, escalabilidade, segurança e

latência — às demandas práticas de ambientes produtivos, reduzindo a complexidade operacional e

aumentando a confiabilidade do sistema.

A análise comparativa entre HTTP API e REST API evidenciou que decisões arquiteturais

devem ser orientadas pelo estágio de maturidade do sistema e pelos requisitos de governança.

Enquanto abordagens mais simples se mostraram adequadas para fases iniciais, a REST API revelou-

se essencial para suportar funcionalidades avançadas, como configuração completa de CORS,

LUMEN ET VIRTUS, São José dos Pinhais, v. XVII, n. LVI, p.1-24, 2026

23

manipulação de cargas binárias e controle refinado de requisições, consolidando-se como elemento-

chave para ambientes de produção.

Os casos de aplicação apresentados demonstraram a versatilidade da arquitetura ao acomodar

diferentes domínios de inteligência artificial, incluindo visão computacional, processamento de

linguagem natural, automação de dados e geração de mídia, sem necessidade de alterações estruturais

significativas. Essa generalidade reforça a aplicabilidade da abordagem proposta em diversos

contextos organizacionais e setoriais.

Em síntese, este trabalho contribui ao demonstrar que a produtização da inteligência artificial

requer uma mudança de paradigma: da experimentação isolada para a engenharia de sistemas

orientados a serviços, escaláveis e governáveis. A arquitetura apresentada oferece um caminho prático

e replicável para essa transição, servindo como referência para organizações que buscam transformar

soluções de IA em produtos robustos, reutilizáveis e sustentáveis em ambientes de produção.

9.1 CONSIDERAÇÕES FINAIS

Os experimentos e validações funcionais descritos neste trabalho foram conduzidos por meio

de uma interface interativa de testes, que atua como cliente genérico das APIs, simulando diferentes

cenários de consumo dos agentes de IA.

A implementação de referência utilizada nos experimentos está disponível como material

suplementar, com acesso restrito às funcionalidades de demonstração.1

1 https://agents-marketplace.i4uai.com/

LUMEN ET VIRTUS, São José dos Pinhais, v. XVII, n. LVI, p.1-24, 2026

24

REFERÊNCIAS

Amershi, S. et al. Software Engineering for Machine Learning: A Case Study. IEEE/ACM

International Conference on Software Engineering (ICSE), 2019.

Polyzotis, N. et al. Data Management Challenges in Production Machine Learning. SIGMOD

Record, 2018.

Amazon Web Services (AWS). Serverless Architectures with AWS Lambda. AWS Whitepaper, 2020.

Merkel, D. Docker: Lightweight Linux Containers for Consistent Development and Deployment.

Linux Journal, 2014.

Amazon Web Services (AWS). Best Practices for Container Images. AWS Documentation.

Amazon Web Services (AWS). Amazon API Gateway Developer Guide. AWS Documentation.

W3C. Cross-Origin Resource Sharing (CORS). W3C Recommendation, 2014.

Amazon Web Services (AWS). API Gateway Usage Plans and API Keys. AWS Documentation.

