T | LumeN

ISSN: 2177-2789

PROJETO E IMPLANTACAO DE AGENTES DE INTELIGENCIA ARTIFICIAL
PLUG-AND-PLAY UTILIZANDO ARQUITETURAS SERVERLESS

DESIGN AND IMPLEMENTATION OF PLUG-AND-PLAY ARTIFICIAL
INTELLIGENCE AGENTS USING SERVERLESS ARCHITECTURES

DISENO E IMPLEMENTACION DE AGENTES DE INTELIGENCIA ARTIFICIAL
PLUG-AND-PLAY UTILIZANDO ARQUITECTURAS SIN SERVIDOR

d. https://doi.org/10.56238/levv17n56-035
Data de submissao: 12/12/2025 Data de publicac¢iao: 12/01/2026

Erick Roberto Furst Brito

Pos Graduagao em Gerencimento de Banco de Dados
Instituicao: Centro Universitario de Belo Horizonte (UNI-BH)
E-mail: erick.furst@gmail.com

Lattes: http://lattes.cnpq.br/5747557105880611

RESUMO

A rapida adog¢do da inteligéncia artificial (IA) em ambientes corporativos tem evidenciado uma lacuna
recorrente entre prototipos experimentais e sistemas prontos para produ¢do. Embora modelos de
linguagem de grande porte, visdo computacional e pipelines de aprendizado de maquina estejam cada
vez mais acessiveis, as organizacdes continuam enfrentando desafios relacionados a escalabilidade, ao
controle de custos, a complexidade operacional e a integracdo ao tentar implantar solugdes de IA como
servicos consumiveis. Este artigo apresenta uma abordagem arquitetural serverless para a construgao
de agentes de IA modulares e plug-and-play, disponibilizados como APIs, com énfase nas restrigdes
do mundo real encontradas em ambientes de produgdo. A arquitetura proposta utiliza fungdes
containerizadas, execucdo stateless e faturamento baseado no consumo para viabilizar implantacao
rapida, escalabilidade e eficiéncia econdmica. Além disso, o artigo discute os trade-offs arquiteturais
observados entre os modelos de integragdo REST API e HTTP API, e apresenta licdes empiricas
obtidas a partir da implantacdo de multiplos agentes de IA nos dominios de processamento de
linguagem natural, visdo computacional e automagao de dados.

Palavras-chave: Inteligéncia Artificial. Arquitetura sem Servidor. Computagdo em Nuvem. Design de
API. Agentes de IA. Arquitetura de Software.

ABSTRACT

The rapid adoption of artificial intelligence (Al) in corporate environments has exposed a recurring
gap between experimental prototypes and production-ready systems. While large language models,
computer vision, and machine learning pipelines are increasingly accessible, organizations continue to
face challenges related to scalability, cost control, operational complexity, and integration when
attempting to deploy Al solutions as consumable services. This paper presents a serverless architectural
approach for building modular, plug-and-play Al agents deployed as APIs, emphasizing real-world
constraints encountered in production environments. The proposed architecture leverages
containerized functions, stateless execution, and consumption-based billing to enable rapid
deployment, scalability, and economic efficiency. Additionally, the paper discusses architectural trade-
offs observed between REST and HTTP API integration models and presents empirical lessons learned

LUMEN ET VIRTUS, Sao José dos Pinhais, v. XVII, n. LVI, p.1-24, 2026



https://doi.org/10.56238/levv17n56-035

from deploying multiple Al agents across natural language processing, computer vision, and data
automation domains.

Keywords: Artificial Intelligence. Serverless Architecture. Cloud Computing. API Design. AI Agents.
Software Architecture.

RESUMEN

La répida adopcion de la inteligencia artificial (IA) en entornos corporativos ha puesto de relieve la
creciente brecha entre los prototipos experimentales y los sistemas listos para produccion. Si bien los
modelos de lenguaje a gran escala, la vision artificial y los procesos de aprendizaje automatico son
cada vez mas accesibles, las organizaciones siguen enfrentandose a desafios relacionados con la
escalabilidad, el control de costes, la complejidad operativa y la integracion al intentar implementar
soluciones de IA como servicios consumibles. Este articulo presenta un enfoque arquitectonico sin
servidor para la creacion de agentes de IA modulares, listos para usar y distribuidos como API,
haciendo hincapi¢ en las limitaciones reales de los entornos de produccion. La arquitectura propuesta
utiliza funciones contenedorizadas, ejecucion sin estado y facturacion basada en el consumo para
permitir una implementacion rapida, escalabilidad y eficiencia economica. Ademas, el articulo analiza
las compensaciones arquitectonicas observadas entre los modelos de integracion de API REST y API
HTTP y presenta lecciones empiricas aprendidas al implementar multiples agentes de IA en los
dominios del procesamiento del lenguaje natural, la vision artificial y la automatizacion de datos.

Palabras clave: Inteligencia Artificial. Arquitectura Sin Servidor. Computacion en la Nube. Disefio
de API. Agentes de IA. Arquitectura de Software.

=

LUMEN ET VIRTUS, Sao José dos Pinhais, v. XVII, n. LVI, p.1-24, 2026



1 INTRODUCAO

A crescente demanda por solucdes de inteligéncia artificial em diversos setores tem resultado
na proliferacao de sistemas de prova de conceito (PoC) que demonstram viabilidade técnica, mas nao
conseguem evoluir para produtos prontos para producdo. Entre os obstaculos mais comuns estdo a
sobrecarga de gerenciamento de infraestrutura, os custos operacionais imprevisiveis, as dificuldades
de escalabilidade das cargas de trabalho e os desafios associados a integragdo de modelos de IA aos
sistemas corporativos existentes.

A computacao serverless surgiu como um paradigma promissor para enfrentar esses desafios,
ao abstrair o gerenciamento da infraestrutura e permitir uma alocacdo de recursos mais granular.
Quando combinadas com containerizacdo e um design orientado a APIs, as arquiteturas serverless
oferecem uma base solida para a implantagdo de agentes de IA como servigos modulares e reutilizaveis.

Este artigo explora o projeto e a implantagdo de agentes de IA como servicos plug-and-play
utilizando uma arquitetura serverless, com foco nas decisdes arquiteturais, nos padrdes de integracao

e nas ligdes aprendidas a partir de implantagdes reais em ambientes de produgao.

2 DEFINICAO DO PROBLEMA
Apesar dos avangos no desenvolvimento de modelos de A, as organizagdes frequentemente
enfrentam dificuldades em:
e Transicionar solugdes de IA de ambientes experimentais para producao
e Gerenciar a infraestrutura e a complexidade operacional
e Controlar os custos associados a cargas de trabalho variaveis
e Escalar servigos de IA em resposta a demanda

e Disponibilizar interfaces padronizadas e seguras para o consumo de [A

Arquiteturas tradicionais, monoliticas ou baseadas em servidores, tendem a agravar esses
desafios ao introduzir um forte acoplamento entre a infraestrutura e a ldgica da aplicacdo. Como
resultado, torna-se necessaria a adocdo de modelos arquiteturais que priorizem modularidade,

escalabilidade e simplicidade operacional.

3 POR QUE PROVAS DE CONCEITO DE IA FREQUENTEMENTE NAO EVOLUEM
PARA PRODUTOS

O crescimento acelerado das tecnologias de inteligéncia artificial tem levado organizacdes de
diferentes setores a investirem em provas de conceito (Proofs of Concept — PoCs) como forma de
validar rapidamente ideias, algoritmos e hipoteses de negocio. Essas iniciativas costumam demonstrar

viabilidade técnica em ambientes controlados, utilizando conjuntos de dados reduzidos, infraestrutura

=

LUMEN ET VIRTUS, Sao José dos Pinhais, v. XVII, n. LVI, p.1-24, 2026



simplificada e requisitos funcionais limitados. No entanto, uma parcela significativa dessas PoCs nao
consegue evoluir para produtos prontos para producao.

Uma das principais razdes para esse fendmeno estd na diferenga estrutural entre validacao
técnica e operagao continua. PoCs sdo, por defini¢dao, experimentais. Elas sao desenvolvidas para
responder a pergunta “isso é possivel?”’, enquanto produtos precisam responder continuamente a “isso
¢é confiavel, escalavel, seguro e sustentdavel?”. Essa mudanca de foco impde desafios que raramente

sao considerados na fase inicial de experimentacao.

3.1 COMPLEXIDADE DE INFRAESTRUTURA E OPERACAO

PoCs geralmente sdo executadas em ambientes locais ou em infraestruturas provisionadas
manualmente, sem preocupagdo com alta disponibilidade, tolerancia a falhas ou monitoramento.
Quando a solugdo precisa operar de forma continua, surgem demandas por:

Escalabilidade automatica

Monitoramento e observabilidade

e (Qerenciamento de versdes e rollback

e Seguranga e controle de acesso

A auséncia de uma arquitetura preparada para essas exigéncias torna a transi¢ao para produgao

onerosa e, muitas vezes, inviavel dentro dos prazos e orgamentos disponiveis.

3.2 CUSTOS OPERACIONAIS IMPREVISIVEIS
Em PoCs, o custo computacional costuma ser irrelevante ou artificialmente reduzido. Em
producao, entretanto, modelos de IA podem gerar custos significativos devido a:
e Execucdes frequentes ou concorrentes
e Uso intensivo de recursos computacionais

e Dependéncia de servigos externos pagos por requisicao

Sem mecanismos de controle de consumo, como faturamento por uso ou limitagdo de
requisicdes, a solug¢do rapidamente se torna financeiramente insustentavel, levando ao seu abandono

antes mesmo da consolidagdo como produto.

3.3 FALTA DE PADRONIZACAO E INTEGRACAO
Outro fator recorrente € a dificuldade de integragcdo com sistemas corporativos existentes. PoCs
frequentemente utilizam interfaces ad hoc, scripts ou notebooks que ndo seguem padrdes de integragao,

autenticacao ou versionamento. Em ambientes produtivos, espera-se que solugdes de A oferecam:

=

LUMEN ET VIRTUS, Sao José dos Pinhais, v. XVII, n. LVI, p.1-24, 2026



e Interfaces padronizadas (APIs)
e Contratos claros de entrada e saida

e Compatibilidade com multiplos clientes e aplicagdes

A auséncia desses elementos limita a reutilizacdo e a adogdo da solugdo em escala

organizacional.

3.4 ACOPLAMENTO EXCESSIVO ENTRE MODELO E APLICACAO

Muitas PoCs sdao desenvolvidas com forte acoplamento entre o modelo de 1A, a légica de
negocio e a infraestrutura subjacente. Essa abordagem dificulta a manutencgdo, a atualizagdo de
modelos e a evolugdo do sistema. Em produtos maduros, ¢ desejavel que modelos possam ser
substituidos ou aprimorados sem impactar consumidores externos, o que exige separagdo clara de

responsabilidades e modularidade arquitetural.

3.5 AUSENCIA DE GOVERNANCA E CONFIABILIDADE

Aspectos como versionamento de modelos, rastreabilidade de decisdes, controle de qualidade
e conformidade regulatéria raramente sdo considerados em PoCs. No entanto, em produgdo, esses
fatores sdo essenciais para garantir confianca, especialmente em ambientes corporativos e regulados.
A falta de governanga técnica e operacional contribui para que solugdes experimentais ndo alcancem

maturidade suficiente para uso continuo.

3.6 DESALINHAMENTO ENTRE TECNOLOGIA E MODELO DE NEGOCIO

Por fim, muitas PoCs falham por ndo estarem associadas a um modelo claro de entrega de valor.
Demonstrar que um modelo funciona tecnicamente ndo implica que ele possa ser oferecido como
servigo, produto ou plataforma. A auséncia de uma estratégia de monetizagao, distribuicdo ou consumo

frequentemente impede que a iniciativa avance além do estagio experimental.

3.6.1 Custo, Escalabilidade, Seguranca e Laténcia como Barreiras a Produtizacio da IA

A transicao de solugdes de inteligéncia artificial de provas de conceito para sistemas prontos
para producao impde um conjunto de requisitos ndo funcionais que frequentemente nao sdo abordados
nas fases iniciais de desenvolvimento. Entre esses requisitos, custo, escalabilidade, seguranca e
laténcia destacam-se como fatores criticos que determinam a viabilidade técnica e econdmica de uma

solugdo de TA em ambientes corporativos.

=

LUMEN ET VIRTUS, Sao José dos Pinhais, v. XVII, n. LVI, p.1-24, 2026



3.7 CUSTO
Em provas de conceito, o custo computacional tende a ser subestimado ou desconsiderado, uma
vez que os experimentos sdo realizados com volumes reduzidos de dados, baixa concorréncia e
infraestrutura temporaria. No entanto, quando uma soluc¢ao de IA ¢ exposta como servigo, 0s custos
passam a crescer de forma proporcional ao uso, podendo incluir:
e Execucdes concorrentes de modelos de alto custo computacional
e Consumo intensivo de CPU, memoria ou GPU

e Dependéncia de servigos externos cobrados por requisi¢ao ou volume de dados

Sem mecanismos adequados de controle, como limitagdo de requisi¢des, isolamento por cliente
e faturamento baseado em consumo, o custo operacional torna-se imprevisivel. Essa imprevisibilidade
compromete a sustentabilidade financeira da solugao e representa uma das principais razdes pelas quais

PoCs de TA ndo evoluem para produtos comerciais.

3.8 ESCALABILIDADE

A escalabilidade raramente ¢ um requisito explicito em PoCs, que normalmente sao executadas
de forma sequencial ou com baixa concorréncia. Em ambientes de producdo, entretanto, sistemas de
IA precisam lidar com variagdes abruptas de demanda, multiplos usudrios simultaneos e cargas de
trabalho imprevisiveis.

Arquiteturas tradicionais baseadas em servidores fixos exigem planejamento prévio de
capacidade, o que pode resultar tanto em subutilizagdo de recursos quanto em degradacdo de
desempenho sob picos de carga. A auséncia de escalabilidade automatica dificulta a expansdao do
servico e reduz a confiabilidade percebida pelos usuarios finais.

Solugdes arquiteturais que favorecem escalabilidade horizontal e execugdo stateless sdo
fundamentais para permitir que agentes de IA respondam dinamicamente a demanda, mantendo

desempenho consistente sem interven¢ao manual.

3.9 SEGURANCA
Em PoCs, praticas de seguranga costumam ser minimas ou inexistentes, ja que o foco esta na
validacao técnica do modelo. No entanto, quando uma solugdo de TA ¢ implantada em produgao,
surgem preocupagoes relacionadas a:
e Autenticagdo e autorizacao de acesso
e [solamento entre clientes e dados
e Protecdo de dados sensiveis e informacgdes confidenciais

e Conformidade com requisitos regulatorios e corporativos

LUMEN ET VIRTUS, Sao José dos Pinhais, v. XVII, n. LVI, p.1-24, 2026

=



A auséncia de controles de seguranga adequados ndo apenas expde a organizagdo a riscos
técnicos e legais, como também impede a ado¢do da solugdo em ambientes empresariais. Sistemas de
IA destinados a produgdo precisam oferecer mecanismos robustos de controle de acesso, auditoria e

governanga, integrados a arquitetura desde sua concepgao.

3.10 LATENCIA

A laténcia € outro fator frequentemente negligenciado em ambientes experimentais. Em PoCs,
tempos de resposta elevados podem ser aceitaveis, desde que o modelo produza resultados corretos.
Em sistemas produtivos, no entanto, a laténcia impacta diretamente a experiéncia do usudrio e a
viabilidade da solugao.

Modelos de 1A, especialmente aqueles baseados em processamento intensivo ou cadeias de
inferéncia complexas, podem introduzir atrasos significativos quando executados em ambientes nao
otimizados. A falta de otimizacdo arquitetural, como roteamento eficiente, execucdo sob demanda e
reducdo de camadas intermedidrias, pode tornar a solugdo impraticavel para uso em tempo real ou
quase em tempo real.

Arquiteturas que minimizam laténcia por meio de provisionamento dindmico, isolamento de
fungdes e integracao direta entre API e execucdo do modelo sdo essenciais para atender as expectativas

de desempenho em producao.

3.11 SINTESE

Em sintese, PoCs de IA ndo se tornam produtos ndo por limitagdes algoritmicas, mas por
lacunas arquiteturais, operacionais e estratégicas. A transformag¢ao de uma PoC em produto exige uma
mudanca de paradigma: da experimentagdo isolada para a engenharia de sistemas escalaveis,
modulares e economicamente sustentaveis. Arquiteturas serverless, design orientado a APIs e execugao
stateless surgem, nesse contexto, como abordagens capazes de reduzir essa lacuna e acelerar a transi¢ao
da IA experimental para solugdes efetivamente produtivas.

Custo, escalabilidade, seguranca e laténcia ndo sdo desafios secundarios, mas requisitos
estruturais que determinam se uma solu¢do de A pode ser sustentada como produto. A negligéncia
desses fatores na fase de prova de conceito contribui significativamente para o alto indice de iniciativas
de TA que ndo ultrapassam o estagio experimental. Abordagens arquiteturais que incorporam esses
requisitos desde o inicio sdo fundamentais para transformar experimentos bem-sucedidos em solugdes

de IA robustas, confidveis ¢ economicamente viaveis.

4 PRINCiPIOS ARQUITETURAIS

A arquitetura proposta ¢ orientada pelos seguintes principios:

LUMEN ET VIRTUS, Sao José dos Pinhais, v. XVII, n. LVI, p.1-24, 2026

=



4.1 DESIGN SERVERLESS-FIRST

Os recursos computacionais sdo provisionados dinamicamente em resposta & demanda,
eliminando infraestrutura ociosa e reduzindo a sobrecarga operacional.

O principio de design serverless-first estabelece que os recursos computacionais devem ser
alocados de forma dindmica e sob demanda, em vez de permanecerem continuamente provisionados.
Nesse modelo, a infraestrutura deixa de ser um elemento central de preocupacdo para o
desenvolvimento da aplicacdo, permitindo que o foco seja direcionado a légica de negdcio e ao
comportamento funcional dos agentes de inteligéncia artificial.

Em arquiteturas tradicionais baseadas em servidores dedicados ou clusters fixos, a necessidade
de prever picos de carga frequentemente resulta em infraestrutura ociosa durante periodos de baixa
utilizacdo. Esse cenario gera ineficiéncia econdmica e aumenta a complexidade operacional, uma vez
que a capacidade deve ser constantemente monitorada, ajustada e mantida. O paradigma serverless
elimina essa necessidade ao permitir que o ambiente de execu¢do seja instanciado automaticamente
apenas quando ha requisi¢des ativas.

No contexto de agentes de [A, o design serverless-first apresenta vantagens particularmente
relevantes. Cargas de trabalho de IA costumam ser altamente varidveis, com periodos de inatividade
intercalados por picos de processamento intensivo. O provisionamento dindmico garante que os
recursos computacionais sejam utilizados exclusivamente durante a execucdo das inferéncias ou
tarefas de processamento, reduzindo custos e melhorando a eficiéncia geral do sistema.

Além disso, o modelo serverless reduz significativamente a sobrecarga operacional associada
a gestdo de infraestrutura. Atividades como configuracdo de servidores, balanceamento de carga,
atualizagdo de sistemas operacionais e gerenciamento de escalabilidade passam a ser abstraidas pela
plataforma de nuvem. Essa abstra¢do diminui o risco de falhas operacionais e acelera o ciclo de
desenvolvimento e implantagdo, favorecendo a rapida evolucao das solugdes.

Outro aspecto fundamental do design serverless-first ¢ sua aderéncia natural a escalabilidade
automatica. A medida que a demanda cresce, miltiplas instancias de execugdo podem ser criadas de
forma transparente, sem necessidade de intervencdo manual. Essa caracteristica € essencial para
agentes de IA expostos como servigos, nos quais o nimero de requisi¢des pode variar de forma
imprevisivel em fun¢do do comportamento dos usudrios ou de integragdes externas.

Em sintese, o design serverless-first oferece uma base arquitetural que alinha eficiéncia
econOmica, simplicidade operacional e escalabilidade. Ao eliminar infraestrutura ociosa e automatizar
o provisionamento de recursos, esse paradigma contribui diretamente para a transformacao de solugdes

de A experimentais em sistemas robustos e sustentaveis em ambientes de produgao.

=

LUMEN ET VIRTUS, Sao José dos Pinhais, v. XVII, n. LVI, p.1-24, 2026



4.2 AGENTES DE IA STATELESS

Cada agente de IA opera sem estado persistente, permitindo escalabilidade horizontal e
tolerancia a falhas.

O principio de agentes de [A stateless estabelece que cada instancia de execugao opera de forma
independente, sem manter estado persistente entre requisi¢des. Nesse modelo, todo o contexto
necessario para o processamento deve ser fornecido como entrada ou recuperado de servigos externos,
evitando dependéncias diretas entre execugdes consecutivas.

Em arquiteturas tradicionais, o estado da aplicacdo frequentemente ¢ mantido em memoria
local ou em estruturas internas do servi¢o, criando acoplamento entre sessoes e dificultando a
escalabilidade. Em sistemas de IA expostos como servigos, essa abordagem introduz limitagdes
significativas, pois impede a criagdo dindmica de multiplas instdncias e aumenta a complexidade de
recuperagao em caso de falhas.

A adocdo de agentes de IA stateless viabiliza a escalabilidade horizontal, uma vez que cada
requisi¢do pode ser atendida por qualquer instincia disponivel, sem a necessidade de sincronizagdo de
estado. Esse modelo permite que novas instancias sejam criadas ou removidas automaticamente
conforme a demanda, garantindo desempenho consistente mesmo sob cargas variaveis.

Além disso, a auséncia de estado persistente contribui diretamente para a tolerancia a falhas.
Caso uma instancia de execucao seja interrompida ou falhe durante o processamento, outra instancia
pode assumir a requisi¢do sem impacto significativo para o sistema ou para o usudrio final. Essa
caracteristica ¢ particularmente relevante em ambientes serverless, nos quais instancias sdo efémeras
por natureza.

No contexto de agentes de A, o design stateless também facilita a manutenc¢do e a evolugao
do sistema. Modelos de IA podem ser atualizados, substituidos ou versionados sem a necessidade de
migracdo de estado interno, reduzindo riscos durante o processo de implantacdo. Dados persistentes,
quando necessarios, podem ser armazenados em servigos externos especializados, como bancos de
dados ou sistemas de armazenamento de objetos, preservando a separagdo de responsabilidades.

Por fim, agentes de IA stateless promovem maior previsibilidade operacional. Ao eliminar
dependéncias implicitas entre execucdes, o comportamento do sistema torna-se mais deterministico,
facilitando testes, monitoramento e auditoria. Essa previsibilidade ¢ essencial para transformar

solucdes experimentais em servigos confiaveis e adequados para ambientes corporativos.

4.3 EXECUCAO CONTAINERIZADA
Os agentes de TA sdo empacotados como imagens de contéiner, garantindo consisténcia entre

ambientes e simplificando o gerenciamento de dependéncias.

=

LUMEN ET VIRTUS, Sao José dos Pinhais, v. XVII, n. LVI, p.1-24, 2026



A execucdo containerizada consiste no empacotamento dos agentes de inteligéncia artificial
como imagens de contéiner, contendo todo o conjunto de dependéncias, bibliotecas, modelos e
configuragdes necessarias para sua execugao. Esse modelo promove a padronizagao do ambiente de
execugdo, assegurando que o comportamento do agente seja consistente entre os ambientes de
desenvolvimento, teste e produgao.

Um dos principais desafios na transicdo de PoCs de IA para producdo estd relacionado a
inconsisténcia entre ambientes. Diferencas de versdes de bibliotecas, dependéncias nativas e
configuragdes do sistema operacional frequentemente resultam em falhas dificeis de reproduzir e
diagnosticar. A containerizacdo mitiga esse problema ao encapsular completamente o ambiente de
execucao, reduzindo a variabilidade entre diferentes estagios do ciclo de vida da aplicacao.

Além de garantir consisténcia, a execucdo containerizada simplifica significativamente o
gerenciamento de dependéncias. Agentes de IA costumam depender de bibliotecas especializadas,
frameworks de aprendizado de maquina e componentes de sistema que, quando instalados diretamente
no ambiente de execucdo, aumentam a complexidade operacional. Ao consolidar essas dependéncias
em uma imagem de contéiner versionada, torna-se possivel controlar com precisdo as mudangas no
ambiente e facilitar processos de atualizacao e rollback.

No contexto de arquiteturas serverless, a containerizagdo amplia a flexibilidade do modelo de
execucdo. Ao permitir que fungdes serverless sejam baseadas em imagens de contéiner, elimina-se a
necessidade de adaptar o cddigo a ambientes de execugdo predefinidos e restritivos. Isso ¢
particularmente relevante para agentes de IA que exigem dependéncias especificas ou configuracdes
customizadas, tornando a arquitetura mais adequada para workloads complexos.

Outro beneficio relevante da execu¢do containerizada ¢ a independéncia tecnologica. Ao
desacoplar o agente de IA da infraestrutura subjacente, 0 mesmo contéiner pode ser executado em
diferentes plataformas compativeis, favorecendo portabilidade e reduzindo riscos de dependéncia
excessiva de um Unico provedor. Essa caracteristica contribui para a sustentabilidade da solucdo a
longo prazo.

Em sintese, a execucdo containerizada oferece uma base solida para a operacionalizacdo de
agentes de IA em ambientes produtivos. Ao garantir consisténcia entre ambientes, simplificar o
gerenciamento de dependéncias e ampliar a flexibilidade de execu¢do, esse paradigma fortalece a

confiabilidade e a manutenibilidade de arquiteturas orientadas a IA.

4.4 APIS COMO PRODUTOS
Cada capacidade de IA ¢ exposta por meio de uma interface de API padronizada, permitindo

implantacdo independente, versionamento € monetizagao.

=

LUMEN ET VIRTUS, Sao José dos Pinhais, v. XVII, n. LVI, p.1-24, 2026

10



O principio de APIs como produtos estabelece que cada capacidade de inteligéncia artificial
deve ser concebida, projetada e disponibilizada como um servico independente, acessivel por meio de
uma interface de programacao padronizada. Nesse modelo, a API deixa de ser apenas um meio técnico
de integracdo e passa a representar a unidade fundamental de entrega de valor, consumo e evolugado do
sistema.

Em provas de conceito, funcionalidades de IA costumam estar fortemente acopladas a
aplicagoes especificas, scripts ou fluxos internos, dificultando sua reutilizagdo e expansdo. Ao tratar
cada capacidade de IA como um produto independente, a arquitetura promove desacoplamento entre
consumidores e provedores, permitindo que diferentes aplicagdes utilizem os mesmos servigos sem
dependéncias diretas de implementacao.

A padronizacao das interfaces de API desempenha papel central nesse contexto. Contratos bem
definidos de entrada e saida, formatos de dados consistentes e comportamentos previsiveis facilitam a
integracdo com multiplos clientes, sejam eles aplicagdes web, moveis ou sistemas corporativos. Além
disso, APIs padronizadas reduzem a curva de adogdo e ampliam a escalabilidade organizacional da
solucao.

Outro aspecto fundamental do modelo de APIs como produtos ¢ a implanta¢ao independente.
Cada agente de IA pode ser atualizado, substituido ou escalado sem impactar outros componentes do
sistema, desde que o contrato da API seja preservado. Essa independéncia reduz riscos durante o ciclo
de desenvolvimento e favorece a evolucdo continua da plataforma.

O versionamento ¢ igualmente essencial para garantir a estabilidade do ecossistema. Ao
disponibilizar multiplas versdes de uma API, torna-se possivel introduzir melhorias ou alteragdes sem
interromper consumidores existentes. Essa abordagem ¢ particularmente relevante em sistemas de [A,
nos quais modelos e algoritmos evoluem rapidamente e podem exigir ajustes frequentes.

Além dos beneficios técnicos, 0 modelo de APIs como produtos viabiliza estratégias claras de
monetizagdo e governanca. A exposi¢ao das capacidades de IA por meio de APIs permite o controle
preciso de uso, a aplicagdo de politicas de acesso e a cobrancga baseada em consumo. Essa caracteristica
transforma funcionalidades de IA em ativos econdmicos mensuraveis, alinhando a arquitetura técnica
aos objetivos de negdcio.

Em sintese, ao tratar APIs como produtos, a arquitetura transcende a experimentagdo isolada e
estabelece uma base so6lida para a entrega sustentavel de servicos de IA. Essa abordagem promove
modularidade, escalabilidade, previsibilidade e viabilidade econdmica, elementos essenciais para a

consolidacdo de solugdes de IA em ambientes de producao.

=

LUMEN ET VIRTUS, Sao José dos Pinhais, v. XVII, n. LVI, p.1-24, 2026

11



5 ARQUITETURA DO SISTEMA

A arquitetura proposta foi concebida para suportar a implantagdo, a operacao e a evolugdo
continua de agentes de inteligéncia artificial como servigos independentes e reutilizaveis. Seu desenho
prioriza modularidade, escalabilidade e simplicidade operacional, permitindo que cada componente
evolua de forma autdnoma sem comprometer o funcionamento global do sistema.

A arquitetura é composta pelos seguintes componentes:

5.1 REGISTRO DE CONTEINERES

O registro de contéineres desempenha um papel fundamental na arquitetura proposta, atuando
como o repositorio central de imagens versionadas que encapsulam os agentes de inteligéncia artificial.
Cada imagem de contéiner contém ndo apenas o codigo-fonte do agente, mas também todas as
dependéncias de software, bibliotecas especializadas, modelos de IA e configuracdes necessarias para
sua execugdo consistente.

A utilizagdo de imagens versionadas permite um controle preciso sobre o ciclo de vida dos
agentes de IA. Cada atualizagdo — seja de cddigo, de modelo ou de dependéncias — pode ser
registrada como uma nova versao, possibilitando rastreabilidade completa das mudancas ao longo do
tempo. Esse controle ¢ essencial em ambientes produtivos, nos quais auditoria, conformidade e
capacidade de reproducdo de comportamentos anteriores sao requisitos criticos.

Outro beneficio relevante do uso de um registro de contéineres ¢ a viabilizagao de mecanismos
seguros e eficientes de rollback. Em caso de falhas ou degradagdo de desempenho apds uma
atualizagdo, versdes anteriores das imagens podem ser rapidamente reimplantadas, reduzindo o tempo
de indisponibilidade e os riscos operacionais. Essa capacidade ¢ particularmente importante em
sistemas de IA, nos quais alteragdes em modelos podem produzir efeitos inesperados.

Além disso, o registro de contéineres garante a reprodutibilidade dos ambientes de execugao.
Ao utilizar a mesma imagem de contéiner em diferentes estagios — desenvolvimento, testes e
producao — elimina-se a variabilidade causada por diferencas de configuracao ou dependéncias. Essa
consisténcia reduz falhas dificeis de diagnosticar e contribui para a estabilidade do sistema como um
todo.

Por fim, o registro de contéineres atua como o ponto central de distribuicao dos agentes de IA,
permitindo que a camada de computagdo serverless obtenha imagens confidveis e previamente
validadas. Essa centralizagao fortalece a governanga do ecossistema, assegurando que apenas versoes
autorizadas e verificadas dos agentes sejam implantadas, ao mesmo tempo em que simplifica a gestao

e a escalabilidade da plataforma.

=

LUMEN ET VIRTUS, Sao José dos Pinhais, v. XVII, n. LVI, p.1-24, 2026

12



5.2 CAMADA DE COMPUTACAO SERVERLESS

A camada de computagdo serverless ¢ responsavel pela execugdo dos agentes de inteligéncia
artificial containerizados em resposta direta as requisi¢oes encaminhadas pela camada de API. Nesse
modelo, cada solicitagdao recebida resulta na criacdo de uma instancia de execucao efémera, isolada e
independente, que processa a tarefa solicitada e ¢ descartada ao final da execucao.

A principal caracteristica dessa abordagem ¢ a elimina¢do do provisionamento manual de
infraestrutura. Diferentemente de arquiteturas baseadas em servidores persistentes, nas quais €
necessario planejar capacidade, gerenciar recursos e realizar manutencao continua, o paradigma
serverless delega essas responsabilidades a plataforma de nuvem. Isso reduz significativamente a
complexidade operacional e permite que equipes concentrem esfor¢os no desenvolvimento e na
evolucdo dos agentes de [A.

A cria¢ao dindmica de instancias de execu¢dao conforme a demanda viabiliza escalabilidade
horizontal automatica. A medida que o volume de requisi¢des aumenta, maltiplas instincias podem
ser inicializadas simultaneamente para atender a carga, sem necessidade de configuragdo prévia. Da
mesma forma, em periodos de baixa demanda, os recursos sdo automaticamente liberados, evitando
desperdicio computacional.

A natureza efémera das execucdes reforca o modelo stateless adotado pelos agentes de IA.
Como ndo ha garantia de reutilizacdo da mesma instancia entre requisi¢des, todo o processamento &
realizado de forma independente, sem dependéncia de estado local. Essa caracteristica contribui
diretamente para a tolerancia a falhas, uma vez que a interrup¢do ou falha de uma instancia nao
compromete o funcionamento global do sistema, podendo ser imediatamente compensada por outra
execucao.

Do ponto de vista econdmico, a computagdo serverless introduz um modelo de cobranga
baseado no tempo de execugdo e nos recursos efetivamente consumidos. Esse modelo alinha custos ao
uso real do servico, reduzindo investimentos iniciais e tornando a solu¢ao financeiramente viavel
mesmo para cargas de trabalho intermitentes, tipicas de aplicacdes de [A expostas como servigos.

Em conjunto, essas caracteristicas fazem da camada de computacao serverless um elemento
central da arquitetura proposta, oferecendo escalabilidade, resiliéncia e eficiéncia economica. Ao
abstrair a complexidade da infraestrutura e favorecer um modelo de execugao dindmico e desacoplado,
essa camada contribui de forma decisiva para a transformacdo de agentes de IA experimentais em

servicos robustos e prontos para produgao.

5.3 CAMADA DE API GATEWAY
A camada de API Gateway atua como o ponto de entrada tnico para os servigos de inteligéncia

artificial, sendo responsavel por expor os agentes de IA como endpoints HTTP padronizados e por

=

LUMEN ET VIRTUS, Sao José dos Pinhais, v. XVII, n. LVI, p.1-24, 2026

13



intermediar a comunicagdo entre aplicacdes clientes e a camada de computagado serverless baseada em
funcdes AWS Lambda. Essa integracdo direta estabelece um fluxo eficiente no qual cada requisicao
recebida pelo gateway resulta na invocagdo controlada de uma funcdo Lambda correspondente ao
agente solicitado.

No contexto da arquitetura proposta, dois modelos de integragdo do API Gateway foram
avaliados: HTTP API e REST API. Cada abordagem apresenta caracteristicas distintas, que impactam
diretamente a governanga, a flexibilidade e o grau de controle sobre o trafego e o comportamento das
requisigoes.

Durante as fases iniciais de implantacdo, a HTTP API foi adotada como mecanismo de
exposicdo dos servicos devido a sua configuracdo simplificada, menor laténcia e menor custo
operacional. Essa abordagem mostrou-se adequada para acelerar o ftime-to-market e validar
rapidamente o consumo dos agentes de IA. Entretanto, a simplicidade da HTTP API impde limitacGes
relevantes em cenarios que demandam maior controle sobre requisigdes e respostas.

A medida que a arquitetura evoluiu e requisitos mais avangados foram incorporados, tornou-se
necessaria a ado¢do da REST API. Diferentemente da HTTP API, a REST API oferece suporte
completo a funcionalidades essenciais de governanca, incluindo:

e Configuracdo detalhada e consistente de CORS (Cross-Origin Resource Sharing)
e Manipulagdo e transformagao de payloads de requisi¢ao e resposta

e Suporte robusto a cargas bindrias (como imagens, PDFs e arquivos CSV)

e Integragdes do tipo Lambda Proxy e Non-Proxy

e Padronizagdo rigorosa de headers e codigos de resposta

Em particular, a habilitacido completa e confiavel de CORS, fundamental para o consumo
dos servicos de IA por aplicacdes frontend modernas, s6 foi plenamente alcangada por meio da REST
API. Esse nivel de controle mostrou-se indispensavel para garantir interoperabilidade segura entre
aplicagdes web e os agentes de A executados no Lambda.

Além disso, a REST API possibilitou a implementagdo mais refinada de mecanismos de
autenticacgdo, autorizacgdo e limitacdo de requisi¢des (throttling), reforgando a protecdo da camada de
computagdo serverless e assegurando previsibilidade de custos e desempenho. Ao centralizar essas
responsabilidades no API Gateway, o codigo dos agentes de IA permaneceu desacoplado de
preocupacoes relacionadas a seguranga e ao controle de trafego.

Em sintese, a experiéncia pratica evidenciou que a escolha entre HTTP API e REST API ndo
deve ser tratada como uma decisdo binaria, mas como uma questdo de maturidade arquitetural e
requisitos funcionais. Enquanto a HTTP API atende de forma eficaz cendrios iniciais e de baixa

complexidade, a REST API se mostrou essencial para suportar requisitos avangados de governanca,

=

LUMEN ET VIRTUS, Sao José dos Pinhais, v. XVII, n. LVI, p.1-24, 2026

14



seguranga e integragdo, consolidando a arquitetura proposta como adequada para ambientes de

producao.
Tabela 1
Aspecto HTTP API REST API
. . Exposi¢do simplificada de | Exposi¢do completa e altamente configuravel de
Objetivo principal APIs APIs
Complexidade de configuracdo Baixa Alta
Custo por requisi¢io Menor Maior
Laténcia Menor Maior (devido a camadas adicionais)
Integragcdo com AWS Lambda Direta e simplificada Direta, com suporte a proxy € nao-proxy
Suporte a CORS Basico e limitado Completo e altamente configuravel
Controle de headers Limitado Granular e detalhado
Transformacdo de payload Nao suportada Suportada (request/response mapping)
Suporte a payloads binarios Nativo Requer configuracdo explicita (Binary Media
Types)
Versionamento de APIs Limitado Suportado de forma nativa
Governanga e controle Basico Avangado
Limitagdo de requisigdes L .
(throttling) Bésica Avangada e configuravel
Adequagdo para MVP Alta Média
Adequagio para producdo Média Alta
corporativa
Curva de aprendizado Baixa Alta
Casos de uso recomendados MVPs, validac¢des rapidas Sistemas maduros, ambientes produtivos

Fonte: Autores.

5.4 APLICACOES FRONTEND E CLIENTES

As aplicacdes frontend e os clientes externos constituem a camada de consumo da arquitetura
proposta, sendo responsaveis por interagir com os agentes de inteligéncia artificial exclusivamente por
meio das APIs expostas pela camada de API Gateway. Nesse modelo, os consumidores ndo possuem
conhecimento direto sobre a infraestrutura subjacente, os mecanismos de execucdo serverless ou a
implementac¢do interna dos agentes de A, o que promove um forte desacoplamento entre consumo e
execucao.

Esse desacoplamento arquitetural favorece a interoperabilidade com diferentes plataformas e
tecnologias. Aplicagdes web, moveis e sistemas corporativos podem consumir os servigos de [A de
maneira uniforme, independentemente de sua linguagem de programacao, ambiente de execucao ou
arquitetura interna. Como resultado, as capacidades de IA tornam-se reutilizdveis em multiplos
contextos, ampliando significativamente seu potencial de adogao.

A padronizagdo das interfaces de consumo desempenha um papel central nesse processo. APIs
com contratos bem definidos, formatos de dados consistentes e comportamentos previsiveis reduzem
a complexidade de integragdo e minimizam erros de comunicagdo entre clientes e servigos. Essa
previsibilidade ¢ particularmente importante em ambientes corporativos, nos quais multiplas equipes

ou sistemas podem consumir os mesmos servicos de A simultaneamente.

™

LUMEN ET VIRTUS, Sao José dos Pinhais, v. XVII, n. LVI, p.1-24, 2026

15



Além disso, a utilizagdo de APIs padronizadas facilita a evolucdo das aplicagdes clientes de
forma independente. Novas versdes de agentes de IA podem ser implantadas sem exigir alteragdes
imediatas nos consumidores, desde que os contratos das APIs sejam preservados. Essa independéncia
reduz riscos durante a evolugdo do sistema e contribui para a estabilidade do ecossistema como um
todo.

Do ponto de vista operacional, o modelo de consumo via APIs também favorece o controle e a
governanga. Métricas de uso, limites de requisigado e politicas de acesso podem ser aplicados de forma
consistente a todos os clientes, independentemente da plataforma de origem. Essa uniformidade
simplifica 0 monitoramento e permite uma gestao mais eficiente do consumo dos servicos de IA.

Em sintese, a camada de aplicagdes frontend e clientes desempenha um papel essencial na
arquitetura ao viabilizar o consumo amplo, seguro e padronizado das capacidades de IA. O
desacoplamento entre consumidores e agentes de 1A, aliado a padronizacao das interfaces, contribui
diretamente para a escalabilidade, a interoperabilidade e a sustentabilidade da solu¢cdo em ambientes

produtivos.

5.5 FATURAMENTO E CONTROLE DE ACESSO

O componente de faturamento e controle de acesso desempenha um papel estratégico na
arquitetura proposta, ao estabelecer politicas claras de uso, governanga e monetizagao dos servigos de
inteligéncia artificial. Ao tratar cada agente de IA como um servico consumivel, torna-se essencial
identificar consumidores, controlar o volume de requisi¢cdes e associar o uso efetivo a modelos de
cobranca sustentaveis.

A utilizacdo de chaves de APl como mecanismo de identificagdo permite distinguir
consumidores individuais ou aplicagdes clientes de forma consistente. Cada requisi¢do pode ser
associada a uma chave especifica, possibilitando a aplica¢dao de politicas diferenciadas de acesso,
limites de uso e niveis de servico. Esse modelo favorece tanto cendrios internos, nos quais diferentes
dreas consomem 0S servigcos, quanto contextos externos, nos quais clientes distintos acessam a
plataforma.

O controle de requisi¢des, por meio de limitacdo (throttling) e cotas de consumo, contribui
diretamente para a estabilidade operacional do sistema. Ao impor limites por consumidor, evita-se o
uso excessivo ou indevido dos recursos computacionais, protegendo a camada de computagdo
serverless contra sobrecarga e assegurando previsibilidade de desempenho e custos.

Do ponto de vista econdmico, o registro detalhado de métricas de consumo viabiliza modelos
de cobranga baseados em uso real. Esse modelo de faturamento alinha custos operacionais ao valor
efetivamente entregue, reduzindo barreiras de adocao e tornando a plataforma financeiramente viavel

mesmo para cargas de trabalho varidveis. A monetizagdo por consumo também favorece a

™

LUMEN ET VIRTUS, Sao José dos Pinhais, v. XVII, n. LVI, p.1-24, 2026

16



escalabilidade do negdcio, a medida que o crescimento do uso se traduz diretamente em aumento de
receita.

Além da monetizagdo, o controle de acesso contribui de forma significativa para a seguranga
da arquitetura. A autenticacao baseada em chaves de API, associada a politicas de autorizacao, reduz
o risco de acessos nao autorizados e facilita a auditoria das interacdes com os servigos de IA. Esse
nivel de controle ¢ particularmente relevante em ambientes corporativos, nos quais requisitos de
conformidade e rastreabilidade sdo fundamentais.

Essa estrutura de faturamento e controle de acesso, integrada as demais camadas da arquitetura,
reforca a modularidade do sistema. Cada agente de IA pode evoluir de forma independente, com
politicas de uso e monetizagdo ajustadas conforme suas caracteristicas, sem comprometer o
comportamento operacional consistente da plataforma como um todo. Dessa forma, a arquitetura
proposta estabelece uma base soélida para a oferta sustentavel de servigos de IA em ambientes

produtivos.

5.6 SINTESE DA ARQUITETURA

A arquitetura apresentada neste trabalho foi projetada para viabilizar a implantacdo de agentes
de inteligéncia artificial como servicos modulares, escaldveis e economicamente sustentaveis,
superando as limitagdes frequentemente observadas em provas de conceito que ndo evoluem para
ambientes de producdo. Seu desenho adota principios serverless-first, execucdo stateless,
containerizagao e exposi¢ao das capacidades de IA por meio de APIs tratadas como produtos.

No nucleo da arquitetura, os agentes de IA sdo empacotados como imagens de contéiner
versionadas e armazenados em um registro centralizado, garantindo consisténcia de execucdo,
rastreabilidade de mudancas e reprodutibilidade entre diferentes estagios do ciclo de vida da aplicacao.
Essas imagens sdo consumidas pela camada de computagdo serverless, que executa os agentes de
forma efémera e sob demanda, eliminando a necessidade de provisionamento manual de infraestrutura
e permitindo escalabilidade horizontal automatica.

A camada de API Gateway atua como intermedidria entre os consumidores ¢ a camada de
execugdo baseada em AWS Lambda, expondo os agentes como endpoints HTTP padronizados. A
diferenciagdo entre HTTP API e REST API permite equilibrar simplicidade inicial e controle avangado,
sendo a REST API essencial para a implementa¢ao completa de funcionalidades de governanga, como
configuragdo detalhada de CORS, controle de headers, transformagado de payloads e suporte robusto a
cargas binarias. Ao centralizar preocupacgdes relacionadas a segurancga, autentica¢do, autorizacdo e
limitacdo de requisicdes, o API Gateway desacopla essas responsabilidades do codigo dos agentes de

IA, simplificando seu desenvolvimento e manutengao.

=

LUMEN ET VIRTUS, Sao José dos Pinhais, v. XVII, n. LVI, p.1-24, 2026

17



As aplicacdes frontend e os clientes externos consomem os servigos de IA exclusivamente por
meio das APIs expostas, sem dependéncia direta da infraestrutura ou da implementagdo interna dos
agentes. Esse desacoplamento promove interoperabilidade entre diferentes plataformas e tecnologias,
reduz a complexidade de integracdo e amplia o alcance das capacidades de IA oferecidas pela
plataforma.

Complementarmente, o componente de faturamento e controle de acesso estabelece politicas
claras de uso, governanga e monetizacao, utilizando chaves de API para identificar consumidores,
aplicar limites de requisicao e registrar métricas de consumo. Esse modelo viabiliza a cobranga baseada
em uso real, contribui para a seguranca do sistema e assegura previsibilidade operacional e financeira.

Em conjunto, esses componentes formam uma arquitetura modular que permite a evolugdo
independente de cada agente de IA, mantendo um comportamento operacional consistente em todo o
sistema. Ao alinhar decisdes arquiteturais a requisitos ndo funcionais criticos — como custo,
escalabilidade, seguranga e laténcia — a arquitetura proposta oferece uma base solida para a
transformagdo de solugdes de IA experimentais em servigos prontos para producdo, escalaveis e

sustentaveis em ambientes corporativos.

6 REST API VS HTTP API: LICOES APRENDIDAS EM PRODUCAO
Durante as fases iniciais de implantagdo da arquitetura proposta, optou-se pela adogdo de uma
integracdo baseada em HTTP API, com o objetivo de acelerar o time-to-market € viabilizar a validagao
rapida do consumo dos agentes de inteligéncia artificial. Essa escolha mostrou-se adequada em um
contexto de baixa complexidade operacional, oferecendo menor esforgo de configuragao, reducdo de
laténcia e integracao simplificada com a camada de computagao serverless baseada em AWS Lambda.
A HTTP API apresentou vantagens importantes nesse estagio inicial, como a facilidade de
exposi¢do de endpoints, o suporte nativo a chamadas cross-origin € o manuseio simplificado de
uploads de arquivos. Essas caracteristicas permitiram que os agentes de IA fossem rapidamente
disponibilizados para aplicacdes clientes, favorecendo ciclos curtos de desenvolvimento e feedback.
Entretanto, a medida que os requisitos do sistema evoluiram e a arquitetura passou a atender
cenarios mais complexos, tornou-se evidente a necessidade de maior controle sobre o comportamento
das requisi¢des e respostas. Nesse contexto, a arquitetura foi revisitada para incorporar integracdes
baseadas em REST API, que oferecem maior flexibilidade e capacidades avangadas de governanga.
As REST APIs permitem controle mais granular sobre diversos aspectos criticos da
comunicacao entre clientes e agentes de 1A, incluindo:
e Tratamento detalhado de cargas binarias, como imagens, documentos PDF e arquivos CSV
e Configuracdo completa e consistente de politicas de Cross-Origin Resource Sharing (CORS)

e Mapeamento e transformacao de payloads de requisi¢do e resposta

=

LUMEN ET VIRTUS, Sao José dos Pinhais, v. XVII, n. LVI, p.1-24, 2026

18



e Suporte a integracdes do tipo Lambda Proxy e Non-Proxy

Essas capacidades mostraram-se essenciais para suportar aplicagdes frontend mais sofisticadas,
integragdo com sistemas corporativos e padronizagao do comportamento dos servigos em ambientes
produtivos. Em particular, a habilitacdo completa e confiavel de CORS revelou-se um requisito
fundamental para a interoperabilidade com aplicacdes web modernas, sendo plenamente atendida
apenas por meio da REST API.

A adogao da REST API, contudo, introduziu uma complexidade adicional de configuragdo e
exigiu maior maturidade arquitetural. Aspectos como definicdo explicita de binary media types,
escolha adequada entre integragdes proxy e nao proxy, € padronizacio de headers e codigos de resposta
demandaram um entendimento mais profundo do funcionamento do API Gateway e de sua integracao
com o AWS Lambda.

Por meio de um processo iterativo de refinamento e aprendizado, as REST APIs foram
configuradas com sucesso para uso em produgdo. A padronizagdo das integracdes proxy, o tratamento
adequado de cargas bindrias e a imposicdo de esquemas de resposta consistentes resultaram em uma
arquitetura estavel, previsivel e alinhada aos requisitos operacionais do sistema.

Essa experiéncia evidencia que a REST API ndo representa uma limita¢do técnica, mas sim
uma solucao mais poderosa que requer maior grau de maturidade arquitetural e expertise operacional.
Os resultados obtidos reforcam que a escolha entre HTTP API e REST API deve ser orientada pelo
estdgio de maturidade do sistema e pelos requisitos funcionais e nao funcionais, € ndo por uma

avaliacdo simplista de superioridade tecnoldgica.

7 CASOS DE APLICACAO

A arquitetura proposta foi validada por meio de sua aplicagdo em multiplos dominios de
inteligéncia artificial, abrangendo diferentes tipos de dados, padrdes de consumo e requisitos
computacionais. Em todos os casos, os agentes de [A foram implantados como servigos independentes,
expostos por meio de APIs padronizadas e executados em uma infraestrutura serverless, demonstrando

a flexibilidade e a reutilizagdo do modelo arquitetural.

7.1 VISAO COMPUTACIONAL

No dominio de visao computacional, a arquitetura foi utilizada para a classificagdo de imagens
e a detecg¢do de danos em objetos, cenarios que demandam processamento intensivo e suporte a cargas
binarias. Os agentes de IA responsaveis por essas tarefas recebem imagens como entrada, executam

inferéncias baseadas em modelos de aprendizado profundo e retornam resultados estruturados por meio

da API.

=

LUMEN ET VIRTUS, Sao José dos Pinhais, v. XVII, n. LVI, p.1-24, 2026

19



A execugdo serverless mostrou-se adequada para esse tipo de carga de trabalho, permitindo que
0s recursos computacionais fossem alocados apenas durante o processamento das imagens. A
integragao com REST API possibilitou o tratamento adequado de binary media types e a padronizagao

das respostas, assegurando interoperabilidade com aplicagdes frontend e sistemas corporativos.

7.2 PROCESSAMENTO DE LINGUAGEM NATURAL

A arquitetura também foi aplicada a agentes de processamento de linguagem natural, incluindo
analise de sentimentos, sumarizacdo de documentos ¢ analise automatizada de curriculos. Esses
agentes operam sobre dados textuais, frequentemente enviados em formatos estruturados ou como
arquivos, e produzem saidas que apoiam processos decisérios em ambientes corporativos.

A modularidade da arquitetura permitiu que cada capacidade de NLP fosse implementada como
um agente independente, facilitando atualizacdo de modelos, versionamento de APIs e controle de uso
por tipo de servico. Além disso, a execucao stateless garantiu previsibilidade de comportamento e

escalabilidade em cenarios de uso concorrente.

7.3 AUTOMACAO DE DADOS

No contexto de automagdo de dados, a arquitetura foi empregada para a geragao de consultas
SQL a partir de prompts em linguagem natural. Nesse caso, os agentes de IA atuam como
intermediarios inteligentes entre usuarios finais e sistemas de banco de dados, traduzindo intenc¢des
expressas em linguagem natural em comandos estruturados.

A exposi¢ao desse tipo de funcionalidade por meio de APIs padronizadas permitiu sua
integragdo com diferentes aplicagdes, sem dependéncia direta de um banco de dados especifico. Essa
abordagem favoreceu a reutilizacdo do agente em multiplos contextos e reforcou o desacoplamento

entre logica de IA e sistemas de persisténcia.

7.4 GERACAO DE MIDIA

A arquitetura também foi aplicada a geragdo automatizada de midia, especificamente na criacao
de podcasts a partir de documentos textuais. Nesse cendrio, os agentes de IA executam pipelines que
envolvem processamento de texto, geragdo de roteiro e sintese de voz, produzindo arquivos de dudio
como saida.

A execucdo containerizada mostrou-se essencial para suportar as dependéncias especificas
desse tipo de pipeline, enquanto a computagdo serverless permitiu lidar com tempos de execucdo
variaveis e picos de demanda. A exposi¢do do servigo por meio de APIs facilitou sua integracdo com

aplicagdes externas e possibilitou a monetizagdo baseada em consumo.

™

LUMEN ET VIRTUS, Sao José dos Pinhais, v. XVII, n. LVI, p.1-24, 2026

20



7.5 SINTESE DOS CASOS DE APLICACAO

Em todos os dominios analisados, a implantacdo dos agentes como servigos independentes
evidenciou a capacidade da arquitetura de acomodar diferentes cargas de trabalho, formatos de dados
e padrdes de uso. A reutilizagao dos mesmos principios arquiteturais — serverless, execugao stateless,
containerizagdo e APIs como produtos — reforga a generalidade e a robustez da abordagem proposta,

validando sua aplicabilidade em cendrios reais de producao.

8 DISCUSSAO

Os resultados apresentados ao longo deste trabalho evidenciam que a principal barreira para a
transformagdo de solucdes de inteligéncia artificial em produtos prontos para producdo nao reside na
sofisticagao dos modelos, mas nas decisdes arquiteturais € operacionais que sustentam sua execucao
em ambientes reais. A arquitetura proposta demonstrou ser eficaz ao abordar, de forma integrada,
requisitos ndo funcionais criticos como custo, escalabilidade, seguranca e laténcia.

Um dos principais achados deste estudo ¢ a relevancia do paradigma serverless-first para
workloads de IA caracterizados por demanda intermitente e alta variabilidade de uso. A computagao
serverless mostrou-se particularmente adequada para mitigar custos operacionais e eliminar
infraestrutura ociosa, a0 mesmo tempo em que fornece escalabilidade automatica e tolerancia a falhas.
No entanto, esse modelo também impde restrigdes, como limites de tempo de execucdo e dependéncia
de inicializa¢des dinamicas, que precisam ser consideradas no desenho dos agentes de IA.

A adocdo de agentes de 1A stateless revelou-se um fator determinante para a escalabilidade
horizontal e a previsibilidade operacional da plataforma. Ao eliminar dependéncias de estado entre
execugoes, tornou-se possivel tratar cada requisicao de forma independente, favorecendo a resiliéncia
do sistema e simplificando processos de manutencao e atualizagdo. Esse modelo, entretanto, exige uma
separagao clara entre 16gica de processamento e persisténcia de dados, o que demanda maior disciplina
arquitetural.

A execugdo containerizada destacou-se como um mecanismo essencial para garantir
consisténcia entre ambientes e reduzir falhas decorrentes de incompatibilidades de dependéncias. Ao
encapsular codigo, modelos e bibliotecas em imagens versionadas, a arquitetura promoveu
reprodutibilidade e controle rigoroso do ciclo de vida dos agentes de IA. Por outro lado, a adogdo de
contéineres em ambientes serverless requer aten¢ao ao tamanho das imagens e ao impacto potencial
sobre tempos de inicializagao.

A andlise comparativa entre HTTP API e REST API revelou que a escolha do modelo de
integragao deve ser orientada pelo estagio de maturidade do sistema e pelos requisitos funcionais e de
governanca. Enquanto a HTTP API mostrou-se adequada para fases iniciais, oferecendo simplicidade

e menor laténcia, a REST API tornou-se indispensavel para atender requisitos avangados, como

LUMEN ET VIRTUS, Sao José dos Pinhais, v. XVII, n. LVI, p.1-24, 2026

=

21



configura¢do completa de CORS, manipulagdo de cargas bindrias e controle refinado de requisi¢oes e
respostas. Essa experiéncia reforca que decisdes arquiteturais eficazes sdo contextuais e evolutivas, e
ndo absolutas.

Outro aspecto relevante discutido neste trabalho ¢ o papel das APIs como produtos. Ao expor
cada capacidade de TA como um servico independente, a arquitetura possibilitou implantacio
auténoma, versionamento controlado e monetizagao baseada em uso. Esse modelo ndo apenas favorece
a reutilizagdo técnica, como também alinha a arquitetura aos objetivos de negocio, transformando
funcionalidades de IA em ativos mensuraveis e governaveis.

Por fim, os casos de aplicacdo apresentados demonstram a generalidade da arquitetura
proposta, que se mostrou capaz de acomodar diferentes dominios de IA — visdo computacional,
processamento de linguagem natural, automacdo de dados e geragdo de midia — sem alteracdes
estruturais significativas. Essa versatilidade sugere que a abordagem pode ser replicada em outros
contextos e setores, desde que os principios arquiteturais fundamentais sejam respeitados.

Em sintese, a discussao reforca que a produtizagdo da IA exige uma mudanga de foco, da
experimentacdo isolada para a engenharia de sistemas robustos, escalaveis e economicamente
sustentaveis. A arquitetura apresentada oferece um caminho vidvel para essa transicdo, ao integrar
praticas consolidadas de engenharia de software e computacao em nuvem as demandas especificas de

sistemas de inteligéncia artificial em producao.

9 CONCLUSAO

Este trabalho apresentou uma arquitetura serverless para a implantagdo de agentes de
inteligéncia artificial como servigos modulares, escaldveis e economicamente sustentaveis, abordando
desafios recorrentes que impedem a evolucdo de provas de conceito para sistemas prontos para
producdo. Ao longo do artigo, demonstrou-se que as principais limitagdes enfrentadas por iniciativas
de IA em ambientes corporativos ndo estdo relacionadas a capacidade dos modelos, mas a auséncia de
uma base arquitetural adequada para sua operacionalizagdo continua.

A arquitetura proposta fundamenta-se em principios como serverless-first, execugdo stateless,
containerizagdo e exposi¢do das capacidades de IA por meio de APIs tratadas como produtos. Esses
principios permitiram alinhar requisitos ndo funcionais criticos — custo, escalabilidade, seguranga e
laténcia — as demandas praticas de ambientes produtivos, reduzindo a complexidade operacional e
aumentando a confiabilidade do sistema.

A anélise comparativa entre HTTP API e REST API evidenciou que decisdes arquiteturais
devem ser orientadas pelo estdgio de maturidade do sistema e pelos requisitos de governanga.
Enquanto abordagens mais simples se mostraram adequadas para fases iniciais, a REST API revelou-

se essencial para suportar funcionalidades avangadas, como configuragdo completa de CORS,

=

LUMEN ET VIRTUS, Sao José dos Pinhais, v. XVII, n. LVI, p.1-24, 2026

22



manipulacdo de cargas bindrias e controle refinado de requisi¢des, consolidando-se como elemento-
chave para ambientes de producao.

Os casos de aplicagdo apresentados demonstraram a versatilidade da arquitetura ao acomodar
diferentes dominios de inteligéncia artificial, incluindo visdao computacional, processamento de
linguagem natural, automacao de dados e geracao de midia, sem necessidade de alteragdes estruturais
significativas. Essa generalidade reforca a aplicabilidade da abordagem proposta em diversos
contextos organizacionais e setoriais.

Em sintese, este trabalho contribui ao demonstrar que a produtizagao da inteligéncia artificial
requer uma mudanca de paradigma: da experimenta¢do isolada para a engenharia de sistemas
orientados a servigos, escalaveis e governaveis. A arquitetura apresentada oferece um caminho pratico
e replicavel para essa transicdo, servindo como referéncia para organizagdes que buscam transformar

solucdes de IA em produtos robustos, reutilizaveis e sustentaveis em ambientes de produgao.

9.1 CONSIDERACOES FINAIS

Os experimentos e validagdes funcionais descritos neste trabalho foram conduzidos por meio
de uma interface interativa de testes, que atua como cliente genérico das APIs, simulando diferentes
cenarios de consumo dos agentes de TA.

A implementacdo de referéncia utilizada nos experimentos estd disponivel como material

suplementar, com acesso restrito as funcionalidades de demonstragio.!

! https://agents-marketplace.i4uai.com/

=

LUMEN ET VIRTUS, Sao José dos Pinhais, v. XVII, n. LVI, p.1-24, 2026

23



REFERENCIAS

Amershi, S. et al. Software Engineering for Machine Learning: A Case Study. IEEE/ACM
International Conference on Software Engineering (ICSE), 2019.

Polyzotis, N. et al. Data Management Challenges in Production Machine Learning. SIGMOD
Record, 2018.

Amazon Web Services (AWS). Serverless Architectures with AWS Lambda. AWS Whitepaper, 2020.

Merkel, D. Docker: Lightweight Linux Containers for Consistent Development and Deployment.
Linux Journal, 2014.

Amazon Web Services (AWS). Best Practices for Container Images. AWS Documentation.
Amazon Web Services (AWS). Amazon API Gateway Developer Guide. AWS Documentation.
W3C. Cross-Origin Resource Sharing (CORS). W3C Recommendation, 2014.

Amazon Web Services (AWS). API Gateway Usage Plans and API Keys. AWS Documentation.

=

LUMEN ET VIRTUS, Sao José dos Pinhais, v. XVII, n. LVI, p.1-24, 2026

24



